Assignment 4

For all problems you are expected to justify your answers, by showing your work or stating arguments, as is appropriate.

1. [15 marks] Prove that $L=\left\{s \operatorname{doubleback}(s) s \mid s \in\{a, b\}^{*}\right\}$ is not context-free. Use the pumping lemma for context-free languages. Recall that doubleback (s) is formed by reversing and doubling the characters in s.
2. [15 marks] Show that twopiece $\left(L_{1}, L_{2}\right)$ is context-free whenever L_{1} is context-free and L_{2} is regular, where twopiece $\left(L_{1}, L_{2}\right)=\left\{x y \mid x \in L_{1} \backslash L_{2}, y \in L_{2}\right\}$.
Give a high-level overview and a detailed construction, and explain why your construction works (that is, why the language of what you construct is what you claim it to be).

Hint: Use the fact that there exist a PDA accepting L_{1} and a DFA accepting L_{2}.
3. [15 marks] Give the transition diagram of a one-tape deterministic Turing machine that accepts the language $L=\left\{s\right.$ doubleback $\left.(s) \mid s \in\{a, b\}^{*}\right\}$. Demonstrate how your Turing machine works by showing the sequence of transitions taken to accept the string abbbaa.
4. [15 marks] Give both a high-level overview and a detailed description of a nondeterministic multitape Turing machine $L=\left\{s x\right.$ doubleback $(s) y\left|s, x, y \in\{a, b\}^{*},|s|>0\right\}$. Notice that this is not the same language as in the previous question. For full marks, make use of nondeterminism, and explain how it is being used. It may be easier if you break your detailed description into subtasks.
5. [15 marks] For any languages L_{1} and L_{2}, we define $\operatorname{split}\left(L_{1}, L_{2}\right)=\left\{x y \mid x \in L_{1} \backslash L_{2}, y \in\right.$ $\left.L_{2},|x|=|y|\right\}$. Notice that this is not the same as twopiece, as it has another condition.
(a) [12 marks] Show that if L_{1} and L_{2} are recursive, then $\operatorname{split}\left(L_{1}, L_{2}\right)$ also recursive. Justify your answer by constructing a Turing machine T such that $L(T)=\operatorname{split}(L)$ and T halts on all inputs.
(b) [3 marks] Can you use the same construction to show that $\operatorname{split}\left(L_{1}, L_{2}\right)$ is r.e. when L_{1} and L_{2} are both r.e.? If so, explain why. If not, give the largest classes C_{1} and C_{2} of languages for L_{1} and L_{2} such that if L_{1} is in C_{1} and L_{2} is in C_{2}, then $\operatorname{split}\left(L_{1}, L_{2}\right)$ is r.e.. Justify your answer.

