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Turing machines

1 Turing machine example

The following transition diagrams are of Turing machines discussed in class.
A Turing machine for LPAL:
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A Turing machine that deletes the current symbol:
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A Turing machine for {ss | s ∈ {a, b}∗}:
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2 Turing-computability and decidability

A partial function f : Σ∗ → Γ∗ is Turing-computable if it is computed by a one-tape deterministic
Turing machine, that is, if for every x on which f is defined, q0x `∗ haf(x) and on any other
input, T fails to halt. This can be generalized to a partial function f : (Σ∗)k → Γ∗, where
f is Turing-computable if on every (x1, . . . , xk) on which f is defined, q0x1∆x2∆x3 . . .∆xk `∗
haf(x1, . . . , xk).

A language is Turing-decidable if its characteristic function is Turing-computable, where the
characteristic function for L, χL, is defined as χL(x) = 1 if x ∈ L and χL(x) = 0 otherwise.

3 Nondeterministic multitape machine for composites

The language is the set {1n | n is composite}. We consider two methods, detailed below; the
first uses the fact that a composite number n is divisible by some integer in the range from 2
to n− 1 and the second uses the fact that a composite number is the product of two integers in
the range from 2 to n− 1.
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3.1 Division approach

Here we use Tape 1 to store the input and Tape 2 to store our “guess” 1p, where we wish to
show that p divides n.

We can divide the machine into subtasks as follows (many details omitted):

• Guess p: Write two 1’s, then nondeterministically choose between adding a 1 and going
to the next step.

• Divide: Repeatedly match Tapes 1 and 2, erasing 1’s from Tape 1 (reject if p > n).

• Check: Accept if after a complete iteration of Divide only blanks remain on Tape 1.

For a deterministic machine, instead of guessing p, each possible value of p can be tried in
turn. An additional subtask would be used to increment the value.

3.2 Multiplication approach

For this approach, again Tape 1 is used to store the input. Tapes 2 and 3 store our “guesses”
of 1p and 1q, where we wish to show that pq = n. Tape 4 is used to store pq.

We use the following subtasks (details omitted):

• Guess p

• Guess q

• Multiply p and q

• Compare Tapes 1 and 4


