CS 360
Naomi Nishimura

Turing machines

1 Turing machine example

The following transition diagrams are of Turing machines discussed in class.
A Turing machine for Lpar:

aja,—

A Turing machine that deletes the current symbol:

ala,—
b/b,—

A Turing machine for {ss | s € {a,b}*}:



CS 360: Turing machines 2

2 Turing-computability and decidability

A partial function f : 3* — I'* is Turing-computable if it is computed by a one-tape deterministic
Turing machine, that is, if for every x on which f is defined, goz F* h,f(z) and on any other
input, 7' fails to halt. This can be generalized to a partial function f : (¥*)* — I'*, where
f is Turing-computable if on every (z1,...,x;) on which f is defined, gor1AxeAxs ... Axy H*
hof(x1,. .., x).

A language is Turing-decidable if its characteristic function is Turing-computable, where the
characteristic function for L, xp, is defined as xp(z) =1 if x € L and x.(x) = 0 otherwise.

3 Nondeterministic multitape machine for composites

The language is the set {1™ | n is composite}. We consider two methods, detailed below; the
first uses the fact that a composite number n is divisible by some integer in the range from 2
to n — 1 and the second uses the fact that a composite number is the product of two integers in
the range from 2 ton — 1.



CS 360: Turing machines 3

3.1 Division approach

Here we use Tape 1 to store the input and Tape 2 to store our “guess” 17, where we wish to
show that p divides n.
We can divide the machine into subtasks as follows (many details omitted):

e Guess p: Write two 1’s, then nondeterministically choose between adding a 1 and going
to the next step.

e Divide: Repeatedly match Tapes 1 and 2, erasing 1’s from Tape 1 (reject if p > n).

e Check: Accept if after a complete iteration of Divide only blanks remain on Tape 1.

For a deterministic machine, instead of guessing p, each possible value of p can be tried in
turn. An additional subtask would be used to increment the value.

3.2 Multiplication approach

For this approach, again Tape 1 is used to store the input. Tapes 2 and 3 store our “guesses”
of 17 and 19, where we wish to show that pg = n. Tape 4 is used to store pq.
We use the following subtasks (details omitted):

e Guess p

Guess ¢

Multiply p and ¢

Compare Tapes 1 and 4



