Turing machines

1 Turing machine example

The following transition diagrams are of Turing machines discussed in class.
A Turing machine for $L_{P A L}$:

A Turing machine that deletes the current symbol:

A Turing machine for $\left\{s s \mid s \in\{a, b\}^{*}\right\}$:

2 Turing-computability and decidability

A partial function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ is Turing-computable if it is computed by a one-tape deterministic Turing machine, that is, if for every x on which f is defined, $q_{0} x \vdash^{*} h_{a} f(x)$ and on any other input, T fails to halt. This can be generalized to a partial function $f:\left(\Sigma^{*}\right)^{k} \rightarrow \Gamma^{*}$, where f is Turing-computable if on every $\left(x_{1}, \ldots, x_{k}\right)$ on which f is defined, $q_{0} x_{1} \Delta x_{2} \Delta x_{3} \ldots \Delta x_{k} \vdash^{*}$ $h_{a} f\left(x_{1}, \ldots, x_{k}\right)$.

A language is Turing-decidable if its characteristic function is Turing-computable, where the characteristic function for L, χ_{L}, is defined as $\chi_{L}(x)=1$ if $x \in L$ and $\chi_{L}(x)=0$ otherwise.

3 Nondeterministic multitape machine for composites

The language is the set $\left\{1^{n} \mid n\right.$ is composite $\}$. We consider two methods, detailed below; the first uses the fact that a composite number n is divisible by some integer in the range from 2 to $n-1$ and the second uses the fact that a composite number is the product of two integers in the range from 2 to $n-1$.

3.1 Division approach

Here we use Tape 1 to store the input and Tape 2 to store our "guess" 1^{p}, where we wish to show that p divides n.

We can divide the machine into subtasks as follows (many details omitted):

- Guess p : Write two 1 's, then nondeterministically choose between adding a 1 and going to the next step.
- Divide: Repeatedly match Tapes 1 and 2, erasing 1's from Tape 1 (reject if $p>n$).
- Check: Accept if after a complete iteration of Divide only blanks remain on Tape 1.

For a deterministic machine, instead of guessing p, each possible value of p can be tried in turn. An additional subtask would be used to increment the value.

3.2 Multiplication approach

For this approach, again Tape 1 is used to store the input. Tapes 2 and 3 store our "guesses" of 1^{p} and 1^{q}, where we wish to show that $p q=n$. Tape 4 is used to store $p q$.

We use the following subtasks (details omitted):

- Guess p
- Guess q
- Multiply p and q
- Compare Tapes 1 and 4

