
CS 360
Naomi Nishimura

Turing machines

1 Turing machine example

The following transition diagrams are of Turing machines discussed in class.
A Turing machine for LPAL:

a/∆,→

b/∆,→

∆/∆,→

∆/∆,→

∆/∆,→
∆/∆,←

a/∆,←

b/∆,←

∆/∆,→

∆/∆,←

a/a,→

a/a,→

b/b, →

b/b, →

b/b,←
a/a,←

q1

q2 q3

q4

q5 q6

q7

Start

A Turing machine that deletes the current symbol:

a/a,→
b/b, →

b/b,←

a/a,←

a/b,← b/a,←

b/∆,←

a/∆,← ∆/a,→

∆/b,→

∆/∆,→

a/∆,→
b/∆,→

∆/∆,←

q0 q1

q2

q3

q4

q5

Start

A Turing machine for {ss | s ∈ {a, b}∗}:



CS 360: Turing machines 2

q7 q8

q9

10q10

q1 q2 q3 q4

q5

q6

Start

A/A,!
B/B,!

a/a, 
b/b, 

b/B, 
a/A, 

a/a,!
b/b,!

A/A, 
B/B, 

a/A,!
b/B,!

A/a, 
B/b, 

A/A,!
B/B,!
A/A, 
B/B, 
�/�, 

�/�,!

�/�,!
�/�,!

a/A,!b/B,!

a/a,!
b/b,!
�/�,!

a/a, 
b/b, 
�/�, 

a/a,!
b/b,!
�/�,!

A/�, 
B/�, 

2 Turing-computability and decidability

A partial function f : Σ∗ → Γ∗ is Turing-computable if it is computed by a one-tape deterministic
Turing machine, that is, if for every x on which f is defined, q0x `∗ haf(x) and on any other
input, T fails to halt. This can be generalized to a partial function f : (Σ∗)k → Γ∗, where
f is Turing-computable if on every (x1, . . . , xk) on which f is defined, q0x1∆x2∆x3 . . .∆xk `∗
haf(x1, . . . , xk).

A language is Turing-decidable if its characteristic function is Turing-computable, where the
characteristic function for L, χL, is defined as χL(x) = 1 if x ∈ L and χL(x) = 0 otherwise.

3 Nondeterministic multitape machine for composites

The language is the set {1n | n is composite}. We consider two methods, detailed below; the
first uses the fact that a composite number n is divisible by some integer in the range from 2
to n− 1 and the second uses the fact that a composite number is the product of two integers in
the range from 2 to n− 1.



CS 360: Turing machines 3

3.1 Division approach

Here we use Tape 1 to store the input and Tape 2 to store our “guess” 1p, where we wish to
show that p divides n.

We can divide the machine into subtasks as follows (many details omitted):

• Guess p: Write two 1’s, then nondeterministically choose between adding a 1 and going
to the next step.

• Divide: Repeatedly match Tapes 1 and 2, erasing 1’s from Tape 1 (reject if p > n).

• Check: Accept if after a complete iteration of Divide only blanks remain on Tape 1.

For a deterministic machine, instead of guessing p, each possible value of p can be tried in
turn. An additional subtask would be used to increment the value.

3.2 Multiplication approach

For this approach, again Tape 1 is used to store the input. Tapes 2 and 3 store our “guesses”
of 1p and 1q, where we wish to show that pq = n. Tape 4 is used to store pq.

We use the following subtasks (details omitted):

• Guess p

• Guess q

• Multiply p and q

• Compare Tapes 1 and 4


