Decision problems for regular languages

1 Problems considered

The following are examples of decision problems for regular languages discussed in class.

1. Given an NFA M and a string x, does M accept x ?
2. Given a DFA M, is $L(M)$ empty?
3. Given a DFA M, is $L(M)$ finite?
4. Given two DFA's M_{1} and M_{2}, do they accept any of the same strings?
5. Given two DFA's M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?
6. Given two DFA's M_{1} and M_{2}, do they accept the same language?
7. Given two regular expressions α_{1} and α_{2}, is $L\left(\alpha_{1}\right)=L\left(\alpha_{2}\right)$?

2 Alternate proofs

The textbook gives one way of testing the emptiness of regular languages. Here we give another way of testing emptiness and also a way of testing finiteness.

Testing emptiness

We first show that for D a DFA with n states, $L(D)$ is nonempty if and only if D accepts a string of length less than n. One direction is trivial: If D accepts a string of length less than n, then clearly $L(D)$ is nonempty. For the other direction, we use a proof by contradiction. Suppose instead that $L(D)$ is nonempty and the length of the shortest string in $L(D)$ is at least n. We pick a shortest string w and observe that since $|w| \geq n$ and $w \in L(D)$ (which is by definition a regular language), we can conclude that we can express w as a decomposition $w=x y z$ such that $|x y| \leq n,|y|>0$, and for all $k \geq 0$, the string $x y^{k} z$ is in $L(D)$. In particular, for $k=0, x z \in L(D)$, and since $|y|>0$ we can conclude that $|x z|<|w|$. However this contradicts the assumption that w is a shortest string in $L(D)$.

The algorithm for testing emptiness then consists of trying each string of length less than n to see if it is accepted by D. If no such string is accepted, then we can conclude that $L(D)$ is empty. This algorithm can be executed in a finite amount of time as the number of strings of length less than n on the alphabet of D is finite and each can be processed in finite time.

Testing finiteness

We prove a result about DFA's similar to that above; we show that for D a DFA with n states, $L(D)$ is infinite if and only if D accepts a string w such that $n \leq|w|<2 n$. Again one
direction is trivial: If D accepts such a string, then by the pumping lemma w can be used to form an infinite family of strings all in $L(D)$.

To see that if $L(D)$ is infinite, D accepts a string w such that $n \leq|w|<2 n$, we again make use of the pumping lemma. Suppose instead that $L(D)$ is infinite but D does not accept any string such that $n \leq|w|<2 n$. Clearly D must accept at least one string of length $2 n$ or greater, since otherwise all strings $L(D)$ are of length less than n, and they are finite in number, a contradiction. Let w be a shortest string of length at least $2 n$. Then by the pumping lemma, we can express w as a decomposition $w=x y z$ such that $|x y| \leq n,|y|>0$, and for all $k \geq 0$, the string $x y^{k} z$ is in $L(D)$. In particular, for $k=0, x z \in L(D)$, and since $|y|>0$ we can conclude that $|x z|<|w|$. If $|x z| \geq 2 n$, then this contradicts the assumption that w is a shortest string of length at least $2 n$. If $|x z|<2 n$, then since $|x y| \leq n$ and $|x y z| \geq 2 n$, we can conclude that $|x z| \geq n$, contradicting the assumption that $L(D)$ contains no strings of length $n \leq|x z|<2 n$. In either case, the proof is complete.

The result implies an algorithm: we try all strings of length $n \leq|w|<2 n$. Again, the number of strings is finite. Either at least one is accepted and hence $L(D)$ is infinite, or by the result above, $L(D)$ is finite.

