CS 360
Naomi Nishimura

Decision problems for regular languages

1 Problems considered
The following are examples of decision problems for regular languages discussed in class.

1. Given an NFA M and a string z, does M accept z?

2. Given a DFA M, is L(M) empty?

3. Given a DFA M, is L(M) finite?

4. Given two DFA’s M; and Ms, do they accept any of the same strings?
5. Given two DFA’s My and My, is L(M,;) C L(Ms)?

6. Given two DFA’s M; and M, do they accept the same language?

7. Given two regular expressions a; and ag, is L(ay) = L(ag)?

2 Alternate proofs

The textbook gives one way of testing the emptiness of regular languages. Here we give another
way of testing emptiness and also a way of testing finiteness.

Testing emptiness

We first show that for D a DFA with n states, L(D) is nonempty if and only if D accepts a
string of length less than n. One direction is trivial: If D accepts a string of length less than
n, then clearly L(D) is nonempty. For the other direction, we use a proof by contradiction.
Suppose instead that L(D) is nonempty and the length of the shortest string in L(D) is at
least n. We pick a shortest string w and observe that since |w| > n and w € L(D) (which is
by definition a regular language), we can conclude that we can express w as a decomposition
w = zyz such that |xy| < n, |y| > 0, and for all k > 0, the string zy*z is in L(D). In particular,
for k = 0, zz € L(D), and since |y| > 0 we can conclude that |zz| < |w|. However this
contradicts the assumption that w is a shortest string in L(D).

The algorithm for testing emptiness then consists of trying each string of length less than n
to see if it is accepted by D. If no such string is accepted, then we can conclude that L(D) is
empty. This algorithm can be executed in a finite amount of time as the number of strings of
length less than n on the alphabet of D is finite and each can be processed in finite time.

Testing finiteness

We prove a result about DFA’s similar to that above; we show that for D a DFA with n
states, L(D) is infinite if and only if D accepts a string w such that n < |w| < 2n. Again one

CS 360: Decision problems for regular languages 2

direction is trivial: If D accepts such a string, then by the pumping lemma w can be used to
form an infinite family of strings all in L(D).

To see that if L(D) is infinite, D accepts a string w such that n < |w| < 2n, we again
make use of the pumping lemma. Suppose instead that L(D) is infinite but D does not accept
any string such that n < |w| < 2n. Clearly D must accept at least one string of length 2n or
greater, since otherwise all strings L(D) are of length less than n, and they are finite in number,
a contradiction. Let w be a shortest string of length at least 2n. Then by the pumping lemma,
we can express w as a decomposition w = xyz such that |zy| < n, |y| > 0, and for all £ > 0, the
string zy*z is in L(D). In particular, for k = 0, zz € L(D), and since |y| > 0 we can conclude
that |zz| < |w|. If |zz] > 2n, then this contradicts the assumption that w is a shortest string
of length at least 2n. If |zz| < 2n, then since |zy| < n and |zyz| > 2n, we can conclude that
|zz| > n, contradicting the assumption that L(D) contains no strings of length n < |zz| < 2n.
In either case, the proof is complete.

The result implies an algorithm: we try all strings of length n < |w| < 2n. Again, the
number of strings is finite. Either at least one is accepted and hence L(D) is infinite, or by the
result above, L(D) is finite.

