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Kleene’s Theorem

To make the various algorithms clearer, we prove Kleene’s Theorem in five steps. Some of
these steps, as noted below, have been modified from what appears in the textbook.

A. For any regular expression α, there exists an ε-NFA E such that L(E) = L(α) [Section 3.2.3]

B. For any ε-NFA E, there exists an NFA N such that L(N) = L(E). [Modified version of
Theorem 2.22 in Section 2.5.5, which creates a DFA instead of an NFA]

C. For any NFA N , there exists a DFA D such that L(D) = L(N). [Section 2.3.5] (This is also
known as subset construction.)

D. For any DFA D, there exists an ε-NFA E such that L(E) = L(D). [Modified version of
Theorem 2.12 in Section 2.3.5, which creates an NFA instead of an ε-NFA]

E. For any ε-NFA E, there exists a regular expression α such that L(α) = L(E). [Modified
version of Section 3.2.2, which uses a DFA instead of an ε-NFA] (This is also known as state
elimination.)

1 Step B

For Step B, we convert an ε-NFA into an NFA rather than a DFA. This removes the subset
construction from the conversion, making clearer how ε-transitions are removed.

In our modified result, we form an NFA N = (QN ,Σ, δN , qN , FN) from an ε-NFA E =
(QE,Σ, δE, qE, FE), as follows. We retain the set of states and start state, so QN = QE and
qN = qE.

To form the new transition function, we consider the set of states reachable from a state
upon the reading of a single input symbol. In the ε-NFA, this will be states reached by following
any number of ε-transitions followed by a transition on the symbol followed by any number of
ε-transitions. This can be accomplished by taking eclose of the original state followed by a
transition on the symbol followed by another eclose. This is in fact exactly how the extended
transition function δ∗E is defined, so we can set δN(q, a) = δ∗E(q, a).

Finally, to define FN , we observe that FN should contain every state in FE plus possibly
the start state. The start state should be included if it is possible to reach an accepting state
by following zero or more ε-transitions. Put another way, the start state should be included if
eclose({qE})∩FE 6= ∅, that is FN = FE∪{qE} if eclose({qE})∩FE 6= ∅, and FN = FE otherwise.

2 Step E

In Section 3.2.2 of the textbook, an algorithm is given for constructing a regular expression
from a DFA. The algorithm presented here (and in class) is simpler to understand, and applies
to NFA’s and ε-NFA’s as well.
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As in the textbook, we will remove states from the automaton, replacing labels of arcs, so
that in the end a single regular expression is formed. The single regular expression will be the
label on an arc that goes from the start state to the accepting state, and this will be the only
arc in the automaton.

The algorithm forms the simpler automaton as follows. In step 1, we modify the automaton
to have a start state that is not an accepting state and has no transitions in (either self-loops or
from other states). In step 2, we create an equivalent automaton that has a single accepting state
with no transitions out. These will be the two states that remain at the end of the algorithm.
In step 3, the other states are eliminated, in any order. Details of the algorithm follow, along
with a running example, illustrated below.
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Step 1
If the start state is an accepting state or has transitions in, add a new non-accepting start

state and add an ε-transition between the new start state and the former start state.
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Step 2
If there is more than one accepting state or if the single accepting state has transitions out,

add a new accepting state, make all other states non-accepting, and add an ε-transition from
each former accepting state to the new accepting state.
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Step 3
For each non-start non-accepting state in turn, eliminate the state and update transitions

according to the procedure given on page 99 of the textbook, Figures 3.7 and 3.8. The following
illustrations depict the removal of states q1, q2, q3, and q4 in that order.

As the transitions into q1 are from q0 and q2 and the transitions out of q1 are to q2 and q3,
there will be new or modified transitions from q0 to q2 and q2 and from q2 to q2 and q3.

Notice, for example, that there is now a self-loop on q2 consisting of the concatenation of
the previous labels on the transitions from q2 to q1 and q1 to q2. In addition, observe that the
label on the transition from q2 to q3 consists of the previous label ε and the new label formed
by transitions from q2 to q1 to q3.
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Since the only transition out of q2 is to q3, it is only the transitions into q3 from q0 and q4
that are changed in this step. In both cases, notice that the self-loop appears as (aa)∗ in each
label.
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The elimination of q3 results in b∗ to represent the self-loop. This label, as well as the labels
from q4 to q3 and q3 to q4, result in a self-loop on q4.
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In the final step, we obtain the union of the label from q0 to q5 and the label formed by the
transition from q0 to q4, zero or more uses of the self-loop, and the transition from q4 to q5.
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