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Introductory material

1 Strings

substring A string x is a substring of a string y if there exist strings w and z such that y = wxz.

prefix A string x is a prefix of a string y if there exists a string z such that y = xz.

suffix A string x is a suffix of a string y if there exists a string w such that y = wx.

na(x) For a a symbol and x a string, na(x) is the number of occurrences of a in x.

2 Set theory

You are expected to be familiar with basics of set theory. A few relevant facts are listed here
as a reminder. In the following, A and B are subsets of a universal set U . Typically, sets will
be languages (hence sets of strings).

Complement The complement of A, denoted A, is defined as A = {x ∈ U | x /∈ A}.

Set difference The difference A \B is defined to be A \B = A ∩B.

De Morgan laws A ∪B = A ∩B; A ∩B = A ∪B.

Other useful laws Union and intersection are commutative and associative, and each dis-
tributes over the other.

3 Operations on languages

concatenation L1L2 = {xy | x ∈ L1, y ∈ L2}

power Lk is k copies of L concatenated; L0 = {ε} and Lk = LLk−1.

Kleene star L∗ = ∪∞k=0L
k; also L+ = ∪∞k=1L

k.

4 Closure properties

A set S is closed under an operation if the element derived by applying the operation to any
element(s) of S yields an element of S. That is, for a unary operation �, �(x) is in S for any
x ∈ S, and for a binary operation �, x � y is in S for any x, y ∈ S.

The textbook uses closure in this sense as well as to specifically mean closure under the
operation Kleene star. To avoid confusion, I will only use closure in this more general sense.
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KEY POINT (and common pitfall): It is important to observe that the operation will
be an operation on elements of S. If S is a language, we can talk about the closure of S under
an operation on strings. If S is a class of languages (hence of set of languages), then we can
talk about the closure of S under an operation on languages.

5 Induction

You may find it useful to use a bit more structure in your proofs by induction by stating
explicitly both your assumptions and the statement to prove. The example below is taken from
lecture, and demonstrates one way of presenting a proof by induction.

We prove by induction that if L2 ⊆ L, then L+ ⊆ L. First, we transform the statement to
prove into one in which the “n” is more obvious: “For every n ≥ 1, if L2 ⊆ L, then Ln ⊆ L”.
Our proof is by induction on the size of n.
Basis. For n = 1, we prove that if L2 ⊆ L, then L1 ⊆ L. The result follows from the facts
that L1 = L and that for any set S, S ⊆ S. Notice that we did not use the fact that L2 ⊆ L
anywhere in our proof, as it was not needed.
Induction hypothesis. For n = k, if L2 ⊆ L, then Ln ⊆ L.
Statement to prove. For n = k + 1, if L2 ⊆ L, then Ln ⊆ L.
Inductive step. As in the statement to prove, we let n = k + 1 and assume that L2 ⊆ L.

Applying the induction hypothesis, since L2 ⊆ L, we can conclude that Lk ⊆ L. Moreover,
for any sets A, B, and C, A ⊆ B implies CA ⊆ CB. By setting A = Lk, B = L, and C = L,
we can conclude that LLk ⊆ LL = L2.

We observe by the recursive definition of Ln = Lk+1 that Lk+1 = LLk. Thus, LLk ⊆ L2

implies that Lk+1 ⊆ L2.
Finally, using again the assumption that L2 ⊆ L, we combine Lk+1 ⊆ L2 and L2 ⊆ L to

conclude that Lk+1 ⊆ L, as claimed.


