
CS 360
Naomi Nishimura

Context-free languages

1 Closure properties

In Theorem 7.24 of the textbook, several closure properties for the class of context-free languages
are proved using substitution and Theorem 7.23. Here we give the constructions explicitly,
assuming that for two context-free languages L1 and L2 we have associated grammars G1 =
(V1, T1, P1, S1) and G2 = (V2, T2, P2, S2). In what follows we need to ensure that V1 ∩ V2 = ∅,
which can be accomplished by renaming of variables.

To show that the class of context-free languages is closed under union, we show how we
can form from G1 and G2 a grammar G = (V, T, P, S) such that L(G) = L1 ∪ L2. We set
V = V1 ∪ V2 ∪ {S}, T = T1 ∪ T2, and P = P1 ∪ P2 ∪ {S → S1} ∪ {S → S2}.

The proof for closure under concatenation is similar, where L(G) = L1L2 and G is defined
by V = V1 ∪ V2 ∪ {S}, T = T1 ∪ T2, and P = P1 ∪ P2 ∪ {S → S1S2}.

For Kleene star, we define G so that L(G) = L∗
1 by setting V = V1 ∪ {S}, T = T1, and

P = P1 ∪ {S → S1S} ∪ {S → ε}.

2 Regular implies CFL

We can show that if L is regular, then L is CFL either by constructing a PDA that mimics
an automaton D such that L(D) = L (essentially ignoring the stack) or by constructing a
context-free grammar G such that L(G) = L using a regular expression α such that L(α) = L.

To construct the grammar, we can use induction on the number of operations in α. If α = ∅,
we create a grammar without any rules. For α = a ∈ Σ, we construct a grammar with the rule
S → a, and for α = ε with the rule S → ε.

We use as our induction hypothesis the claim that if β has fewer than k operations, there
exists grammar Gβ such that L(Gβ) = L(β). We now consider α with k operations, and in
particular the last operation used to construct α. We can then decompose α as α = α1 +α2, or
α = α1α2, or α = α∗

1. Since each of α1 and α2 (if it exists) has fewer than k operations, we can
use the induction hypothesis to form grammars G1 and G2, L(G1) = L(α1) and L(G2) = L(α2).
We can then use the closure property constructions from the previous section to complete G.

3 Decision problems for CFL’s

Since we are not concerned with the details of the time complexity of the algorithms for these
problems, we can get by with a simpler presentation than that given in the textbook.

To determine if a string w is in a CFL L, we first observe that we can find a grammar G
in Chomsky Normal Form such that L(G) = L − {ε}. If w = ε, we can check membership in
L during the conversion algorithm. Otherwise, we know that if there is a derivation of w in G,
the length of the derivation will be 2|w| − 1. Since the number of rules is finite, the number of

CS 360: Context-free languages 2

derivations of length 2|w| − 1 is finite, and hence membership can be tested by trying them all
(if w is found the answer is “yes” and if w is not found the answer is “no”).

To determine if a CFL L is empty, we can either test for reachability (see the text) or use
the pumping lemma for context-free languages, in a manner similar to the algorithm for the
emptiness problem for regular languages. We can check for membership of ε in the conversion
to a grammar G in CNF, returning “no” if ε ∈ L. Otherwise, for n = 2p+1, where p + 1 is
the number of variables in G, we check to see if there is any string of length at most n in the
language using the algorithm found in the previous paragraph. Since the total number of strings
to check is finite, the algorithm executes in a finite amount of time.

To determine if a CFL L is finite, again we can use the pumping lemma in the manner used
to check finiteness of regular languages. In this case we determine if there is any string w where
n ≤ |w| < 2n is in the language.

