Context-free languages

1 Closure properties

In Theorem 7.24 of the textbook, several closure properties for the class of context-free languages are proved using substitution and Theorem 7.23. Here we give the constructions explicitly, assuming that for two context-free languages L_{1} and L_{2} we have associated grammars $G_{1}=$ $\left(V_{1}, T_{1}, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T_{2}, P_{2}, S_{2}\right)$. In what follows we need to ensure that $V_{1} \cap V_{2}=\emptyset$, which can be accomplished by renaming of variables.

To show that the class of context-free languages is closed under union, we show how we can form from G_{1} and G_{2} a grammar $G=(V, T, P, S)$ such that $L(G)=L_{1} \cup L_{2}$. We set $V=V_{1} \cup V_{2} \cup\{S\}, T=T_{1} \cup T_{2}$, and $P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1}\right\} \cup\left\{S \rightarrow S_{2}\right\}$.

The proof for closure under concatenation is similar, where $L(G)=L_{1} L_{2}$ and G is defined by $V=V_{1} \cup V_{2} \cup\{S\}, T=T_{1} \cup T_{2}$, and $P=P_{1} \cup P_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$.

For Kleene star, we define G so that $L(G)=L_{1}^{*}$ by setting $V=V_{1} \cup\{S\}, T=T_{1}$, and $P=P_{1} \cup\left\{S \rightarrow S_{1} S\right\} \cup\{S \rightarrow \epsilon\}$.

2 Regular implies CFL

We can show that if L is regular, then L is CFL either by constructing a PDA that mimics an automaton D such that $L(D)=L$ (essentially ignoring the stack) or by constructing a context-free grammar G such that $L(G)=L$ using a regular expression α such that $L(\alpha)=L$.

To construct the grammar, we can use induction on the number of operations in α. If $\alpha=\emptyset$, we create a grammar without any rules. For $\alpha=a \in \Sigma$, we construct a grammar with the rule $S \rightarrow a$, and for $\alpha=\epsilon$ with the rule $S \rightarrow \epsilon$.

We use as our induction hypothesis the claim that if β has fewer than k operations, there exists grammar G_{β} such that $L\left(G_{\beta}\right)=L(\beta)$. We now consider α with k operations, and in particular the last operation used to construct α. We can then decompose α as $\alpha=\alpha_{1}+\alpha_{2}$, or $\alpha=\alpha_{1} \alpha_{2}$, or $\alpha=\alpha_{1}^{*}$. Since each of α_{1} and α_{2} (if it exists) has fewer than k operations, we can use the induction hypothesis to form grammars G_{1} and $G_{2}, L\left(G_{1}\right)=L\left(\alpha_{1}\right)$ and $L\left(G_{2}\right)=L\left(\alpha_{2}\right)$. We can then use the closure property constructions from the previous section to complete G.

3 Decision problems for CFL's

Since we are not concerned with the details of the time complexity of the algorithms for these problems, we can get by with a simpler presentation than that given in the textbook.

To determine if a string w is in a CFL L, we first observe that we can find a grammar G in Chomsky Normal Form such that $L(G)=L-\{\epsilon\}$. If $w=\epsilon$, we can check membership in L during the conversion algorithm. Otherwise, we know that if there is a derivation of w in G, the length of the derivation will be $2|w|-1$. Since the number of rules is finite, the number of
derivations of length $2|w|-1$ is finite, and hence membership can be tested by trying them all (if w is found the answer is "yes" and if w is not found the answer is "no").

To determine if a CFL L is empty, we can either test for reachability (see the text) or use the pumping lemma for context-free languages, in a manner similar to the algorithm for the emptiness problem for regular languages. We can check for membership of ϵ in the conversion to a grammar G in CNF, returning "no" if $\epsilon \in L$. Otherwise, for $n=2^{p+1}$, where $p+1$ is the number of variables in G, we check to see if there is any string of length at most n in the language using the algorithm found in the previous paragraph. Since the total number of strings to check is finite, the algorithm executes in a finite amount of time.

To determine if a CFL L is finite, again we can use the pumping lemma in the manner used to check finiteness of regular languages. In this case we determine if there is any string w where $n \leq|w|<2 n$ is in the language.

