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Abstract

Fine-grained access controls for XML define access privileges at the granularity of
individual XML nodes. In this paper, we present a fine-grained access control mech-
anism for XML data. This mechanism exploits the structural locality of access rights
as well as correlations among the access rights of different users to produce a com-
pact physical encoding of the access control data. This encoding can be constructed
using a single pass over a labeled XML database. It is block-oriented and suitable
for use in secondary storage. We show how this access control mechanism can be
integrated with a next-of-kin (NoK) XML query processor to provide efficient, se-
cure query evaluation. The key idea is that the structural information of the nodes
and their encoded access controls are stored together, allowing the access privileges
to be checked efficiently. Our evaluation shows that the access control mechanism
introduces little overhead into the query evaluation process.
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1 Introduction

Access controls in relational databases are usually defined at a coarse gran-
ularity, e.g. on entire tables. In contrast, much of the work on XML access
controls assumes a fine-grained model in which access controls can be specified
for individual nodes. Fine-grained access control for XML gives rise to several
challenges. First, the access rights specification is potentially very large: pro-
portional to both the size of the database itself and the number of database
system users. Thus, there must be a reasonably simple mechanism for spec-
ifying these rights and there must be a compact way to store them. Second,
access controls must be implemented efficiently, since processing even a single
query may involve many access right checks. This is not normally an issue
when access controls are coarse-grained. For example, in relational database
systems, access controls are normally checked once before a query is processed.
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If all of the database objects (e.g. relations) on which a query depends are ac-
cessible, then the query is processed, otherwise it is rejected. In contrast, most
fine-grained access control mechanisms never reject a query. Each query is an-
swered using that portion of the database that is accessible to the user that
submits the query. As a result, access controls and query evaluation are very
closely related.

There is a plethora of literature on specifying fine-grained access controls on
XML data using high level languages. Instead of manually specifying access
control for each XML node,the system administrator defines a set of rules and
derives access controls for each node in the XML document through rule-based
propagation and inferences. However, since evaluating the rules at run-time is
costly, it is desirable to materialize the net effect of these access control rules
into incrementally maintainable accessibility maps, in which each XML node
is labeled as either accessible or non-accessible for each subject under each
action mode[1,2]. The efficient storage and use of such maps is the problem
that we address in this paper.

Some recent work [3] involves schema-based access control specifications, which
do not require instance-level accessibility maps. However, schema-based ap-
proaches are not always applicable, since the schema may be non-existent, or
inappropriate for the specification of the desired access controls. Additional
discussion of related work can be found in Section 7.

In this paper we present a simple scheme called Document Ordered Labeling
(DOL) for the compact representation of fine-grained access control infor-
mation. Like Compressed Accessibility Maps (CAMs) [4], a recently proposed
scheme for representing XML access control data, DOL exploits the structural
locality of the access control data to achieve compression. Unlike CAM, DOL
is also able to exploit correlations among the access rights of different users to
achieve a substantial amount of additional compression in multi-user environ-
ments. DOL is a disk-oriented, multi-user scheme, while a CAM is intended
to store a single user’s access control data in memory.

The DOL access control representation is highly compatible with next-of-kin
(NoK) pattern matching, which is an efficient technique for processing XML
twig queries [5]. NoK query processing uses a compact representation of doc-
ument structure to evaluate some kinds of structural query constraints (e.g.
parent/child relationships) very efficiently. In this paper, we show how to im-
plement secure twig query processing by integrating DOL-based access control
with NoK query processing. We have used both real and synthetic access con-
trol data to evaluate the DOL technique. In terms of space efficiency, our
results show that a single-user DOL is somewhat less compact than a single-
user CAM. However, in a multi-user environment the DOL representation is
much more compact than a set of per-user CAMs. In terms of query process-
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ing time, we found that multi-user secure twig query evaluation with DOL
and NoK is at most 20% more expensive than unsecured evaluation with NoK
alone.

2 DOL: Access Control Labeling
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Fig. 1. XML data with fine-grained access control and its DOL

We model an XML document as a tree in which the nodes correspond to
the document’s elements and the edges represent parent/child relationships
among the elements. Sibling nodes in the tree are ordered. Our fine-grained
access control model consists of a set of subjects (denoted by S), a set M of
action modes (such as read and write), and a set D of nodes in the XML tree
whose access is to be controlled. Here we use subjects to denote both users
and user groups. The subject hierarchy, which describes group membership,
is assumed to be maintained separately.

We model the net effect of a set of access control policies over a database
instance as an accessibility function

accessible(S ×M×D) → {true, false}

The accessibility function specifies whether a given subject can access a given
data item in a given action mode. The accessibility function is often repre-
sented as an access control matrix [6]. For XML data, the accessibility function
for a given action mode can also be represented by associating each XML node
a list of subjects able to access it for that action mode. We will refer to an
XML tree without access control labels as a data tree, and to a tree with access
control labels as a secured tree.

We will initially assume that there is only one single action mode (i.e., |M| =
1). We will relax this assumption in Section 5. We first present the DOL scheme
for a single subject, and then show how to generalize it to multiple subjects.
Figure 1(a) shows a secured tree for a single subject, and the corresponding
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DOL representation of the subject’s access rights. Shaded nodes are accessible
to the subject, unshaded nodes are non-accessible. We define a transition node
to be a secured tree node whose accessibility is different from its document-
order predecessor (i.e., its immediately preceding node in document-order).
As a special case, the root node of a secured tree is also considered to be
a transition node. The DOL corresponding to a given secured tree is simply
a list, in document order, of the tree’s transition nodes, together with their
accessibilities. In the DOL shown in Figure 1(a), accessible and non-accessible
transition nodes are labeled with “+” and “−”, respectively.

Document order is, of course, one of many possible ordering one could choose.
We have chosen document order for several reasons. First, since XML parsers
and other tools process XML data in document order, a document order encod-
ing of access rights can be constructed on-the-fly using a single pass through
a labeled XML document. Second, NoK query processing uses a document
order encoding of document structure, and we want DOL to be compatible
with NoK. Finally, and most importantly, it allows structural locality of access
controls to be exploited to reduce their size. The terms “vertical” and “hori-
zontal” locality have been used to describe locality among parent/child nodes
and among sibling nodes, respectively [4]. Structural locality is encouraged by
access control specifications that propagate access rights along the hierarchi-
cal structure of the XML data, and it has been observed in real access control
data [4]. Nodes that are adjacent in document order often have parent/child or
sibling relationships in the document. Although this is not always the case, we
expect that much of the structural locality that exists in a document’s access
controls will translate to locality in document order. Such locality will reduce
the number of transition nodes, and hence the size of the DOL. In Section 6
we measure the impact of this locality on the size of the DOL using several
access control datasets.

2.1 DOL for Multiple Subjects

Aside from the structural locality of access controls for a single subject, we
conjecture that different subjects in an access control system may exhibit
correlated access constraints. (There may also exist correlations among action
modes, we will discuss this in Section 5.) For example, users in the same
department may have similar access controls. We wish to further compress
the access control labeling by taking advantage of such correlations.

Figure 1(b) shows a tree labeled with access rights for two subjects. In the
figure, each node is divided into two parts, with the left part representing the
access rights of one subject and the right part representing the access rights
of the other. As was the case in Figure 1(a), shading represents accessibility.
For example, node e is accessible to the first subject but not to the second.
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We can encode these access rights in much the same way as we did for a single
user, by recording a list of transition nodes. With each transition node we
record its access control list. Thus, when several consecutive nodes have the
same access control list, we only record it once. Furthermore, we expect the
access control lists for the transition nodes will reoccur frequently throughout
the secured tree. We can exploit this using dictionary compression: each dis-
tinct access control list that appears in the secured tree is recorded once in
a codebook (dictionary). With each transition node in the DOL we record a
reference to the appropriate access control list in the codebook, rather than
the access control list itself.

Figure 1(c) shows the multi-user DOL that corresponds to the secured tree in
Figure 1(b). Each transition node in the list has a numeric index. This is the
access control code (index into the codebook) for that transition node. The
codebook itself contains three entries, because only three of the four possible
distinct access control lists actually appear in the secured tree. Each codebook
entry is an access control list, which we present as a bit vector with one bit
for each access control subject.

The overall storage cost of DOL includes the distinct access control lists (the
codebook), the transition nodes and their associated codes. The number of
distinct access control lists and transition nodes depends on the correlations
among subjects’ access controls. If the access controls are not closely corre-
lated, the transition nodes will be dense and the number of codebook entries
will be large. Suppose we have |S| single subject DOLs, each having T transi-
tion nodes (in reality, each DOL would have a different number of transition
nodes, but we simplify this here). In the worst case, when subjects access
controls are independent, the number of distinct access control codes in the
combined multi-subject DOL would grow exponentially with the number of
subjects until it reaches an upper bound of min(|D|, 2|S|). Meanwhile, the
number of non-transition nodes would be:

|D| × (1− T

|D|)
|S|

That is, as S goes up, the number of non-transition nodes would shrink expo-
nentially until each XML node becomes a transition node. In practice, how-
ever, we expect the situation to be much better than this worst case. The real
access control systems that we have studied do not exhibit worst case behav-
ior. We will see in Section 6 that there do exist strong correlations of access
controls among subjects in these systems that make the overall size of DOL
grow slowly as the number of subjects increases.
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3 Physical Representation of the DOL

In this section we describe our physical representation of the DOL, which is
intended to be incorporated into an existing query processor framework called
NoK [5] to optimize secure query evaluation. For this reason, we begin with a
brief overview of NoK query processing.

3.1 NoK Query Modeling and Physical Storage

A NoK query processor accepts twig queries described by pattern trees and
evaluates them against an XML document by pattern matching. Each suc-
cessful pattern match generates a set of bindings between pattern tree nodes
and data tree nodes. The query result consists of all possible bindings. For
example, the pattern tree in Figure 2(a) will generate one match from the
data tree in Figure 2(c).

The NoK query processor first partitions the pattern tree into NoK sub-
trees, each having only parent-child or following-sibling relationships (the so-
called “next-of-kin” relationships) among its nodes. Then the processor finds
matches for these NoK subtrees from the data tree. Finally it matches the
ancestor-descendant relationships using structural joins. For example, the pat-
tern tree in Figure 2 would be split into two NoK subtrees, each matches to
a fragment in the data tree. The two fragments are then connected by the
ancestor-descendant relationship between nodes a and h.

The NoK query processor uses a physical representation of the data tree that
allows it to match NoK subqueries very efficiently. The structure of the data
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tree is stored separately from the node values in a compact representation. The
structure is encoded by listing the nodes in document order, with embedded
markup to indicate where subtrees begin and end. For example, the structure
of the data tree of Figure 2 would be encoded using the following string:
(a(b)(c)(d)(e(f)(g)(h(i)(j)(k)(l)))), where the nesting of parentheses captures
the nesting of subtrees. This document-order string is decomposed into blocks
for storage on disk. Each block has a header with meta data for that page
(e.g., the number of nesting parentheses for the first node in the page).

It can be seen that nodes connected by “next-of-kin” relationships tend to be
clustered in this physical representation and thus such nodes are more likely
to be located in the same physical block. By keeping the block meta data in
memory and exploiting this clustered representation of document structure, a
NoK query processor can match a NoK pattern using a small number of I/O
operations[5].

3.2 Integrating Access Control Data

codebook

c=1
acc=3
c=0
acc=2
c=1

header                body

page 1

page 2

page 3
(e(f)(g)(h

(a(b)(c)(d3)
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s1 s2
1

3
2

acc=1

Fig. 3. DOL at physical level

To integrate access control with NoK query processing, we physically cluster
the access control data with the NoK structural data. Specifically, our scheme
for physical representation of the access control data consists of the following
three components (Figure 3):

• The DOL codebook is maintained in memory for fast accessibility lookup.
If the codebook grows beyond the capacity of memory, each accessibility
lookup may result in an extra physical page read for loading the codebook
entry. However, our results in Section 6 show that, in practice, the codebook
will be quite small.

• The DOL transition nodes are embedded into the NoK structural data.
Figure 3 shows the embedding for the secured tree of Figures 1(b) (the page
header does not show NoK meta-data for simplicity). For the purposes of
the illustration, we have assumed that these data are spread across three
disk blocks. In the physical encoding, we treat the first node in each block as
if it were a transition node, regardless of whether it is actually a transition
node. The access control code for this initial transition node is stored in the
block header, which is described next. These initial transition nodes ensure
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that we can determine the access rights of any node using only the codes in
that node’s block.

• For each disk block, there is a small access control header which contains
two items. The first is the access control code for the first data node in
the block. The second is a “change” bit which is set if there is at least
one transition node (other than the initial node) in the block, and cleared
otherwise. The aggregate size of these headers is small. For example, for
1TB of XMark data, the NoK query processor will first convert it to a
succinct physical layout as in [5], which only occupies about 107 blocks,
assuming a 4KB block size. Measurements from our data sets (Section 6)
suggest that 2 bytes is more than sufficient for an access control code. If
we conservatively assume 4 bytes per access control block header, the total
size of the headers is only 40 MB. Therefore, we can keep all of the block
headers in memory (or part of the headers that include enough information
for the current pages to be read), and the NoK query processor can further
optimize I/O operations, as we shall describe shortly.

3.3 Access Lookup

To check the accessibility of a node d for subject s, the query processor locates
the transition node that precedes node d (if d is not itself a transition node).
Since the first node in every block is a transition node, the transition node will
be found in d’s block. That transition node’s access control code is then used
to identify an entry in the in-memory access control codebook. The s-th bit
in that codebook entry indicates the accessibility of the node for subject s. As
we will see in Section 4, the NoK query processor checks nodes’ accessibility
while it matches NoK query patterns. Provided that d’s disk block has been
loaded for query evaluation by the NoK evaluator, the access control check for
d requires no additional I/O.

In some cases, the query processor can make use of the in-memory DOL page
header to avoid unnecessary page reading: if the starting transition node in
the header indicates non-accessible to the user, and the “change” bit in the
header is not set (meaning there is no other transition nodes in this page), all
nodes in that page are non-accessible to the user. Thus the query processor
can entirely avoid loading that page.

3.4 DOL Updates

We consider two types of access control update operations: the updates to the
accessibility of nodes (e.g., adding read permission for a given subject to a
node), and updates to the subjects.

We first consider how to change the accessibility of a single node, x. Suppose
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we are to make x “accessible” for a certain subject. We first locate the nearest
preceding transition node (or the node itself if it is a transition node). We will
denote this node by x̂. If x̂’s access control code indicates “accessible” for the
subject, we stop. Otherwise, we mark x as a new transition node and set its
access control list to be the same as that of x̂, except that x is accessible to
the specified subject. We need to find this access control list in the codebook,
and assign its access control code to node x. If the required access control list
is not already in the codebook, then we need to add it. Finally, if the node
immediately after x is not already a transition node, we mark it as a transition
node with an access control code equal to that of x̂. All these operations occur
in memory after loading the page containing x. Note that x̂ is guaranteed
to be on the same page as x, because the first node in every page is always
a transition node. For the same reason, if the node after x is on a different
page than x then it must also be a transition node, which will not require
modification. Thus the I/O cost for updating x’s access control list is a page
read followed by a page write flushing the updates to disk.

To change the accessibility of all of the nodes in a subtree rooted at node x,
we can use the above procedure to change the accessibility of each node in the
subtree, in document order. The I/O cost of such a bulk update will be much
smaller than one read and one write per subtree node. This is because the
physical representation clusters these nodes. If each page can hold B nodes,
the total I/O cost for updating the accessibility of a subtree with N nodes
will be N/B pages reads (and writes). It is worth noting that all updates to
DOL have the update locality property, i.e., an update to a subtree only affects
the nodes within the pair of transition nodes that surround the subtree. This
property guarantees that updates are confined within a contiguous region of
the affected data.

In addition to the updates to the XML data, we need to consider updates
to S, the set of access control subjects. With DOL, it is relatively simple to
add a new subject who has no (initial) access rights, or whose access rights
initially match those of some existing subject. This can be accomplished by
simply adding an additional column to each entry in the in-memory codebook.
No changes to the embedded transition nodes and the references are required.
Deletion of a subject can also by accomplished within the codebook. This may
leave unnecessary codes embedded in the structural data, since the deletion
of a subject may decrease the number of transition nodes. However, any such
redundancy can be corrected lazily.

4 Secure Query Evaluation

Our semantics for secure query evaluation are identical to those used by Cho
et al. [7]. Recall that the (unsecured) evaluation of a twig query Q returns all
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of the possible sets of bindings of query pattern nodes to data nodes. Secure
evaluation of Q for subject s eliminates from this result any sets of bindings
that include data nodes that are inaccessible to s. For example, the pattern
tree shown in Figure 2 will return a single set of bindings if nodes a, b, c, h,
j, k and l in the data tree are all accessible to the subject s. It will return no
bindings if any of those nodes are inaccessible to s. Note that the accessibility
of nodes d, e, f, g and i has no impact on the secure evaluation of the particular
query shown in Figure 2.

4.1 DOL for Secure NoK Pattern Matching

In Section 3.1 we described that a NoK query processor works by first decom-
posing a pattern tree into NoK subtrees, and then attempting to match each
NoK subtree to the data (by using B+ trees on the subtree root’s value or tag
names to start the matching). One node in the NoK pattern tree is set as the
returning node, which means the nodes in the data tree that match this node
should be returned as result of this pattern matching.

Algorithm 1. ε-NoK Pattern Matching

NoK-Pattern-Matching(proot, sroot, R)

Pre-condition: sroot is accessible

1: if proot is the returning node
2: then List-Append(R, sroot);
3: S ← all children of proot ;
4: u ← First-Child(sroot);
5: repeat
6: if ACCESS(u) = true
7: then for each s ∈ S that matches u with

both tag name and value constraints
8: do
9: b ← NoK-Pattern-Matching(s, u, R);

10: if b = true
11: then S ← S \ {s};
12: u ← Following-Sibling(u);
13: until u = nil or S = ∅
14: if S 6= ∅
15: then R ← ∅;
16: return false;
17: return true;

The secure NoK pattern matching algorithm is shown in Algorithm 1. The
input parameter proot is the current node from the NoK pattern tree, and
sroot is the current document node that is being matched to proot. The third
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parameter R is set to ∅ initially and will contain a list of data tree nodes (in
document order) that match the returning node. To match NoK subtrees, the
query processor uses a recursive navigational approach, starting with an initial
match from the data for the root of the NoK pattern tree. It then proceeds
by recursively matching children of proot to children of sroot. This top-down
recursive pattern matching requires O(|P | × |D|) time (instead of exponential
time) to find all matches, where P is the size of the pattern tree and the D is
the size of the document [5]. The subroutines First-Child and Following-
Sibling use the block-oriented physical encoding of the document structure
to return the first child of the sroot in document-order, or the next sibling of
the current node, respectively. The subroutine ACCESS (line 6) checks the
accessibility of the child of the current document subtree root to be matched.
Since a node’s accessibility is checked immediately after it is loaded (by First-
Child or Following-Sibling), and since its access control code will be
found on the same page as the node itself, no additional I/O will be required
for node accessibility checks. Note that the pre-condition of Algorithm 1 is the
sroot nodes be accessible. This means before we use Algorithm 1 to recursively
match NoK pattern trees, the root of the NoK data tree should be checked to
make sure it is accessible. According to the query evaluation semantics given
early in Section 4, we can also skip the recursion on the child if the child is
not accessible.

After NoK subtree matches are located, they can be structurally joined based
on ancestor-descendant relationships. We have the following theorem:

Theorem 1 Algorithm ε-NoK, together with any non-secured structural join
algorithm, securely evaluates XML twig queries.

Proof The NoK pattern matching algorithm returns all and only those matched
pattern trees[5]. Further, NoK pattern matching together with any (non-
secured) structural join algorithm will evaluate any XML twig query [5]. Al-
gorithm ε-NoK is based on the NoK pattern matching algorithm and adds an
accessibility check for each potential matching node from the data tree. This
ensures that each matching NoK pattern trees reported by ε-NoK consists only
of accessible nodes. Unlike the unsecure NoK pattern matching algorithm, ε-
NoK terminates its recursion as soon as it encounters a non-accessible node
within a potential pattern match in the data tree. Since all data nodes in a
pattern match must be accessible, this early-out mechanism will not cause
ε-NoK to fail to report any accessible matches. Furthermore, it will not cause
ε-NoK to miss any accessible, matching NoK tree that is beneath the non-
accessible node, since the (secure) NoK matching algorithm will be invoked
for each document node that has the same node-tag as the root of the NoK
pattern [5]. If there is an accessible matching NoK tree underneath the non-
accessible node, it will be checked and returned by another ε-NoK invocation.
Therefore ε-NoK retrieves all and only the accessible NoK patterns according
to the secure query semantics. Since ε-NoK pattern matching returns only ac-
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cessible matches, and since the accessibility of nodes outside of these matches
is not relevant to the secure query evaluation semantics, the structural-join
algorithm does not require any further accessibility checks. Therefore, the ε-
NoK algorithm and any non-secured structural join algorithm will securely
evaluate XML twig queries. 2

4.2 Alternative Access Control Semantics

There is another (more restrictive) semantics for secure query evaluation,
which is defined by Gabillon and Bruno [8]. This semantics specifies that
a subtree rooted at a non-accessible node can not provide answers, even if it
contains accessible nodes. For example, the pattern tree in Figure 2 will not
find any matches from the data tree if node e is not accessible, even if all of
the remaining nodes are accessible.

Secure NoK pattern matching, as implemented in Algorithm 1, is not sufficient
for enforcing this more restrictive semantics. In addition to ensuring that each
NoK query pattern matches only accessible nodes, we must also ensure that
when these matches are structurally joined to produce the final answer, the
structural joins do not depend on inaccessible nodes. Continuing with the
example from Figure 2, this means that we must ensure that the matches for
the two NoK subqueries (rooted at nodes a and e), do not structurally join
through inaccessible nodes, e.g., node e.
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Fig. 4. Anc stack and Secure stack during structural join

We have developed a secure structural join algorithm which, together with
the secure NoK pattern matching algorithm from Figure 2, can be used to
implement the more restrictive semantics of Gabillon and Bruno if this is
desired. The secure structural join algorithm must check the access control
lists of all nodes on the path between the NoK subtrees that are being joined.
In the NoK physical representation, these nodes are not necessarily clustered
on the same physical pages as the NoK subtrees. As a result, secure query
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evaluation under this more restrictive semantics may be much more expensive
than secure evaluation under our original semantics.

We based our secure structural join algorithm on the most efficient structural
join paradigm, the Stack Tree Desc (STD) join algorithm [9]. The algorithm
uses a stack (the Anc Stack) for storing ancestor nodes, with each node in
the stack being a descendant of the node below it. Once a descendant node is
found to be a descendant of the top of stack, it is joined with the nodes in the
Anc stack all at once. Figure 4 illustrates the structural join of ancestor nodes
{a1, a2, a3} with descendant nodes {d1, d2, d3}. Since a2 is a descendant of a1,
the Anc stack has a1 below a2. When d1 and d2 are found to be descendants
of a2 (the stack top), they are joined with a1 as well, avoiding extra Anc-Desc
relationship checking with a1.

For secure structural join, we need to check the nodes on the path between the
Anc-Des pairs. There are two accessible nodes n1, n2 and one non-accessible
node n3 in the figure. Both d1 and d2 have n1 on the path from a1, therefore we
could check the accessibility of n1 once for both Anc-Des pairs. On the other
hand, there is a non-accessible node (n3) on the path from a2 to d3. That
means we could also abort the join between a1 and d3, since a1 is ancestor
of a2 and can not reach d3 via a path of all accessible nodes. We could also
ignore a3 since it has a non-accessible ancestor (n3) and will not join with any
descendants.

The above optimizations can be accomplished by using an additional stack (the
Secure stack) containing the nodes that is already checked for accessibility. The
complete secure structural join algorithm (ε-STD, Algorithm 2) consists of a
Stack Tree Desc variant plus a security checking sub-routine (Check).

Before we push an ancestor node into the Anc stack, we check the nodes on
the path from stack top to the current ancestor node (via sub-routine Check).
We check the nodes in sequence, and if a node is accessible, we push it onto
the Secure stack (Line 5 in Check), otherwise we skip the current ancestor
node and all its descendants (Line 6 in Check). We do the same when a
descendant node is joined with the Anc stack. Before we push nodes into the
Secure stack, we pop out the top nodes that are not ancestors of the node
to be pushed in (Line 2 in Check). Figure 4 illustrates the changing content
of the Secure stack. The last change occurs when a3 is to be pushed into the
Anc stack and n3 is to be checked for accessibility. This requires us to pop n2

from the Secure stack since it is not ancestor of n3. Then we find that n3 is
non-accessible and skip a3 and d3.

We have the following proposition for ε-STD algorithm’s I/O cost:

Theorem 2 If there are N nodes between the ancestors and descendants for
structural join, and these N nodes are located on M pages, where M ≤ N , the
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Algorithm 2. ε-STD Structural Join

ε-STD(AList,DList)

Pre: AList, DList are sorted on document order

1: Let a, d be the first node in AList and DList
2: while a and d are not null
3: do if top(Anc) is not ancestor of a or d
4: then pop(Anc);
5: else if a is ancestor of d
6: then if Check(a,AList) = true
7: then push(Anc, a)
8: a = Alist.next;
9: else if a is before d in document order

10: then a = Alist.next
11: else if Check(d,DList) = true
12: then for each a1 in Anc
13: do output (a1, d)
14: d = DList.next

Check(n,List)

1: while top(Secure) is not an ancestor of n
2: do pop(Secure)
3: for each p on the path from top(Secure) to n
4: do if (p is accessible)
5: then push(Secure, p)
6: else remove n’s descendants from List
7: return false
8: return true

ε-STD algorithm loads each of the M pages at most once (in document order)
for all the AD joins.

Proof The algorithm only loads the nodes in one pass, thus the same page
will not be loaded twice. 2

We also have the following theorem for the correctness of ε-STD algorithm for
securely computing structural joins:

Theorem 3 Algorithm ε-NoK and Algorithm ε-STD together compute the
alternative semantics defined in [8].

Proof The Stack Tree Desc join algorithm computes all and the only match-
ing Ancestor-Descendants [9]. The ε-STD algorithm adds a Check sub-routine
before it stores each ancestor/descendant for matching. The Check routine
relies on the Secure stack, which, at all times, contains only accessible nodes.
The Check sub-routine returns true if and only if all of the ancestors of the
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input node n are accessible. Therefore, both the ancestors (in AList) and the
descendants (in DList) must have only accessible ancestors in order to be
matched by the ε-STD algorithm. Hence, the ε-STD algorithm reports all and
only those matching Ancestor-Descendants from the Stack Tree Desc algo-
rithm that have no intervening inaccessible nodes, as required by the alterna-
tive secure query evaluation semantics. Further, from the proof of Theorem 1
we know ε-NoK retrieves all and only the accessible NoK patterns. If one node
in an accessible NoK pattern tree has accessible ancestors only, every other
node in the that NoK tree will also have accessible ancestors only. There-
fore, the ε-STD algorithm reports Ancestor-Descendant NoK tree pairs that
contains accessible nodes only, and every node in the output has accessible
ancestors only. Hence the theorem holds. 2

5 Multiple Action Modes

Access control correlation may also exist between different action modes. The
correlation may come from the action mode hierarchy [10] where a write access
right implies a read access right from the same subject to the same object.
However, we envision that even when there is no such action hierarchy between
different action modes, there can be still correlation between different action
modes. In fact, our codebook based approach could be similarly applied on
multi-action modes regardless of the existence of an action mode hierarchy.

Suppose a system has multiple action modes (M > 1). We have two choices in
building codebook entries. First, we can view the S×D×M 3-dimensional ac-
cess cube as a stack of D independent slabs; each slab is a S×M 2-dimensional
matrix, holding the complete access control information for a specific object.
Following this perspective, we can store one transition node for each object
that has different access control slab than its predecessor, and each transition
node points to one “slab” of size S×M in the codebook. Alternatively, we can
view the 3-dimensional cube as D×M 1-dimensional vectors; each vector has
S bits, recording the complete access control information for a specific object
and action mode. In this case, the entries of codebook are still vectors of size
S; but for each transition object (one that does not agree with its predecessor
on the accessibility for any user under any action mode), we need to main-
tain M pointers, one for each action mode 1 . Suppose T denotes the number
of transition nodes (the number of transition nodes are the same for either
approaches), R denotes the size of one pointer from a transition node, Vl de-
notes the number of distinct access control slabs, and Vc denotes the number

1 We could also keep only the changing pointers for each transition node, but in
that case, DOL lookup becomes expensive since we might need to look ahead for
several transition nodes
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of distinct access control vectors. The space cost of the vector approach and
the slab approach can be calculated by formula 1 and 2 respectively.

SIZEslab = T ×R︸ ︷︷ ︸
on disk

+ Vl × (|M| × |S|)︸ ︷︷ ︸
in memory

(1)

SIZEvector = T × |M| ×R︸ ︷︷ ︸
on disk

+ Vc × (|S|)︸ ︷︷ ︸
in memory

(2)

Both approaches have advantages and disadvantages. Since T grows with D
and is usually much greater than S and M, the overall space cost is likely
to be dominated by the cost of the on-disk part. Comparing with the vector
approach, the slab approach has less overall space cost, as it has a smaller
on-disk part, but it requires more memory, depending on the value of Vl and
Vc. We analyze these values in Section 6.3.

6 Performance Evaluation

We evaluated the DOL technique using both synthetic and real access control
data. We generated single-user, single-access-mode synthetic access controls on
XML data from XMark benchmarks [11] by randomly choosing some nodes
from the document as seeds, and then labeling these seeds as accessible or
non-accessible. We simulate horizontal structural locality by selecting from
the seeds’ direct siblings and set them with the same accessibility of the seeds,
provided that the siblings are not themselves seeds. Then, we simulate vertical
structural locality by propagating accessibilities of labeled nodes to their de-
scendants using the Most-Specific-Override policy [1], i.e., a node inherits its
accessibility from its closest labeled ancestor. We always choose the document
root as seed to ensure that all nodes are labeled. Access control generation is
controlled by two parameters. The propagation ratio determines percentage of
nodes that are seeds while the accessibility ratio determines the percentage of
seeds that are accessible.

In addition, we used two sets of real multi-user access control data. The first
data set describes the access control information from a production instance of
OpenText LiveLink 2 , which provides web-based collaboration and knowledge
management services in a corporate intranet. The LiveLink system has a total
of 8639 subjects (among which there are 1568 leaf users), around 370, 000 data
items in a tree-structure with an average depth of 7.9 and a maximum depth
of 19, and ten action modes. The second data set consists of the access control
data from a multiuser Unix file system at the University of Waterloo. This

2 LiveLink is a trademark of OpenText Corporation.
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system has 182 users and 65 user groups, more than 1.3 million files/directo-
ries, and three action modes (read, write, execute). Although neither of these
systems stores real XML data, both provide tree-structured data models and
instance-level access controls. In the absence of real access controlled XML
data (to the best of our knowledge), we treat these systems as surrogates for
real multi-user access controlled XML databases for the purposes of our ex-
periments. In order to map our unordered tree data to ordered XML nodes,
we pick one arbitrary ordering between sibling nodes in our test data: files
under the same directory are ordered by their names, and sibling LiveLink
data items are ordered by their appearance in the LiveLink system catalog.
These two ordering choices are orthogonal to access controls, but the struc-
tural locality in the access controlled data still holds, as we shall see from the
experiments.

6.1 Space Efficiency in Single-User Environments

We first evaluate DOL for a single subject. Since CAM [4] is the state of
the art compact labeling for single subject access controls, we compare DOL
with CAM. We first use an XMark document of about 17, 000 nodes with
synthetic access controls produced by different accessibility and propagation
ratios. Our metric is the ratio of the number of CAM nodes to the number of
DOL transition nodes (the codebook size is negligible for one subject). Thus,
values less than 1.0 favor CAM and those greater than 1.0 favor DOL.
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Fig. 5. CAM labels and DOL transition nodes for single subject

Figure 5(a) shows the comparisons as the accessibility ratio varies from 10%
to 90%. We tried three propagation ratios with these different accessibility
and the results are similar. When the accessibility ratio is low (few nodes are
accessible), the number of CAM nodes is around 53% of the number of DOL
transition nodes. As accessibility goes up, this difference becomes smaller.

We also compared single user CAM and DOL using the LiveLink data. The
LiveLink system supports ten different action modes. For each of the ten action
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Fig. 6. Codebook entries for multi-subjects

modes we sample a number of users and built CAM and DOL for each single
user. The ratio of the number of DOL labels to the number of CAM nodes
for an average user is shown in Figure 5(b), with the ten action modes shown
on the horizontal axis. In the worst cases, DOL had 20-25% more nodes than
CAM. In other cases, the two schemes performed about the same.

Note that our performance metric implicitly favors CAM because it assumes
that CAM nodes and DOL transition nodes are the same size. In practice,
however, the DOL nodes are likely to be much smaller. This is because CAM
stores the access rights separately from the data. As a result, each CAM
node must include a reference to a document node and pointers to the node’s
children in the CAM, in addition to the access control information itself. In
contrast, DOL, which piggybacks access control information into the docu-
ment encoding, stores only an access control code per transition node. Thus,
although CAM may have fewer nodes than DOL, the total space required for
CAM may be greater.

6.2 Space Efficiency in Multi-User Environments

We used our two real data sets to evaluate the space efficiency of DOL in
multi-user environments. We only present the results under “SEE” action
mode of LiveLink and the “READ” action mode of the Unix file system,
since other action modes of both data show similar trends. To get a sense of
how the codebook size might vary as a function of the number of subjects,
we selected a number of subjects randomly and computed DOL codebooks
for the selected subjects only. In Figures 6(a) and 6(b) we have plotted the
number of codebook entries as a function of the cardinalities of these subsets.
(Each set of users is a randomly chosen subset of the next larger set). If
subjects’ access controls were uncorrelated, we would expect to see exponential
growth in the number of codebook entries as the number of subjects increased.
However, our results show that the growth is much slower in practice. With
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Fig. 7. Transition nodes for multi-subjects

all 8639 subjects, the LiveLink system required around 4000 codebook entries.
At approximately 1100 bytes per codebook entry (one bit per subject), the
complete LiveLink codebook would occupy only about 4.4MB of memory. The
Unix system required about 855 codebook entries for 247 subjects, with an
overall size of only 25KB.

The other major storage concern is the number of DOL transition nodes. Fig-
ures 7(a), 7(b) show the numbers of transition nodes required for the LiveLink
and Unix systems as the number of subjects increases (using the same method-
ology that was used for Figures 6(a) and 6(b)). Figure 7(a) shows a sub-linear
growth of transition nodes. For over 8000 subjects, the number of transition
nodes is only about 4 times larger than the number for a single subject. For
Unix file system, we see a similar situation in Figure 7(b), in which the number
of transition nodes of 247 subjects is only twice as many as the number for 50
subjects. Recall there are about 370, 000 objects in the LiveLink system, and
the number of files (directories) in the Unix system is about 1.3 million. Thus,
the density of transition nodes is less than 10% for both systems (for all the
subjects). These results indicate that the access rights for different subjects
are highly correlated in real world.

To compare the overall storage cost between DOL and CAM, we first look
at a single subject in LiveLink (under action mode 1): DOL needs about
6000 transition nodes while CAM needs 4500 labels. However, for all 8639
subjects in the same system under the same action mode, DOL needs 18800
transition nodes while CAM needs 8639 × 4500 labels, a difference of three
orders of magnitude. Assuming each DOL transition node requires a 2 byte
access control code (for the 4000 codebook entries), and each CAM label
takes 2 bits for its accessibility encoding, and (unrealistically) only 1 byte for
node pointers, the DOL’s total space requirement will be a 4MB codebook
plus 40KB of embedded transition nodes, while CAM’s will be 46.6MB. The
Unix file system’s situation is similar. Clearly, correlation among the subjects
contributes substantially to compression effectiveness.
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Fig. 8. Rank Frequency of Access Control Lists for Unix and LiveLink

A final observation, from both systems, is that the frequency of the access
control lists in the codebook is highly biased. Figure 8 shows the rank/fre-
quency plots of the access control list in the Unix and LiveLink Systems. Here
we choose “Read” action mode for Unix and action mode 1 for LiveLink since
they are representative of the remaining action modes. In the Unix system,
about ten access control lists account for more than 80% of all the files’ access
controls. A single access control list (granting access to everyone) accounts
for more than half of the access controls on all the files. The LiveLink system
showed similar behavior, with ten access control lists account for about half
of the all objects’ access controls.

This frequency skew, together with the locality of access rights, helps to ex-
plain the space efficiency of the DOL approach. It also suggests that, in small-
memory environments, good performance can be achieved without keeping the
entire codebook in memory. If only the most frequently used access control
lists are kept in memory, it should be possible to answer most access control
lookups efficiently. In our experiments with LiveLink data, if we load in mem-
ory 1000 most frequently entries out of all the 4198 entries of the codebook,
we can answer more than 95% of the accessibility queries without loading any
codebook entries from the disks.

6.3 Multiple Action Modes: Vectors Versus Slabs

Recall that the total space cost of the codebook scheme includes two parts:
the on-disk part occupied by the access control codes and the in-memory
part occupied by the access control codebook. When there are multiple action
modes, the DOL can be implemented either as a codebook with access control
vectors for all action modes (where each transition node will have multiple
pointers to different codebook entries for each action mode) or as an array of
access control slabs (where each transition node points to one slab entry for
all action modes), as described in Section 5.
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Action Mode read write execute all slab

CodeBook# 855 883 857 995 1608

Fig. 9. CodeBook Entries for Vector/Slab-based Approaches (Unix System)

We first tested the vector approach on the Unix file system. Figure 9 illustrates
the number of distinct access control vectors (i.e., the number of codebook en-
tries) for read, write, and execute modes, together with the number of distinct
codebook entries across all three action modes (the all column). We can see
the total number of distinct access control vectors of all three action modes
is much fewer than the sum of the number of distinct vectors under the indi-
vidual action modes. This tells us that the access control vectors of different
action modes are similar.

Next, we tested the slab approach by concatenating the access control vectors
into slabs. If the access controls under different action modes are not cor-
related, we would have seen all combinations of concatenated access control
vectors in the slabs, making the number of distinct slabs grow exponentially in
the number of action modes. However, as we observed from our real data, the
number of distinct slabs is only about four times the number of distinct access
control vectors (see column slab in Figure 9). Since the Unix system has 247
subjects, each access control vector would require 247 bits, leading to a total
codebook size of approximately 31 KB under the vector-based approach. Since
there are three access modes, each slab would require 741 (247×3) bits, giving
a total codebook size of 149 KB under the slab-based approach. Therefore,
the codebook of the slab approach is only around five times the size of the
codebook under vector approach.

Action Mode 1 2 3 4 5 6 7 8 9 10 all slab

CodeBook# 4235 3926 5591 4273 4144 4362 4684 22 4325 4198 9863 10976

Fig. 10. CodeBook Entries for Vector/Slab-based Approaches (LiveLink System)

We noticed an even stronger correlation between action modes in the LiveLink
data (Figure 10), where the number of distinct access control vectors for all
action modes is less than 25% of the total of all distinct access control vectors
under each action mode, and the number of distinct slabs is almost the same
as number of distinct access control vectors for all action modes. Since the
LiveLink system has around 8600 subjects, each access control vector would
require 1075 bits, thus the the vector-based codebook has size of 10.6MB
(1075 × 9863). The slab-based codebook has each entry as ten vectors con-
catenated, thus its size is approximately 118MB (10976× 1075× 10). There-
fore, the slab-based codebook is only about ten times the size of the combined
vector-based codebook.

Aside from codebook entries, we can be sure that the density of transition
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Q1 /site/regions/africa/item[location][name][quantity]

Q2 /site/categories/category[name]/description/text/bold

Q3 /site/categories/category/description/text/bold

Q4 //parlist//parlist

Q5 //listitem//keyword

Q6 //item//emph

Fig. 11. Sample Queries

nodes for the slab approach is the same as the vector approach, since either
approach would need a transition node whenever the accessibility changes
for one user under one action mode. However, under the vector approach,
each transition node needs M pointers to the entries of the codebook for the
M action modes, whereas the slab approach only requires one. Considering
that the number of transition nodes grows with the number of objects in the
system (recall from Section 6.2 that transition nodes are around 10% of the
total objects for all users for both real data sets), the size of transition nodes
would dominate the size of codebook by several orders of magnitude. Thus we
could save considerable space by using the slab based approach at the cost of
a (moderately) larger codebook in main memory.

6.4 Query Evaluation

We compared the performance of secure NoK query evaluation with non-
secured NoK query evaluator to measure the overhead of fine-grained access
control. We implemented both ε-NoK, ε-STD, and the non-secure versions
of the NoK and STD algorithms using Java 1.5. All of the experiments were
conducted using a PC with a Pentium III 997MHz CPU, 512MB RAM, and
40GB hard disk running Windows XP.

Our test database is a 50MB XMark instance (832911 element nodes) with
synthetic access controls. The data are stored on disk with each page at 4K
bytes. The benchmark queries are shown in Figure 11. The top three queries
represent three classes of NoK pattern trees: those with branches at the end
(Q1), in the middle (Q2), or a single path (Q3). The bottom three queries are
for ancestor-descendant structural joins and represent those having descen-
dants located close to the ancestors(Q4), far from the ancestors (Q6), or at a
medium distance (Q5).

Figures 12(a),12(b) and 12(c) show the performance of the ε-NoK algorithm.
The two lines in each figure depict the ratio of processing time and answers
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returned between the ε-NoK and non-secure NoK algorithms. The processing
time of the ε-NoK algorithm is at most 20% greater than the processing time
of the non-secure NoK algorithm, and does not depend on the accessibility
ratio. This is still true when majority of the document is accessible (thus
most answers of the original NoK algorithm are returned, and nodes in these
answers are all checked). The reason is that accessibility checking does not
require extra I/O for the ε-NoK algorithm.

Figures 13(a),13(b) and 13(c) show the performance of the secure ε-STD al-
gorithm. Figure 13(a) shows the ratio of processing time between the ε-STD
and non-secure STD algorithms for Queries 4, 5, and 6. As we can see, ε-STD
is much more expensive. However, when the number of answers decreases as
node accessibility decreases (in Figure 13(b)), the corresponding processing
time also goes down. Also, we note that processing time decreases faster for
the queries with longer ancestor-to-descendant paths. This shows that ε-STD
is more sensitive to node accessibility and query topology, and its perfor-
mance is better when majority of the document is non-accessible. The reason
is that the ε-STD algorithm can optimize by skipping the accessibility checks
for some nodes on the ancestor-to-descendant path. This is verified in Figure
13(c), where the y-axis shows the percentage of nodes (between each ancestor-
descendant pairs) checked with accessibility by ε-STD Algorithm. As we can
see, the number of accessibility checks goes down (at different speed for three
queries) as node accessibility goes down.
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Fig. 12. Performance between ε-NoK and NoK as a function of node accessibility

7 Related Work

Jajodia et al. [1] and Bertino et al. [2] define models that are capable of describ-
ing a wide spectrum of access control policies such as positive and negative
authorization, propagation policies, conflict resolution, and closed versus open
world assumptions. The IBM XACL project [12] proposed an XML access con-
trol language for authorizing access (read, write, create, delete) to fine-grained
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Fig. 13. Performance between ε-STD and STD as a function of node accessibility

XML data. It is capable of defining propagations, conflict resolving and pro-
visional authorization. Bertino et al. [13] proposed a model that is capable of
describing various access control policies. Their model also considers “push”
queries, which is for massive distribution of data to subscribers. Damiani et
al. [14] proposed access control query modeling specific for XML documents
to facilitate secure information flow for the Web. A similar framework is im-
plemented in the Author-X project [15].

Gabillon and Bruno [8] define view-based semantics for secure query evalua-
tion. They define a secured view for each user group, and queries are applied
against the secure views. However, their approach prunes all subtrees with
a non-accessible root, regardless whether there are accessible nodes in that
subtree or not. Cho et al. [7] define a more relaxed pattern-matching based
semantics. This semantics allows answers to come from a subtree whose root
is non-accessible. They use schema information to rewrite queries to optimize
query evaluation time.

Stoica et al. [16] use secured views and secure data schema (both generated
from original data schema and access control policies) for answering XML
queries. Similarly, Fan et al. [3] use secured views generated from DTD schemas
and access control rules for secure query evaluation. The access control rules
in these two approaches are based on the data schema, which must exist. How-
ever, instance-based access control is necessary when there is no schema, or
when the desired access controls cannot be described by schema level specifi-
cations. Lee et al. [17] propose a secure XML evaluation framework in which
access controls are specified on the XML model but enforced in an under-
lying relational database. However, the XML data instance needs to be first
shredded into the relational model. There is also work [18] [19] on efficient dis-
semination of sensitive XML data using pattern matching. The DOL approach
can be similarly used for dissemination of XML data to multiple users. The
difference is that DOL supports fine-grained access controls at the instance
level.
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Yu et al. [4] developed the CAM representation for fine-grained access controls
on XML data. A separate CAM structure is required for each user under
each action mode, so CAM does not exploit the commonality among multiple
users to achieve better compression ratio. Recently, Jiang and Fu proposed
Integrated Compressed Accessibility Maps (ICAM) as an improvement over
the original CAM approach.[10] Like DOL, this approach exploits correlations
between different action modes and compresses the CAMs for different action
modes into one integrated structure. However, the approach also requires that
the action modes follow a strict operational hierarchy, i.e., a subject with write
access rights on an object always has read access on that same object. This
is not always desireable. e.g., a user may be able to write to a file while not
being able to read it, as in the Mandatory Access Control model [20]. The
DOL, in contrast, neither requires nor exploits an operational hierarchy.

8 Conclusion

We have presented a compact XML access control labeling scheme called DOL
that supports efficient secure query evaluation. DOL exploits both access con-
trol structural locality within the XML data and correlations between users’
access rights. Physically, access controls are embedded into the representation
of the document structure used for NoK query evaluation. Our experiments
demonstrate DOL’s storage efficiency in multi-user environments as well as
DOL’s ability to support secure query evaluation efficiently.
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