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ABSTRACT
Providing the ability to elastically use more or fewer servers on
demand (scale out and scale in) as the load varies is essential for
database management systems (DBMSes) deployed on today’s dis-
tributed computing platforms, such as the cloud. This requires solv-
ing the problem of dynamic (online) data placement, which has so
far been addressed only for workloads where all transactions are lo-
cal to one sever. In DBMSes where ACID transactions can access
more than one partition, distributed transactions represent a major
performance bottleneck. Scaling out and spreading data across a
larger number of servers does not necessarily result in a linear in-
crease in the overall system throughput, because transactions that
used to access only one server may become distributed.

In this paper we present Accordion, a dynamic data placement
system for partition-based DBMSes that support ACID transactions
(local or distributed). It does so by explicitly considering the affin-
ity between partitions, which indicates the frequency in which they
are accessed together by the same transactions. Accordion esti-
mates the capacity of a server by explicitly considering the impact
of distributed transactions and affinity on the maximum throughput
of the server. It then integrates this estimation in a mixed-integer
linear program to explore the space of possible configurations and
decide whether to scale out. We implemented Accordion and eval-
uated it using H-Store, a shared-nothing in-memory DBMS. Our
results using the TPC-C and YCSB benchmarks show that Accor-
dion achieves benefits compared to alternative heuristics of up to
an order of magnitude reduction in the number of servers used and
in the amount of data migrated.

1. INTRODUCTION
Today’s distributed computing platforms, namely clusters and

public/private clouds, enable applications to effectively use resources
in an on demand fashion, e.g., by asking for more servers when the
load increases and releasing them when the load decreases. Such
elastic applications fit well with the pay-as-you-go cost model of
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computing clouds, such as Amazon’s EC2. These clouds have a
large pool of physical or virtual servers, and can scale out and
scale in depending on the needs of their (time varying) workload
in an online fashion. However, not all applications are designed to
achieve online elastic scalability. We advocate that DBMSes have
to be enhanced to provide elasticity because they are at the core of
many data intensive applications deployed on clouds. These appli-
cations will directly benefit from the elasticity of their DBMSes.

As a basis for DBMS elasticity, (shared nothing or data sharing)
partition-based database systems could be used. These systems
use mature and proven technology for enabling multiple servers to
manage a database. The database is horizontally partitioned among
the servers and each partition is “owned” by exactly one server [5,
17]. The DBMS coordinates query processing and transaction man-
agement among the servers to provide good performance and guar-
antee the ACID properties. Performance is sensitive to how the
data is partitioned, and algorithms for good data partitioning exist
(e.g., [8, 20]), but the placement of partitions on servers is usually
static and is computed offline by analysing workload traces.

To make a partition-based DBMS elastic, the system needs to
be changed to allow servers to be added and removed dynamically
while the system is running, and to enable live migration of parti-
tions between servers. With these changes, a DBMS can start with
a small number of servers that manage the database partitions, and
can add servers and migrate partitions to them to scale out if the
load increases. Conversely, the DBMS can migrate partitions from
servers and remove these servers from the system to scale in if the
load decreases. Mechanisms for effectively implementing partition
migration have been proposed in the literature [18, 11, 12]. Us-
ing these mechanisms requires addressing the important question
of which partitions to migrate when scaling out or in.

This paper presents Accordion, a dynamic partition placement
controller for in-memory elastic DBMSes that supports distributed
ACID transactions, i.e., transactions that access multiple servers.
Most partition-based DBMSes support distributed transactions, but
the significant impact of these transactions on the design of elastic-
ity mechanisms has been ignored by previous work. Accordion is
designed for dynamic settings where the workload is not known in
advance, the load intensity can fluctuate over time, and access skew
among different partitions can arise at any time in an unpredictable
manner. Accordion computes partition placements that (i) keep the
load on each server below its capacity, (ii) minimize the amount of
data moved between servers to transition from the current place-
ment to the one proposed by Accordion, and (iii) minimize the
number of servers used (thus scaling out or in as needed).



A key feature of Accordion compared to prior work is that it
can handle workloads that include ACID distributed transactions
in addition to single-partition transactions. Distributed transactions
appear in many workloads, including standard benchmarks such
as TPC-C (in which 10% of New Order transactions and 15% of
Payment transactions access more than one partition [25]). These
workloads include join operations between tuples in different par-
titions hosted by different servers. Accordion targets in-memory
databases, where distributed transactions represent a major source
of overhead [16, 20]. However, mitigating the performance cost of
distributed transactions is an important problem also for disk-based
systems, as witnessed for example by recent work on Spanner [6],
Calvin [24], and RAMP transactions [2]. Coordinating execution
between multiple partitions executing a transaction requires block-
ing the execution of transactions (e.g., in the case of distributed
locking) or aborting transactions (e.g., in the case of optimistic con-
currency control). In either case, the maximum throughput capacity
of a server may be bound not by its CPU, I/O, or networking ca-
pacity, which can be easily monitored using operating system level
metrics, but by the overhead of transaction coordination.

Any algorithm for dynamic partition placement needs to deter-
mine the capacity of the servers to decide if a placement is feasible,
i.e., does not overload any server. Accordion measures the server
capacity in terms of the transactions per second that this server can
support. We call this the throughput capacity of the server.

The first contribution of Accordion is a server capacity estima-
tion component that specifically models bottlenecks due to dis-
tributed transactions. Existing work, such as Kairos [9] and DB-
Seer [19], models several types of possible throughput bottlenecks
but not distributed transactions. Our work fills this gap. The model
is based on the affinity between partitions, which is the frequency
in which two partitions are accessed together by the same transac-
tions. In workloads where each transaction accesses a single par-
tition, we have null affinity. In this case, which is the one consid-
ered by existing work on dynamic partition placement [26, 10], the
throughput capacity of a server is independent of partition place-
ment and we have a fixed capacity for all servers. The second class
of workloads we consider have uniform affinity, which means that
all pairs of partitions are equally likely to be accessed together by a
multi-partition transaction. We argue that the throughput capacity
of a server in this case is a function of only the number of par-
titions the server hosts in a given partition placement. Uniform
affinity may arise in some specific workloads, such as TPC-C, and
more generally in large databases where rows are partitioned in a
workload-independent manner. Finally, in workloads with arbi-
trary affinity, certain groups of partitions are more likely to be ac-
cessed together. In this case, the server capacity estimator must
consider the number of partitions a server hosts as well as the exact
rate of distributed transactions a server executes given a partition
placement. This rate can be computed considering the affinity be-
tween the partitions hosted by the servers and the remaining parti-
tions. Accordion estimates server capacity online, without assum-
ing prior knowledge of the workload.

The second contribution of Accordion is the ability to dynam-
ically compute a new partition placement given the current load
on the system and the server capacity estimations obtained online.
Distributed transactions also make partition placement more com-
plex. If each transaction accesses only one partition, we can assume
that migrating a partition p from a server s1 to a server s2 will im-
pose on s2 exactly the same load as p imposes on s1, so scaling
out and adding new servers can result in a linear increase in the
overall throughput capacity of the system. This might not be true
in the presence of distributed transactions: after migration, some

multi-partition transaction involving p that was local to s1 might
become distributed, imposing additional overhead on both s1 and
s2. This implies that we must be cautious before scaling out be-
cause distributed transactions can make the addition of new servers
less beneficial, and in some extreme case even detrimental. There-
fore, a partition placement algorithm should consider all solutions
that use a given number of servers before choosing to scale out.

Accordion formulates the dynamic partition placement problem
as a mixed integer linear programming (MILP) problem, and uses
a MILP solver to consider all possible configurations with a given
number of servers. We chose a MILP approach because it produces
high quality results, it can run reliably without human supervision,
and it is fast enough to be solved online. The major complexity
of casting the problem as a MILP problem is that, with distributed
transactions, some constraints (throughput capacity) are a function
of the optimization variable (the placement of partitions). This re-
lation is, in itself, not linear; one of the contributions of this paper
is to come up with a linear formulation that can be integrated in the
MILP problem and solved reliably and efficiently.

We implemented Accordion and evaluated it using H-Store, a
scalable shared-nothing in-memory DBMS [15]. Our results using
the TPC-C and YCSB benchmarks show that Accordion outper-
forms baseline solutions in terms of data movement and number of
servers used. The benefit of using Accordion grows as the number
of partitions in the system grows, and also if there is affinity be-
tween partitions. Accordion can save more than 10x in the number
of servers used and in the volume of data migrated compared to
other heuristics. We also show that Accordion is fast, so it can be
used in an online setting with a large number of partitions.

The contributions of this paper can be summarized as follows:
(i) a formalization of how distributed transactions and partition
affinity determine the throughput capacity of servers, and an al-
gorithm to estimate this relationship online, (ii) an online partition
placement algorithm that expresses this non-linear relationship us-
ing a MILP, and (iii) an experimental evaluation using H-Store,
which includes a comparison to simpler placement heuristics de-
signed primarily for workloads with single partitions transactions.

The rest of the paper is organized as follows. In Section 2 we
review related work. Section 3 presents an overview of Accordion.
Section 4 discusses server capacity estimation in Accordion. Sec-
tion 5 presents the Accordion partition placement algorithm. Sec-
tion 6 is the experimental evaluation, and Section 7 concludes.

2. RELATED WORK
Our paper is the first to study dynamic and elastic partition place-

ment in DBMSes with ACID distributed transactions. Previous
work has addressed several related problems.

Non-elastic partition placement. The problem of partition place-
ment (or more generally data placement) for load balancing has
been studied extensively in the past in the context of database sys-
tems [1, 5, 14, 17, 21]. Previous research either does not deal with
dynamic data re-distribution, or if it does, it works with a fixed
number of servers. Clearly, this is not sufficient for the case where
servers can be added or removed dynamically for elastic scaling.
An additional limitation of most previous research is that the work-
load is known in advance. We propose a lightweight technique that
can be used online with minimal prior knowledge.

Elastic partition placement without distributed transactions.
SCADS Director addresses the partition placement problem in the
context of simple key-value storage systems using a greedy heuris-
tic [26]. Accordion can handle DBMS workloads where each trans-
action accesses a single partition, which are similar to key-value



workloads, but also more general workloads with distributed trans-
actions. ElasTras [10] is an elastically scalable, fault-tolerant, trans-
actional DBMS for the cloud. ElasTras uses a greedy heuristic to
decide which partitions to migrate when scaling, and it does not
consider distributed transactions. One of our baselines for eval-
uation is a greedy heuristic similar to the ones used by SCADS
Director and ElasTras; we show that Accordion outperforms such
a heuristic by a wide margin.
Data partitioning. Recent work has investigated how to decide
which tuples should belong to which database partitions offline, us-
ing workload traces. Schism models the database as a graph where
each tuple is a vertex [8]. In [20], Pavlo et al. present a technique
for identifying the best attributes for data and stored procedure par-
titioning. This line of work performs complex and computationally
expensive offline analysis of static workload traces in order to de-
fine partitions that support skew and minimize the amount of dis-
tributed transactions. The underlying assumption is that the work-
load will not change at runtime; if it does change, partitioning must
be repeated from scratch. Accordion is orthogonal because it takes
the initial definition of partitions as an input and does not modify
it. It does not perform offline analysis of static workload traces.
Multi-tenant resource allocation and performance modeling.
Some work has focused on tenant consolidation in a multi-tenant
OLTP DBMS, such as Kairos [9], RTP [22], and Pythia [13]. A
tenant owns one or more independent databases, which must be dy-
namically allocated to the lowest possible number of servers. All
tenants share the same underlying DBMS. Partition placement and
tenant placement are different problems. Tenant placement mod-
els do not consider the impact of distributed transactions on server
capacity, as for example the possible reduction of per-server ca-
pacity when scaling out. Tenants are independent so they can run
completely uncorrelated and heterogeneous workloads. In partition
placement, we consider a single tenant database that is horizontally
partitioned. Horizontal partitioning makes the transaction mix ho-
mogeneous across all partitions, as we will discuss in Section 4.

Kairos proposes new models to estimate the buffer pool and disk
utilization of each tenant in a shared DBMS. It places tenants us-
ing non-linear mixed integer programming and guarantees that each
server has enough resources to host its tenants. The utilization of
a server depends only on the set of tenants placed on that server,
and there is no notion of distributed transactions involving remote
tenants. The maximum capacity of a server is constant and there-
fore independent of the placement of tenants. In Accordion, due to
the effect of distributed transactions, the throughput capacity of a
server depends on the placement of partitions. In addition, Kairos
assumes that the workload is known in advance, while Accordion
does not require that.

Delphi is a self-managing controller for multi-tenant DBMSes
based on a methodology called Pythia [13], which labels tenants,
for example as disk- or CPU-intensive. The initial labeling is done
by the DBA, running each tenant in isolation. Pythia learns which
combinations of tenants are amenable to being placed together be-
cause they have complementary resource utilization. Measuring
the performance of a single partition in a server while all other par-
titions run on different servers would generate a large amount of
distributed transactions and significantly bias the learning process.
In our experiments with TPC-C, we found a 2x difference in the
transaction rate a partition can process in a best-case configuration
compared to running in isolation. Therefore, the labeling results
will be misleading for Pythia, if it is used to solve the partition
placement problem. Moreover, Pythia learns whether a group of
tenants can be placed together only based on their resource utiliza-
tion, not based on the frequency of accessing a set of partitions
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Figure 1: Accordion overview.

together. In partition placement, two partitions may have the same
resource utilization if run in isolation but they should be treated
separately if they have different affinity with other partitions.

DBSeer [19] proposes performance prediction models for con-
tention in disk access, buffer pool access, and fine-grained locks.
It does not directly address the problem of tenant placement. We
propose a complementary model for bottlenecks due to distributed
transactions. As discussed, different bottleneck models can be mod-
eled as independent placement constraints.

3. OVERVIEW OF ACCORDION
This section describes a high-level view of the Accordion system

and introduces the important concept of affinity among partitions.

3.1 System Components
The high level architecture of Accordion is illustrated in Fig-

ure 1. We consider a homogeneous DBMS cluster in terms of
servers and networking capacity. Accordion operates with databases
that are partitioned horizontally, i.e., where each partition is a sub-
set of the rows of each database table. The partitioning of the
database is done by the DBA or by some external partitioning mech-
anism, and is not modified by Accordion. The goal of Accordion is
to migrate these partitions among servers online in order to elasti-
cally adapt to a dynamic workload.

The monitoring component of Accordion periodically collects:
(i) an affinity matrix, which describes the behavior of distributed
transactions, (ii) the rate of transactions processed by each parti-
tion, which represents system load and the skew in the workload,
(iii) the overall request latency of a server, which is used to detect
overload, and (iv) the memory utilization of each partition a server
hosts.

The server capacity estimator uses the monitoring information
to evaluate a server capacity function. This function describes the
maximum transaction rate a server can process given the partition
placement and affinity among partitions. Accordion estimates the
server capacity online, without prior knowledge of the workload.

Monitoring metrics and server capacity functions are given as
input to the partition placement mapper, which computes a new
mapping of partitions to servers. If the new mapping is different
from the current one, it is necessary to migrate partitions and pos-
sibly add or remove servers from the server pool. Migration and
server provisioning are mechanisms external to Accordion.

3.2 Affinity and Affinity Classes
We define the affinity between two partitions p and q as the rate

of transactions accessing both p and q. The monitoring component
of Accordion constantly observes the current affinity between each
pair of partitions and records it in the affinity matrix. The partition



placement planner uses the affinity between p and q to determine
how many distributed transactions will be generated by placing p
and q on different servers.

The affinity matrix is also used by the server capacity estimator
to classify the current workload as null affinity, uniform affinity, or
arbitrary affinity. In workloads where all transactions access a sin-
gle partition, the affinity among every pair of partitions is zero; i.e.
the workload has null affinity. A workload has uniform affinity if the
affinity value is roughly the same across all partition pairs. Work-
loads with uniform affinity are particularly likely in large databases
where partitioning is done automatically without considering ap-
plication semantics. A good example is databases that assign a ran-
dom unique id or hash value to each tuple and use it to determine
the partition where tuples should be placed. Finally, arbitrary affin-
ity arises when clusters of partitions are more likely to be accessed
together by the same transactions.

The affinity classes we have introduced determine the complex-
ity of server capacity estimation and partition planning. Simpler
affinity patterns, e.g. null affinity, make capacity estimation sim-
pler and partition placement faster.

4. SERVER CAPACITY ESTIMATION
The first Accordion component we describe is the server capacity

estimator. The throughput capacity of a server is the maximum
transaction per second (tps) a server can sustain before its response
time exceeds a user-defined bound. OLTP DBMSes have several
potential throughput bottlenecks. Accordion specifically models
bottlenecks due to distributed transactions, which are a major (if
not the main) bottleneck in horizontally partitioned databases [2, 3,
6, 7, 20, 24].

In general, multi-partition transactions (of which distributed trans-
actions are a special case) have a server that acts as a coordina-
tor and execute the locking and commit protocols. If all partitions
accessed by the transaction are local to the same server, the co-
ordination requires only internal communication inside the server,
which is efficient. However, if some of the partitions are remote,
blocking time becomes significant. This is particularly evident in
high-throughput, in-memory database systems like H-Store, our
target system. In H-Store, single partition transactions execute
without locks or latches if they do not interfere with multi-partition
transactions, and thus can often complete in a few milliseconds.

Accordion characterizes the capacity of a server as a function of
the rate of distributed transactions the server executes. It models
this rate for a server s as a function of the affinity matrix F and the
binary placement mapping matrix A, where Aps = 1 if and only if
partition p is assigned to server s. Therefore, the server capacity
estimator outputs a server capacity function of the form:

c(s,A,F).

The partition planner uses this function to decide whether servers
are overloaded and additional servers are thus needed. We consider
different types of the capacity functions based on the affinity class
of the workload, as discussed in Section 4.2. We show how to
estimate these functions in Section 4.3.

We consider two workloads throughout the paper. YCSB [4] is a
representative of workloads with only single-partition transactions.
The H-Store implementation of YCSB uses a single table and each
key-value pair is a tuple of that table. Tuples are partitioned based
on the key attribute. Get, put, and scan operations are implemented
as transactions that access a single partition. The second workload
is TPC-C, which models the activity of a wholesale supplier [25].
In TPC-C, 10% of the transactions access data belonging to mul-
tiple warehouses. In the implementation of TPC-C over H-Store,

Transaction type Server 1 Server 2
Delivery 3.84% 3.83%

New order 45.17% 45.12%
Order status by customer ID 1.54% 1.54%

Order status by customer name 2.31% 2.30%
Payment by customer ID 17.18% 17.21%

Payment by customer name 25.81% 25.83%
Stock level 4.15% 4.18%

Total no. of transactions 5392156 19794730

Table 1: Transaction mix for two servers of a six-server cluster
running TPC-C with skewed per-partition transaction rate.

each partition consists of one tuple from the Warehouse table and
all the rows of other tables referring to that warehouse through a
foreign key attribute. Therefore, 10% of the transactions access
multiple partitions. Note that we measure the TPC-C throughput
considering transactions of all types, not only New Order transac-
tions as in the benchmark specification.

4.1 OLTP Workload Characteristics
Accordion characterizes load in terms of transaction rates per

partition, which reflects several dimensions of dynamic workloads:
(i) horizontal skew, i.e., some partitions are accessed more fre-
quently than others, (ii) temporal skew, i.e., the skew distribution
changes over time, and (iii) load fluctuation, i.e., the overall trans-
action rate submitted to the system varies. Accordion distinguishes
between two types of transactions, local and distributed, under the
assumption that transactions of the same type have the same aver-
age cost. We do not distinguish between single-partition transac-
tions and multi-partition transactions accessing partitions located
on the same server because the latter have a very low additional
cost compared to multi-server (distributed) transactions. We now
discuss why this assumption typically applies to horizontally parti-
tioned DBMSes having a stable workload.

Workload stability is required because each capacity function is
specific to a global transaction mix expressed as a tuple 〈 f1, . . . , fn〉,
where fi is the fraction of transactions of type i in the current work-
load. Every time the transaction mix changes significantly, the cur-
rent estimate of the capacity function c is discarded and a new esti-
mate is rebuilt from scratch. Until sufficient capacity estimates are
collected, Accordion may overestimate server capacity. Accordion
thus adapts to changes in the mix as long as they are infrequent,
which is what happens in OLTP workloads [23].

When the global transaction mix is stable, we can often assume,
thanks to horizontal partitioning, that the per-partition and per-server
transaction mixes are the same as the global transaction mix. This is
because horizontal partitioning spreads tuples from all database ta-
bles uniformly over all partitions. For example, Table 1 reports the
fraction of transactions per type received by two servers (the most
and least loaded) in a cluster of 6 servers and 256 TPC-C partitions
after a run in H-Store. The transaction mix is exactly the same
for both servers and is equal to the global transaction mix. The
same holds for all other servers. All our experiments with YCSB
and TPC-C and varied per-partition access skew and configurations
have confirmed this observation. Therefore, it is reasonable to as-
sume that the average cost of transactions of the same type (local
or distributed) is uniform.

4.2 Affinity Classes and Capacity Functions
We now discuss how different affinity classes correspond to dif-

ferent types of capacity functions. For all our experiments we use a
cluster where each server has two Intel Xeon quad-core processors



running at 2.67GHz, and 32 GB of RAM. The servers are connected
to a 10Gb Ethernet network. The purpose of these experiments is
to show typical performance trends; the server capacity functions
we devise are generic and extend to other DBMSes and workloads.
The values reported are the average of five runs.

4.2.1 Null Affinity
We start by discussing the server capacity function for work-

loads where each transaction accesses a single partition. In these
workloads the affinity between every pair of partitions is zero and
there are no distributed transactions. Transactions accessing differ-
ent partitions do not interfere with each other. Therefore, scaling
out the system should result in a nearly linear capacity increase; in
other words, the server capacity function is equal to a constant c̄
and is independent of the value of A and F :

c(s,A,F) = c̄ (1)

This is consistent with our claim that server capacity is a function
of the rate of distributed transactions: if this rate is equal to zero
regardless of A, then the capacity is constant.

We validate this observation by evaluating YCSB databases of
different sizes, ranging from 8 to 64 partitions overall, where the
size of each partition is fixed. For every database size, we consider
two placement matrices A: one where each server hosts 8 parti-
tion and one where each server hosts 16 partitions. We chose the
configuration with 8 partitions per server because we use servers
with 8 cores; with 16 partitions we have doubled this figure. Fig-
ure 2 reports the capacity per server in different configurations of
the system. The results show that, for a given total database size (x
axis), the capacity of a server is not impacted by the placement A.
Consider for example a system with 32 partitions: if we go from
a configuration with 8 partitions per server (4 servers in total) to a
configuration with 16 partitions (2 servers in total) the throughput
per server does not change. This also implies that scaling out from
2 to 4 servers doubles the overall system capacity.

4.2.2 Uniform Affinity
In workloads with uniform affinity, where each pair of partitions

is (approximately) equally likely to be accessed together, the rate
of distributed transactions depends only on the number of partitions
a server hosts: the higher the partition count per server, the lower
the distributed transaction rate. Based on these observations, Equa-
tion 2 defines the server capacity function with uniform affinity
workloads, where P is the set of partitions in the database.

c(s,A,F) = f (|{p ∈ P : Aps = 1}|) (2)

To validate this function, we consider the TPC-C workload. The
TPC-C workload has uniform affinity because each multi-partition
transaction randomly selects the partitions (i.e., the warehouses)
it accesses following a uniform distribution. Our experiments, re-
ported in Figure 3, confirm that distributed transactions have a ma-
jor impact on server capacity. We consider the same set of config-
urations as in the previous experiments. Doubling the number of
servers and going from 16 to 8 partitions per server significantly
decreases the capacity of a server in each of the configuration we
consider. In terms of global throughput capacity, scaling out is ac-
tually detrimental in some configurations. This is because server
capacity is a function of the rate of distributed transactions.

Consider the example of a database having a total of 32 parti-
tions. The maximum throughput per server in a configuration with
16 partitions per server and 2 servers in total is approximately two
times the value with 8 partitions per server and 4 servers in to-
tal. Therefore, scaling out does not increase the total throughput
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Figure 3: Server capacity with uniform affinity (TPC-C).

of the system in this example. This is because in TPC-C most
multi-partition transactions access two partitions. With 2 servers
about 50% of the multi-partition transactions are local to a server.
After scaling out to 4 servers, this figure drops to approximately
25% percent (i.e., we have ∼75% of distributed transactions). We
see a similar effect when there is a total of 16 partitions. Scaling
from 1 to 2 servers actually results in a reduction in performance,
as we transition from having only local multi-partition transactions
to having ∼50% distributed multi-partition transactions.

Scaling out is more advantageous in configurations where every
server hosts a smaller fraction of the total database. We see this
effect starting with 64 partitions in Figure 3. With 16 partitions per
server (i.e., 4 servers) the capacity per server is less than 10000 so
the total capacity is less than 40000. With 8 partitions per server
(i.e., 8 servers) the total capacity is 40000. This gain increases
as the size of the database grows. Consider for example a larger
database with 256 partitions and uniform affinity workload: if each
server hosts 16 partitions, i.e. less than 7% of the database, then
less than 7% of the multi-partition transactions access only parti-
tions that are local to a server. If a scale out leaves a server with
8 partitions only, the fraction of partitions hosted by the server be-
comes∼3.5%, so the rate of distributed transactions per server does
not vary significantly in absolute terms. Therefore, the additional
servers actually increase the overall capacity of the system.

4.2.3 Arbitrary Affinity
In the more general setting where distributed transactions exhibit

arbitrary affinity, the rate of distributed transactions for a server
can be expressed as a function of the placement matrix A and the
affinity matrix F . Consider a server s, a partition p hosted by s,
and a partition q hosted by another server (so Aps = 1 and Aqs = 0)
The two partitions add a term equal to Fpq to the rate of distributed
transactions executed by s. Since we have arbitrary affinity, the
Fpq values will not be uniform. Based on these observations, we
model server capacity using several server capacity functions, one
for each value of the number of partitions a server hosts. Each
of these functions depends on the rate of distributed transactions a
server executes. The capacity function can be formalized as:

c(s,A,F) = fq(s,A)(ds(A,F)) (3)
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where q(s,A) = |{p ∈ P : Aps = 1}| is the number of partitions
hosted by server s and P is the set of partitions in the database.

For arbitrary affinity, we run new experiments in which we vary
the rate of distributed transactions executed by a server. For these
experiments we use TPC-C, since it has multi-partition transac-
tions, some of which are distributed, and we change the rate of dis-
tributed transactions by modifying the fraction of multi-partition
transactions in the benchmark. Figure 4 shows the variation in
server capacity when we vary the rate of distributed transactions
in a setting with 4 servers, each hosting 8 or 16 TPC-C partitions.

The results give two important insights. First, the shape of the ca-
pacity curve depends on the number of partitions a server hosts. A
server with more partitions can execute transactions even if some of
these partitions are blocked by distributed transactions. If a server
with 8 cores runs 16 partitions, it is able to utilize its cores even
if some of its partitions are blocked by distributed transactions.
Therefore, the capacity drop is not as strong as with 8 partitions.
The second insight is that the relationship between the rate of dis-
tributed transactions and the capacity of a server is not necessarily
linear. For example, with 8 partitions per server, approximating the
curve with a linear function would overestimate capacity by almost
25% if there are 600 distributed transactions per second.

4.3 Estimating the Capacity Function
The server capacity estimator component of Accordion estimates

the function c(s,A,F) online, by measuring transaction rate and
transaction latency for each server. A configuration is a set of in-
puts tuples (s,A,F) that c maps to the same capacity value. The
definition of a configuration depends on the affinity class of the
workload. With null affinity, c returns a single capacity, so there
is only one configuration for all values of (s,A,F). With uniform
affinity, c returns a different value depending on the number of par-
titions of a server, so a configuration includes all input tuples where
s hosts the same number of partitions according to A. With arbitrary
affinity, every tuple in (s,A,F) represents a different configuration.

Accordion maintains the capacity function by collecting capac-
ity estimates for each configuration. Initially, when no estimate is
available, Accordion returns for every configuration an optimistic
(i.e., high) bound that is provided, as a rough estimate, by the DBA.
Over time, Accordion estimates the values of the capacity function
for all configurations and refines the DBA estimate with actual ob-
served capacity. Accordion also allows the DBA to specify a maxi-
mum number of partitions per server beyond which capacity drops
to zero, although we do not use this feature in this paper.

Let c be the current configuration of a server s. Whenever la-
tency exceeds a pre-defined service level objective (SLO) for a
server s, Accordion considers the current total transaction rate of
s (considering all transaction of all types) as an estimate e of the
server capacity for c. In our experiments, the SLO is exceeded if
the per-second average latency exceeds 100 milliseconds for more

than 30 consecutive seconds, but different bounds, as for example
95th percentile latency, can be used. If the monitoring component
of Accordion is continuously active, it can measure capacity (and
activate reconfigurations) before latency and throughput degrade.
Accordion currently supports DBMSes providing a single SLO for
all applications. We leave support for multiple applications with
different QoS guarantees as future work.

The capacity function c is continuously adjusted with the current
estimates. With null and uniform affinity, the output of c for a given
configuration is the average of all estimates for that configuration.
For arbitrary affinity, Accordion keeps separate capacity functions
based on the number of partitions a server hosts. All the estimates
for configurations where a server hosts q(s,A) = n partitions are
used to determine the capacity function fn of Equation 3. The par-
tition placement requires that this function be approximated as a
piecewise linear function, as discussed in Section 5.

5. PARTITION PLACEMENT MAPPER
This section discusses the partition placement mapper compo-

nent of Accordion. We formulate the partition placement problem
as a Mixed Integer Linear Programming (MILP) problem. MILP
formulations can be solved using robust optimization tools that ef-
ficiently explore the complex space of possible reconfigurations. In
our experiments the MILP solver was always able to find a solu-
tion if the size of the problem is feasible. Non-linear solvers, on
the other hand, can fail in complex ways and often require human
supervision to find a solution, so having a linear formulation is im-
portant for online reconfiguration.

5.1 General Algorithm
Accordion runs multiple times during the database lifetime. It

can be invoked periodically or whenever the workload varies sig-
nificantly. An invocation of Accordion is called a decision point
t. We use the superscript t to denote variables and measurements
for decision point t. At decision point t, the algorithm runs one
or more instances of a MILP problem, each having a fixed num-
ber of servers Nt . We speed up partition placement by running
multiple MILP instances in parallel for different values of Nt : if
the previous number of servers is Nt−1, we run instances for Nt =
Nt−1− k, . . . ,Nt−1 servers in parallel if the overall load is decreas-
ing and Nt = Nt−1, . . . ,Nt−1+k if the load is increasing. We select
the solution with the lowest number of servers (i.e. lowest k), if
present, and we consider a new batch of k+1 MILP instances with
decreasing (resp. increasing) number of servers otherwise. We set
k = 1 since in our experiments scale out and scale in operations en-
tail adding or removing at most one server at a time. If the MILP
solver terminates without finding a feasible solution, this can be an
indicator that the database partitions need to be redefined.

The performance of Accordion was acceptable using our simple
static MILP formulation. Given the incremental nature of reconfig-
urations, the problem can be cast as an online optimization problem
if it is necessary to scale to larger problems.

The MILP problem for decision point t and a given number of
servers Nt is formalized in Equation 4. At decision point t, Accor-
dion calculates a new placement At based on the previous place-
ment At−1. The optimization goal is to minimize the amount of
data moved for the reconfiguration; mt

p is the memory size of par-
tition p and S = max(Nt−1,Nt). The first constraint expresses the
throughput capacity of a server where rt

p is the rate of transactions
accessing partition p. It uses the server capacity function c(s,A,F)
defined in Section 4. The second constraint guarantees that the
memory M of a server is not exceeded. This also places a limit
on the number of partitions on a server, which counterbalances the



desire to place many partitions on a server to minimize distributed
transactions. The third constraint ensures that every partition is
replicated k times. Some systems can be configured so that every
partition is replicated a certain number of times for durability. The
last two constraints express that the first Nt servers must be used.
This is stricter than necessary but it helps reduce the solution time.

minimize
P

∑
p=1

S

∑
s=1

(|At
ps−At−1

ps | ·mt
p)/2

s.t. ∀s ∈ [1,S] :
P

∑
p=1

At
ps · rt

p < c(s,A,F)

∀s ∈ [1,S] :
P

∑
p=1

At
ps ·mt

p < M (4)

∀p ∈ [1,P] :
S

∑
s=1

At
ps = k

∀P ∈ [1,Nt ] :
S

∑
s=1

At
ps > 0

∀P ∈ [Nt +1,S] :
S

∑
s=1

At
ps = 0

The input parameters rt and mt are provided by the monitoring
component of Accordion. The server capacity function c(s,A,F) is
provided by the capacity estimator.

One source of non-linearity in this problem formulation is the
absolute value |At

ps−At−1
ps | in the objective function. We make the

formulation linear by introducing a new decision variable y that
replaces |At

ps−At−1
ps | in the objective function, and by adding two

constraints of the form At
ps−At−1

ps − y≤ 0,−(At
ps−At−1

ps )− y≤ 0.

5.2 Modelling Non-Linear Capacity Functions
In workloads with no distributed transactions and null affinity,

the server capacity function c(s,A,F) is equal to a constant c̄ (Equa-
tion 1) so Equation 4 represents a MILP problem. If we consider
distributed transactions, however, the throughput capacity function
and the associated capacity constraint become non-linear. As we
have previously discussed, solving non-linear optimization prob-
lems is significantly more complex and less reliable than solving
linear problems. Hence, a linear formulation is important for Ac-
cordion in order to obtain partition placements automatically and
online. This section describes how we formulated the server capac-
ity constraint in a linear form with distributed transactions.

5.2.1 Uniform Affinity
In workloads with uniform affinity, the capacity of a server is a

function of the number of partitions the server hosts. Therefore,
we express c in the MILP formulation as a function of the new
placement At (see Equation 2). If we substitute c(s,A,F) in the
first constraint of Equation 4 using the expression of Equation 2,
we obtain the following load constraint:

∀s ∈ [1,S] :
P

∑
p=1

At
ps · rt

p ≤ f (|{p ∈ P : At
ps = 1}|) (5)

where the function f (q), which is provided as input by the server
capacity estimator component of Accordion, returns the maximum
throughput of a server hosting q partitions.

The function f (q) is neither linear nor continuous. We express
the load constraint of Equation 5 in linear terms in our MILP for-

mulation by using a set of binary indicator variables zt
qs indicating

the number of partitions hosted by servers: given a server s, zt
qs is

1 if and only if s hosts exactly q partitions. In a MILP formulation,
the only way to assign values to variables is through a set of con-
straints. Therefore, we add the following constraints to Equation 4:

∀s ∈ [1,S] :
P

∑
q=1

zt
qs = 1

∀s ∈ [1,S] :
P

∑
p=1

At
ps =

P

∑
q=1

q · zt
qs

The first equation mandates that, given a server s, exactly one of
the variables zt

qs has value 1. The second equation has the number
of partitions hosted by s on its left hand side, so if the server hosts
q′ partitions then zt

q′s will be equal to 1.
We can now reformulate the capacity constraint of Equation 5 by

using the indicator variables to select the correct capacity bound:

∀s ∈ [1,S] :
P

∑
p=1

At
ps · rt

p ≤
P

∑
q=1

f (q) · zt
qs

The function f (q) gives the capacity bound for a server with q par-
titions. It follows from the definition of the indicator variables zt

qs
that if a server s hosts q′ partitions then the sum at the right hand
side of the equation will be f (q′), as expected.

5.2.2 Arbitrary Affinity
For workloads where affinity is arbitrary, it is important to place

partitions that are more frequently accessed together on the same
server because this can substantially increase capacity, as shown in
Figure 4. We must thus reformulate the first constraint of Equa-
tion 4 by substituting c(s,A,F) according to Equation 3:

∀s ∈ [1,S] :
P

∑
p=1

At
ps · rt

p ≤ fq(s,At )(d
t
s(A

t ,Ft)) (6)

where q(s,At) is the number of partitions hosted by the server s
according to At . The rate of distributed transactions for server
s, dt

s, must be computed by the MILP formulation itself since its
value depends on the output variable At . We aim at expressing the
non-linear function dt

s in linear terms.
Determining the distributed transactions rate. Since we want to
count only distributed transactions, we need to consider only the
entries of the affinity matrix related to partitions that are located
on different servers. Consider a server s and two partitions p and
q. If only one of the partitions is hosted by s, s has the overhead
of executing the distributed transactions accessing p and q. Accor-
dion marks the partitions requiring distributed transactions using a
binary three dimensional cross-server matrix Ct , where Ct

psq = 1 if
and only if partitions p and q are mapped to different servers in the
new placement At but at least one of them is mapped to server s:

Ct
psq = At

ps⊕At
qs

were the exclusive or operator ⊕ is not linear. Instead of using
the non-linear exclusive or operator, we define the value of Ct

psq in
the context of the MILP formulation by adding the following linear
constraints to Equation 4:

∀p,q ∈ [1,P], s ∈ [1,S] : Ct
psq ≤ At

ps +At
qs

∀p,q ∈ [1,P], s ∈ [1,S] : Ct
psq ≥ At

ps−At
qs

∀p,q ∈ [1,P], s ∈ [1,S] : Ct
psq ≥ At

qs−At
ps

∀p,q ∈ [1,P], s ∈ [1,S] : Ct
psq ≤ 2−At

ps−At
qs



The affinity matrix Ft and the cross-server matrix are sufficient
to compute the rate of distributed transactions per server s as:

dt
s =

P

∑
p,q=1

Ct
psq ·Ft

pq (7)

Expressing the load constraint in linear terms. As discussed in
Section 4, the capacity bound in the presence of workloads with
arbitrary affinity can be expressed as a set of functions. If a server
s hosts q partitions, its capacity is modeled by the function fq(dt

s),
where the rate of distributed transactions of s, dt

s, is the independent
variable (see Equation 3). The server capacity component of Ac-
cordion approximates each function fq(dt

s) as a continuous piece-
wise linear function. Consider the sequence of delimiters ui, with
i ∈ [0,n], that determine the boundary values of dt

s corresponding
to different segments of the function. Since dt

s is non negative, we
have u0 = 0 and un = C, where C is an approximate, loose upper
bound on the maximum transaction rate a server can ever reach.
The reason for assuming a finite bound C will be discussed shortly.
Each piecewise capacity function fq(dt

s) is defined as follows:

fq(dt
s) = aiq ·dt

s +biq if ui−1 ≤ dt
s < ui for some i > 0

For each value of q, the server capacity component provides as in-
put to the partition placement mapper an array of constants aiq and
biq, for i ∈ [1,n], to describe the segments of the capacity func-
tion fq(dt

s). We assume that fq(dt
s) is non decreasing, so all aiq are

smaller than or equal to 0. This is equivalent to assuming that the
capacity of a server does not increase when its rate of distributed
transaction increases.

The capacity function provides an upper bound on the load of
a server. If the piecewise linear function fq(dt

s) is concave (i.e.,
the area above the function is concave) or linear, we could simply
bound the capacity of a server to the minimum of all linear func-
tions determining the segments of fq(dt

s). This could be done by
replacing the current load constraint with the following constraint:

∀s ∈ [1,S], i ∈ [1,n] :
P

∑
p=1

At
ps · rt

p ≤ ai ·dt
s +bi

However, the function fq(dt
s) is not concave or linear in general.

For example, the capacity function of Figure 4 with 8 partitions is
convex. If we would take the minimum of all linear functions con-
stituting the piecewise capacity bound fq(dt

s), as done in the previ-
ous equation, we would significantly underestimate the capacity of
a server: the capacity would already go to zero with dt

s = 650 due
to the steepness of the first piece of the function.

We can deal with convex functions by using binary indicator
variables vsi indicating the specific linear piece of the capacity func-
tion we need to consider for a server s given its current distributed
transaction rate dt

s. Formally, vsi is equal to 1 if and only if dt
s ∈

[ui−1,ui]. Since we are using a MILP formulation, we need to de-
fine these variables through constraints as follows:

∀s ∈ [1,S] :
n

∑
i=1

vsi = 1

∀s ∈ [1,S], i ∈ [1,n] : dt
s ≥ ui−1−ui−1 · (1− vsi)

∀s ∈ [1,S], i ∈ [1,n] : dt
s ≤ ui +(C−ui) · (1− vsi)

In these expressions, C can be arbitrarily large, but a tighter up-
per bound improves the efficiency of the solver because it reduces
the solution space. We set C to be the optimistic capacity value
provided by the DBA (see Section 4.3).

The first constraint we added mandates that exactly one of the
indicators vsi has to be 1. If vsi′ is equal to 1 for some i = i′, the

next two inequalities require that dt
s ∈ [ui′−1,ui]. The constraints

for every other i 6= i′ are trivial since they just state that dt
s ∈ [0,C].

We can use the indicator variables zqs defined in Section 5.2.1,
for which zqs = 1 if server s hosts q partitions, to select the correct
function fq for server s, and the new indicator variables vsi to select
the right piece i of fq to be used in the constraint. A straightforward
specification of the load constraint of Equation 7 would use the
indicator variables as factors, as in the following form:

∀s ∈ [1,S] :
P

∑
p=1

At
ps · rt

p ≤
P

∑
q=1

zqs ·
( n

∑
i=1

vsi · (aiq ·dt
s +biq)

)
However, zqs, vsi and dt

s are all variables derived from At , so this
expression is polynomial and thus non-linear.

Since load constraints are upper bounds, our formulation con-
siders all linear constraints for all the piecewise linear functions
fq and all their constituting linear segments, and use the indicator
variables to make these constraint trivially met when they are not
selected. The load constraint can thus be expressed as follows:

∀s ∈ [1,S],q ∈ [1,P], i ∈ [1,n] :
∑

P
p=1 At

ps · rt
p ≤ C · (1−aiq) · (1− vsi)

+C · (1−aiq) · (1− zqs)
+aiq ·dt

s +biq

For example, if a server s′ hosts q′ partitions, its capacity constraint
if given by the capacity function fq′ . Let us assume that the rate of
distributed transactions of s lies in segment i′, i.e., dt

s′ ∈ [ui′−1,ui′ ].
The indicator variables activate the correct constraint for s′ since
vs′i′ = 1 and zq′s′ = 1 so the constraint for server s′ becomes:

P

∑
p=1

At
ps′ · r

t
p ≤ ai′q′ ·dt

s′ +bi′q′

which selects the function fq′(dt
s′) and the segment i′ to express the

capacity bound of s′. All remaining constraints become trivial due
to the indicators. In fact, for all values of q 6= q′ and i 6= i′ it holds
that either vs′i′ = 0 or zq′s′ = 0, so the constraints just say that the
load of a server is lower than the upper bound C, which is true by
definition. This holds since all functions fq(dt

s) are non-increasing,
so aiq ≤ 0 and C · (1−aiq)+aiq ·dt

s =C−aiq(C−dt
s)≥C.

Implicit clustering. In the presence of arbitrary affinity, the place-
ment should cluster affine partitions together and try to place each
cluster on a single server. Executing clustering as a pre-step could
be enticing but is not viable since clustering and placement should
be solved together: since clusters of partitions are to be mapped
onto a single server, the definition of the clusters needs to take into
consideration the load on each partition, the capacity constraints of
the server that should host the partition, and the migration costs of
transferring all partitions to the same server if needed.

Our MILP formulation implicitly lets the solver place partitions
with high affinity onto the same server. In fact, the solver explores
all feasible solutions for a given number of servers searching for
the one that minimizes data migration. One way to minimize data
migration is to maximize the capacity of each server, which is done
by placing partitions with high affinity onto the same server. There-
fore, Accordion does not need to run an external partition clustering
algorithm as a pre-processing step.

In summary, we were able to express the complex interdependen-
cies involved in partition placement as linear constraints of a MILP
problem. This problem can be solved effectively by standard opti-
mization tools, which enables Accordion to reliably obtain optimal
partition placements online.



6. EVALUATION

6.1 Experimental Setup
All our experiments use two workloads, TPC-C and YCSB. We

run the workloads on H-Store, using the cluster specifications de-
scribed in Section 4: each server has two Intel Xeon quad-core pro-
cessors running at 2.67GHz and 32 GB of RAM. The servers are
connected to a 10Gb Ethernet network. The server capacity func-
tions we use in our experiments are the ones obtained in Section 4.
We used the popular CPLEX optimization tool to efficiently solve
the MILP problem.1 The controller node used to run the place-
ment algorithms has two Intel Xeon processors, each with 12-cores
running at 2.40 GHz, and 54GB of RAM.

We used databases of different sizes, split into 64 to 1024 parti-
tions. Our experiments shows that Accordion efficiently scales up
to 1024 partitions regardless of the partition size, since our prob-
lem complexity is a function of only the number of partitions and
servers. Hence, Accordion can handle very large databases as long
as the total size of distributed memory is sufficient for the database.
In our experiments we want to stress-test the partition placement
algorithms, so we make sure that placements are not ruled out just
because some server becomes memory bound. For migration, Ac-
cordion uses a simple live migration system for H-Store inspired by
Zephyr [12]. H-Store support for replication is still experimental,
so we do not require partitions to be replicated.

For our experiments, we need a fluctuating workload to drive
the need for reconfiguration. The fluctuation in overall intensity
(in transactions per second) of the workload that we use follows
the access trace of Wikipedia for a randomly chosen day, October
8th, 2013. In that day, the maximum load is 50% higher than the
minimum. We repeat the trace, so that we have a total workload
covering two days. The initial workload intensity was chosen to
be high enough to stress the placement algorithms by requiring fre-
quent reconfigurations. We run reconfiguration periodically, every
5 minutes, and we report the results for the second day of the work-
load (representing the steady state). We skew the workload such
that 20% of the transactions access “hot” partitions and the rest ac-
cess “cold” partitions. The set of hot and cold partitions is changed
at random in every reconfiguration interval.

6.2 Baselines for Comparison
The Equal partitioning algorithm models the behaviour of typical

hash- or range-based partitioning placements that assign an equal
number of partitions to every server. Equal uses a single constant
server capacity bound, and uses the minimum number of servers
sufficient to support the current workload. For scaling out or in,
Equal moves the minimal number of partitions per server to reach
an equal placement. For all the baselines, we use a capacity bound
equal to the maximum server throughput in the standard configura-
tion with one partition per core.

It is common practice in distributed data stores and DBMSes to
provision for peak load and assign an equal amount of data to each
server. We call this a Static policy because it does not require data
migration. Our static policy uses the maximum number of servers
used by Equal over all reconfigurations. This is a best-case static
configuration because it assumes knowledge of online workload
dynamics that might not be known a priori, when a static config-
uration is devised.

The Greedy best fit heuristic explicitly takes skew into account.
Heuristics similar to Greedy have been applied in elastic key-value

1Available under http://www-01.ibm.com/software/integration/
optimization/cplex-optimization-studio/
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Figure 5: Partition placement - workload with null affinity (YCSB)

stores, whose workloads can be implemented in a DBMS using
only single partition transactions [26]. Greedy labels servers as
overloaded or underloaded based on how close their load is to their
capacity. First, Greedy migrates the hottest partitions of overloaded
servers until no server is overloaded. Second, it tries to migrate all
partitions out of the most underloaded servers in order to reduce
the overall number of servers. Every time a partition is migrated,
the receiving server is the underloaded server that currently has the
highest load and enough capacity to host the partition. If no such
server is available in the cluster when migrating partitions from an
overloaded server, Greedy adds a new server. Greedy uses a single
constant server capacity bound, like Equal.

MILP-SP uses the MILP formulation of Accordion that assumes
null affinity. MILP-SP represents an adaptation of the tenant place-
ment algorithm of Kairos [9] to partition placement. Like Kairos,
MILP-SP is not aware of distributed transactions, so it uses a sin-
gle capacity bound like the other heuristics. Kairos-PP is similar to
MILP-SP but it minimizes load imbalance, like the original Kairos
tenant placement algorithm, instead of data movement.

6.3 Elasticity with Null Affinity
We start our evaluation by considering YCSB, a workload where

all transactions access only a single partition. We considered YCSB
instances with 64, 256, and 1024 partitions. Depending on the
number of partitions, initial loads range from 40,000 to 240,000
transactions per second. We report two metrics: the amount of data
each algorithm migrates and the number of servers it requires. We
do not report throughput figures because in our experiments all al-
gorithms were able to adapt to the offered load as needed. That is,
all algorithms have similar throughput.

With null affinity, Accordion and MILP-SP are the same algo-
rithm and therefore have the same performance, as shown in Fig-
ure 5. The colored bars in Figure 5(a) represent the average data
migrated, and the vertical lines represent the 95th percentile. Fig-
ure 5(b) represents the average number of servers used. Both Ac-
cordion and MILP-SP migrate a very small fraction of partitions:
the average and 95th percentile are below 2%. They use 2 servers
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Figure 6: Partition placement - TPC-C with uniform affinity

on average with 64 partitions, 3.7 with 256 partitions, and 10.7
with 1024 partitions. Kairos-PP moves between 4% and 10.5% of
the database on average and uses approximately the same average
number of servers as Accordion and MILP-SP (for 1024 partitions,
there is a slight reduction to 10.54 servers on average). Even though
Equal and Greedy are designed for single-partition transactions,
they still perform worse than Accordion. The Equal placement al-
gorithm uses a slightly higher number of servers on average than
Accordion, but it migrates between 16x and 24x more data than
Accordion on average, with very high 95th percentiles. Greedy mi-
grates slightly less data than Equal, but uses a factor between 1.3x
and 1.5x more servers than Accordion, and barely outperforms the
Static policy.

Our results show the advantage of using MILP formulations,
such as Accordion or Kairos-PP, over heuristics in workloads with-
out distributed transactions. No heuristic can achieve the same
quality in trading off the two conflicting goals of minimizing the
number of servers and the amount of data migrated. The Greedy
heuristic induces fewer migrations, but it cannot effectively aggre-
gate the workload onto fewer servers. The Equal heuristic aggre-
gates more aggressively at the cost of more migrations.

6.4 Elasticity with Uniform Affinity
This experiment considers a workload, like TPC-C, having dis-

tributed transactions and uniform affinity. The initial transaction
rates are 9,000, 14,000, and 46,000 tps for configurations with 64,
256 and 1024 partitions, respectively. Figure 6(a) reports the aver-
age fraction of partitions moved in all reconfiguration steps in the
TPC-C scenario and also the 95th percentile. As expected, since
Equal and Greedy are not designed to deal with distributed trans-
actions, Accordion achieves higher gains with TPC-C than with
YCSB. It migrates less than 4% in the average case, while the other
heuristics migrate significantly more data.

MILP-SP migrates a similar number of partitions as Accordion
because it is less aggressive in minimizing the number of servers.
However, it uses between 1.3x to 1.7x more servers on average

0.1

1

10

100

64 256 1024

D
at

a 
m

ig
ra

te
d 

(%
)

Number of partitions

Accordion

MILP-SP

Kairos-SP

Greedy

Equal

(a) Data migrated per reconfiguration (logscale)

 0
 5

 10
 15
 20
 25
 30
 35
 40

64 256 1024

N
um

be
r 

of
 s

er
ve

rs
 u

se
d

Number of partitions

Accordion

MILP-SP

Kairos-SP

Greedy

Equal

Static

(b) Average number of servers used

Figure 7: Partition placement - TPC-C with arbitrary affinity

than Accordion. Accordion also outperforms all other algorithms
in terms of number of servers used, as shown in Figure 6(b). Like
in the previous case, Greedy does not significantly outperform the
Static policy.

Accordion takes into account distributed transactions and esti-
mates the capacity boost of co-locating partitions on fewer servers.
This explains why Accordion achieves better resource utilization
than the baseline placement algorithms, which assume a constant
capacity bound.

6.5 Elasticity with Arbitrary Affinity
This section considers workloads with arbitrary affinity. We mod-

ify TPC-C to bias the affinity among partitions: each partition be-
longs to a cluster of 4 partitions in total. Transactions accessing
partitions across clusters are 1% of the multi-partition transactions.
For Equal and Greedy, we select an average capacity bound that
corresponds to a random distribution of 8 partitions to servers.

Figure 7 reports our results with an initial transaction rate of
40000 tps. The results show the highest gains using Accordion
across all the workloads we considered. Accordion manages to re-
duce the average number of servers used by a factor of more than
1.3x with 64 partitions and of more than 9x with 1024 partitions,
with a 17x gain compared to Static.

The significant cost reduction achieved by Accordion is due to its
implicit clustering. By placing together partitions with high affin-
ity, Accordion boosts the capacity of the servers and thus needs
fewer servers to support the workload. The results also show that
Accordion is able to leverage the additional flexibility given by the
use of a larger number of partitions.

Accordion is robust enough to keep the same margin in a variety
of situations. We have repeated these experiments with 256 parti-
tions and varied (i) the fraction of multi-partition transactions be-
tween 5% and 20%, (ii) the size of affinity clusters between 4 and
16 partitions, and (iii) the fraction of inter-cluster multi-partition
transactions from 0.1% to 10%. In all cases, we got very similar
results as the ones of Figure 7.
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Figure 8: Performance during TPC-C reconfiguration.

6.6 Cost of Data Migration
We now evaluate the transient disruption caused by reconfigura-

tions. We used a TPC-C database of 33GB split into 256 partitions.
Figure 8 shows the effect of one reconfiguration on the throughput
and latency of TPC-C using multiple planners, all starting from the
same initial configuration of 3 servers with one overloaded server.
The plots report the second-by-second moving average of the last
50 seconds. The planners are Accordion, MILP-SP, and Kairos-PP.
Accordion migrates the minimal amount of data needed to offload a
certain amount of transactions per second (tps) from a server. This
implicitly favors moving fewer hot partitions over more cold parti-
tions. We also consider a planner called “Cold” that transfers the
same amount of tps among each pair of servers as Accordion but it
moves a larger number of partitions because it selects the coldest
ones.

All planners go through two phases: (i) a migration phase, which
is characterized by very low throughput, and (ii) a catch up phase
after reconfiguration has terminated. The catch up phase has higher
throughput but also high latency because clients submit at a very
high rate all requests that were blocked during migration. After
catch up terminates, all planners converge to the same throughput,
which is about 20% higher than the initial one. The figure does not
show that the number of servers used by the planners is different:
Accordion and Cold simply migrate partitions among the 3 existing
servers, whereas MILP-SP and Kairos-SP scale out to 5 servers.

The impact of large data migrations is evident in Figure 8. All
planners start reconfiguration after one minute into the run. Accor-
dion moves 1.2% of the data, MILP-SP 15.7%, Cold 18.8%, and
Kairos-SP 94.1%. The migration phase of Accordion is very short,
less than 1 minute. MILP-SP and Cold have migration phases of
about 10 minutes. Kairos-SP, which does not try to minimize data
movement, has a very long migration of about 50 minutes.

The comparison between Accordion and Cold shows experimen-
tally the advantage of moving hot partitions. To understand the
reason for this advantage, consider the example of an overloaded
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Figure 10: Execution time of Accordion

server that needs to offload 1000 transactions per second (tps). As-
sume that each partition can be migrated in 1 second. If a hot parti-
tion receives 1000 tps, it is sufficient to migrate only that partition.
If we disregard the cost of setting up and coordinating a reconfigu-
ration, the migration could potentially block or abort 1000 transac-
tions. The exact numbers of blocked and aborted transactions will
depend on the specific migration mechanisms, for example if it is
stop-and-copy or live. If we decide to migrate 10 cold partitions
receiving 100 tps each, the cost of each migration will be smaller,
but the reconfiguration will take 10 seconds, so we will again block
or abort 1000 transactions. In practice, however, longer reconfigu-
rations end up being less effective as shown by our experiments.

We have also tested the impact of reconfiguration on YCSB. Fig-
ure 9 illustrates the throughput and latency during live migration of
different amounts of data. If less than 2% of the database is mi-
grated, the throughput reduction is minor (less than 10%), but it
starts to be noticeable (20%) when 4% of the database or more is
migrated, and it becomes major (60%) when transferring 16% of
the database.

6.7 Execution Time of Accordion
Accordion must be able to quickly find new partition placements

to support online elasticity. The simple heuristics, Equal and Greedy,
execute in a very short time: even in the case of 1024 partitions,
they find placements in less than 50 milliseconds. Accordion is
slower because it uses CPLEX to solve a non-trivial MILP prob-
lem but it is fast enough to be used in an online setting. The av-
erage execution time of one decision point of Accordion is shown
in Figure 10. For YCSB, which has null affinity, and for TPC-C,
which has uniform affinity, the execution time is smaller than 10
seconds. For workloads with arbitrary affinity, like TPC-C with
clustered partitions, execution time goes up to almost 2 minutes for
1024 partitions. However, this longer execution time pays off very
well in terms of saved costs, as shown in Figure 7. Note that 2



minutes is acceptable in many cases where the workload does not
fluctuate frequently and reconfiguration is infrequent.

7. CONCLUSION
Dynamic partition placement with distributed transactions is an

important problem, and will become more important as different
DBMSes add elasticity mechanisms and migrate to pay-as-you-go
clouds. It is a complex problem consisting of many interdependent
subproblems: finding a good partition placement that supports the
offered load, determining the capacity of each server with a vary-
ing placement and affinity, considering skew in workloads that may
not be known a priori, and minimizing the amount of data migrated.
Accordion successfully addresses all these problems using an on-
line server capacity estimation and a MILP formulation that can
be efficiently solved online. Our results show that using accurate
server capacity models for distributed transactions significantly im-
proves the quality of the placements.

As future work, we plan to combine our capacity model for
distributed transactions with other types of performance models,
in order to cover also disk-based systems. We also plan to con-
sider elasticity mechanisms that, instead of considering partitions
as pre-defined, split and merge partitions at run-time based on load.
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