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Abstract—Distributed, replicated keyed-record stores are often
used by applications that place a premium on high availability
and scalability. Such systems provide fast access to stored records
given a primary key value, but access without the primary key
may be very slow and expensive. This problem can be addressed
using materialized views. Materialized views redundantly store
records, or parts of records, and the redundant copies can be
organized and distributed differently than the originals, e.g,
according to the value of a secondary key. In this paper, we
consider the problem of supporting materialized views in multi-
master, eventually consistent keyed-record stores. Incremental
maintenance of materialized views is challenging in such systems
because there no single master server responsible for serializing
the updates to each record. We present a decentralized technique
for incrementally maintaining materialized views in multi-master
systems. We have implemented a prototype of our technique
using Cassandra, a widely used system of this type. Using the
prototype, we show that secondary-key-based access is much
faster using materialized views than using Cassandra’s native
secondary indexes, but maintaining the views in the face of
updates may be more expensive than maintaining indexes.

I. INTRODUCTION

Keyed-record stores are often used by applications that
place a premium on high availability and scalability. In these
systems, each stored record is associated with a primary key
value. Records are replicated and distributed across multiple
servers. Client applications can access a stored record quickly
by providing its primary key value. Examples of such systems
include BigTable [1], Cassandra [2], and Amazon’s SimpleDB.

One of the principal limitations of these systems is that the
only way to access stored data efficiently is with the primary
key. For example, if the stored data consist of customer
records keyed by a customer identifier, it may be difficult or
impossible to access records by, for example, customer name.
Some systems, such as Cassandra, provide secondary indexes
to address this problem. However, to help ensure consistency
between the secondary index and and the records, such indexes
are themselves typically partitioned and distributed according
to the primary key. To access a record using such an index, the
system must broadcast the request to multiple servers, each
of which can then check for the requested record using its
fragment of the index. As a result, accessing records through
such an index is typically slower and much more expensive
than accessing the data by primary key.

Applications that use keyed-record stores often address
this problem by storing the same data multiple times, with
different keys. For example, an application might store two
customer tables, one keyed by customer ID, and the other by
customer name. When customer records are updated, inserted
and deleted, the burden of ensuring that these tables remain
synchronized must be borne by the application.

Materialized views are a mechanism that allows this burden
to be shifted from the client applications to the record storage
system. Materialized views are tables that redundantly store
records, or parts of records, from another table, called the
base table. The records in the view can be organized and
distributed differently than the originals in the base table. In
particular, they can be distributed according to the value of a
secondary key. Since the system is aware of the relationship
between a materialized view and its base table, it can assume
responsibility for maintaining (updating) the view when the
base table changes.

Materialized views are widely implemented in relational
database systems. In relational systems, incremental mainte-
nance of (simple) materialized views is conceptually simple.
Base table updates are typically propagated to the views in
transaction serialization order, which is obtained from the
database system’s transaction log. A similar approach can be
use to implement incremental view maintenance in distributed
keyed-record stores, provided that there is some mechanism
analogous to the transaction log for determining the order in
which to propagate changes. For example, PNUTS [3] uses
this approach to implement view maintenance. Each record
stored in PNUTS has a single master copy which serializes
all updates to that record. Thus, the master server for a record
can be responsible for propagating the record’s changes to the
view(s).

In this paper, we focus on the problem of supporting ma-
terialized views in multi-master, eventually consistent keyed-
record stores, such as Cassandra, SimpleDB, Project Volde-
mort, and Riak. In these systems, there is no master server
that serializes updates to a given record. Furthermore, these
systems may provide only an eventual consistency guaran-
tee to applications. This means that, depending on how an
application reads a record, it may not be guaranteed to see
that record’s most-recent version. As we will show, this



complicates the problem of maintaining materialized views.
In particular, the view maintenance approach used by PNUTS
is not directly applicable to such systems.

This paper makes two primary research contributions. First,
we present a technique for incrementally maintaining mate-
rialized views in multi-master, eventually consistent keyed-
record stores. Our technique is decentralized, like multi-
master systems. It is also asynchronous, which means that an
application’s updates to a base table are not guaranteed to be
reflected in the view immediately. In Section III we present our
rationale for this design choice. It is possible to complement
our technique with an additional mechanism that will provide
a session consistency guarantee for each application client.
Although view update is still fundamentally asynchronous,
session guarantees ensure that if a client updates a base table
and then reads a view defined on that table, it can be sure that
the view will reflect the effects of that client’s own preceding
updates. Because of space constraints, the session consistency
mechanism is not presented in this paper, but it is described
in an extended version of this paper, which is available as a
technical report [4].

Our second contribution is an empirical analysis of the
performance of materialized views. We prototyped our in-
cremental view maintenance technique within Cassandra, a
widely used open-source multi-master system. In our analysis,
we consider both the cost of accessing the view and the
overhead of maintaining the view in response to base table
updates. Since materialized views provide an alternative to
native secondary indexes, we provide a comparison of the
performance of Cassandra’s native secondary indexes to that
of materialized views.

II. SYSTEM MODEL

We begin by presenting generic model of a multi-master,
keyed-record system. We will use the model to present our
view maintenance algorithm. Our generic system is similar
to Cassandra, although we have eliminated many Cassandra-
specific details that are not relevant to view maintenance.

The system allows applications to define sets of records,
which we will refer to as tables. Each record has a key and
one or more named attributes, or columns. Different records in
the same table may have different attributes. The combination
of key and a column name identifies a cell in the table. Each
cell may have an associated value, and each cell with a value
also has an associated timestamp. We will use the notation
T [k, c] to refer to the cell corresponding to key k and column
c in table T .

Applications can use two operations on tables: put and
get. A put operation takes as parameters a table name (T ), a
key value (k), a set of column names ([c1, c2, . . . , cn]), a set of
values ([d1, d2, . . . , dn]), a set of timestamps ([t1, t2, . . . , tn]),
and a write quorum (W ), which we will describe shortly.

For each column ci, the put operation sets the value and
timestamp of T [k, ci] to di and ti, respectively, unless the cell’s
timestamp is already larger than ti, in which case the put has
no effect on that cell. A get operation takes a table name (T ),

a key value (k), a set of column names ([c1, c2, . . . , cn]), and
a read quorum (R) as parameters. It returns the current value
and timestamp for each cell T [k, ci]. The value in each cell
will be the value written by the preceding put operation with
the largest timestamp. If no value has ever been put into a
cell, we assume that a read of the cell will obtain a NULL
value and timestamp. (A NULL timestamp is assumed to be
smaller than all non-NULL timestamps.)

To delete the value in a cell, an application can put a NULL
value into the cell. Internally, the system places a tombstone
value in such a cell, along with the timestamp from the put
operation, to record when the value was deleted. Subsequent
get operations will read NULL from the cell until a non-
NULL value (with a larger timestamp than the tombstone’s) is
put there.

The system has multiple servers. Each record is stored N
times, on N different servers. (N is a configurable parameter.)
The placement of records onto servers is typically determined
by hashing the record key [5], [2], but the placement policy
is orthogonal to our work. We assume only that placement of
a record’s copies is determined by its key value. To perform
a get or put, an application client connects to any server
in the system. That system acts as the coordinator for the
request. The coordinator first uses the supplied table name
and record key to determine which servers hold copies of the
target record. In the case of a put request, the coordinator
sends the request to all N replicas of the record, and waits
for responses from at least W (1 ≤ W ≤ N) of the replicas
before acknowledging the put request to the application. Each
replica performs the put operation on its local copy before
sending an acknowledgment to the coordinator. In the case of
a get operation, the coordinator again forwards the request
to all N replicas, and waits for the first R (1 ≤ R ≤ N)
responses. Each replica server performs the get operation on
its local copy of the record and returns a list of cell values
and timestamps to the coordinator. For each cell identified
in the get request, the coordinator chooses the value with
the largest timestamp from among the first R responses, and
returns those values, along with their associated timestamps,
to the client application. The local put and get operations
performed by each individual server are atomic.

Applications can control a consistency/performance trade-
off by varying W and R in put and get operations. In
particular, if W + R > N , the system implements classical
quorum consensus [6] and each get operation is guaranteed
to return cell values written by the preceding put with the
largest timestamp. If W + R < N , get operations may
return stale values but gets or puts (or both) may finish
more quickly because the coordinator need not wait for as
many acknowledgments from replicas. The system includes
mechanisms (not described here) that ensure that all updates
to a cell eventually reach every replica of that cell’s record,
despite failures. All updates are totally ordered according
to the application-specified timestamps supplied with put
operations, so all servers will agree on the ordering of updates
to each cell.



TICKET (base table)
Id Status AssignedTo Description

1 open rliu . . .
2 open kmsalem . . .
3 open kmsalem . . .
4 resolved rliu . . .
5 open cjin . . .
6 new . . .
7 resolved cjin . . .

ASSIGNEDTO (view)
AssignedTo Ticket Status

rliu 1 open
rliu 4 resolved

kmsalem 2 open
kmsalem 3 open

cjin 5 open
cjin 7 resolved

Fig. 1. Example of a Base Table and a View

III. VIEWS

A view is a table whose contents are determined by another
table, called the base table. In our system, all views are
materialized, replicated and stored like regular base tables.
Thus, we will use the terms “view” and “materialized view”
interchangeably.

Definition 1 (View)
A view V is defined by a base table name (B), a view-key
column name (cV ), and zero or more view-materialized column
names (c1, c2, . . .). For each base key kB such that B[kB , cV ] is
not NULL, there is a row in the view, with key kV equal to the
value of B[kB , cV ]. In that row, the following cells are defined:

• V [kV , B] has value kB and timestamp equal to that of
B[kB , cV ]

• for each view-materialized column ci, V [kV , ci] has the
same value and timestamp as B[kB , ci].

Figure 1 shows a simple example of base table and view.
The TICKET base table tracks requests for a help desk applica-
tion. Column Id is the key. ASSIGNEDTO is a view defined on
TICKETS. The AssignedTo column is the view key and the
Tickets column indicates the primary key of the base table
row that corresponds to each view row. Status is a view-
materialized column. The ticket Description field from the
base table is not materialized in the view.

In relational database terms, the views we consider in
this paper are single-table views that involve only relational
projection. That is, each view includes a subset of the columns
of a single base table. It would be easy to incorporate relational
selection, so that a view would include only those rows that
satisfy a selection condition. Furthermore, our approach could
be extended to support equi-join views in much the same
way as is done in PNUTS [3]. However, in this paper we

will restrict ourselves to the single-table projection views of
Definition 1.

Views are similar to base tables, and once a view has been
defined, it can be used by applications in much the same way
as a table. However, there are two differences between views
and base tables. First, views are not updateable: applications
are permitted to perform get operations on views, but not
put operations. Second, according to our definition, it is
possible for a view to have multiple rows with the same view
key. For example, in Figure 1, each view key occurs twice
in the view. Such rows will always be distinguishable by the
value of the base key column, e.g., the Ticket column in
the ASSIGNEDTO view. Since views can have multiple records
with the same view key, a get on a view returns a multi-set
of values for each requested column, one per view record that
matches the specified view key. For example, a get of the
Status column for key rliu in the view shown in Figure 1
will return {open,resolved}. In contrast, a get operation
on a base table returns a single value for each requested
column.

IV. VIEW MAINTENANCE AND CONSISTENCY

Since each view depends on a base table, each update to
a base table may require corresponding changes in any views
that depend on it. Since our views are materialized, we require
a means of updating, or maintaining, views in response to
base table updates. View maintenance can be synchronous or
asynchronous. With synchronous maintenance, a base table
update and the corresponding view update(s) occur as a single,
atomic operation, so that each view and its base table remain
mutually consistent at all times. In the case of asynchronous
update, the base table is updated first, and dependent views are
updated sometime later. In general, asynchronously updated
views will be stale with respect to their base tables.

Unfortunately, even if we were to provide synchronous
view maintenance, applications in our system cannot take
advantage of mutual consistency between a base table and
view. For example, consider an application that wants to
retrieve the descriptions of open tickets assigned to rliu
using the example database from Figure 1. The application
must first get from the ASSIGNEDTO view, using key rliu,
to learn that the Id of rliu’s only open ticket is 1. The
application can then get from the TICKET table, using key
1, to get the task’s Description. The problem is that
the application must perform two get operations to do this.
Even if every TICKET update propagates synchronously to
the ASSIGNEDTO view, the application cannot rule out the
possibility that TICKET will be updated in between its two
get operations. Such an update could, for example, delete
ticket 1, or change its assignment. Thus, the application cannot
be assured of mutual consistency between views and base
tables.

Synchronous view maintenance adds latency to put op-
erations on base tables, since view maintenance must be
completed before the put completes. Since clients cannot



take advantage of the mutual consistency that this extra la-
tency buys, our system instead implements asynchronous view
maintenance. Base table updates are propagated eventually to
views, and thus views are normally slightly stale. Applications
must be prepared for the possibility that a view will be
inconsistent with its base table. However, applications can
choose to reduce the impact of this problem by including
view-materialized columns in their view definitions. View-
materialized columns (such as the Status column in the
TICKET view) cause additional information from the base
table to be mirrored in the view, thus potentially allowing an
application to access only the view and avoid accessing the
base table. In our previous example, if the Description
column had been included in as a view-materialized column
in the TICKETS view, the application could have avoided its
second get operation, and thus could have avoided being
exposed to potential inconsistencies between the view and the
base table. Of course, the price of view-materialized columns
is additional space overhead for the views, and additional view
maintenance overhead when the value of the view-materialized
column is updated in the base table.

A. Incremental View Maintenance
To illustrate the challenges associated with incremental view

maintenance in our system, we will use two examples.

Example 1 (Propogating a Single Update)
Suppose that the base table and view from Figure 1 are as
shown, and a client application uses a put operation to change
the assignment of ticket 2 in the TICKETS table to rliu. This
ticket corresponds to a single row, with view key kmsalem,
in the ASSIGNEDTO view. To maintain the view in response to
this update, the key of this row in the view must be changed
from kmsalem to rliu. This can be done by deleting the
existing kmsalem row from the view and creating a new row
with key rliu and the same attributes as the original row.

Now, consider a second example involving concurrent up-
dates to the base table:

Example 2 (Concurrent Update Propagation)
Suppose that the base table and view are as shown in Figure 1
and that two clients attempt to update TICKETS concurrently.
The first client performs the update described in Example 1,
setting the assignment of ticket 2 to rliu. The second client
concurrently attempts to set the assignment of ticket 2 to cjin.
Furthermore, suppose that the second client’s update has a
larger timestamp. Thus, it is clear that both the base table and
the view should eventually agree that ticket 2 is assigned to
cjin. However, the correct actions to take when propagating
these two updates to the view depends on the order in which
they propagate. If the second client’s update propagates second,
the correct view maintenance action will be to delete the rliu
record from the view and insert a cjin record. If the second
client’s update propagates first, the correct view maintenance
action will be to delete the kmsalem record from the view
and insert a cjin record. The situation for propagating the first
client’s update is similar.

This second example illustrates the fundamental challenge
of view maintenance in our system: to maintain the view in
response to some change to a record in the base table, it is
necessary to know the view key of the corresponding record
in the view. However, it is difficult to determine the correct
view key, since that depends on which updates have already
been propagated.

One way to solve this problem is to ensure that updates
propagate to the view sequentially and in timestamp order.
Sequential, in-order propagation simplifies the task of deciding
how to propagate each update, since it is known exactly
which updates have already propagated and which have not.
Asynchronous incremental view maintenance in PNUTS [7]
follows this approach. Each record has a designated master
copy, which serializes updates to that record and propagates
updates to views in serialization order. We could implement
this approach in our system by, for example, designating one
copy of each base row as master, and making it responsible
for propagating all updates to that row. The designated master
would propagate updates sequentially in the order in which
they applied at that master copy. Although such an approach
would work, we have chosen to avoid it as it runs contrary
to the decentralized, multi-master behavior of the rest of the
system. Having a master copy for each row means that we
must also have some mechanism for choosing new master in
the event of master failure. While this is certainly possible,
such a mechanism is not needed anywhere else in our multi-
master system.

Instead, we propose an approach in which each update
coordinator is responsible for propagating the updates that
it coordinates. Since any server can coordinate updates, any
server can also propagate updates to views, and all such servers
propagate their updates independently and concurrently. With
this approach, there is no need for a designated master for
each row.

To illustrate the general idea behind our approach, we
consider Example 2 again. Suppose that the first client’s update
propagates first. To determine the view key of the record for
ticket 2, the first client’s coordinator will read the value of the
view key in the base table row before updating it, finding the
value kmsalem. It will then look for the corresponding row
in the ASSIGNEDTO using the key kmsalem and find the
corresponding record. The coordinator will change the view
key for this record to rliu as required to reflect its base
table update. However, in addition to this, the coordinator will
also insert a new record into the view with view key kmsalem
and one field which contains the new view key (rliu) which
replaced kmsalem. This extra row is called a stale row.

When the second client updates ticket 2’s assignment to
cjin in the base table, it will first read value of the view
key from the base table record, just as the first client did. It
will read either kmsalem (the original value of the view key)
or rliu, depending on whether its base table update occurs
before or after the first client’s. It will then use the view key
that it reads to look for the corresponding row to be updated in
the view. If it reads rliu, it will immediately find the correct



ASSIGNEDTO (view)
AssignedTo Id Status Next

rliu 1 open -
rliu 4 resolved -
rliu 2 - cjin

kmsalem 2 - rliu
kmsalem 3 open -

cjin 2 open -
cjin 5 open -
cjin 7 resolved -

Fig. 2. Example of a Versioned View. Stale rows are shown in italics.

record in the view. If it reads kmsalem, it will instead find
the stale row that was inserted by the first client. The stale
row, which contains the new view key (cjin), will allow the
second coordinator to locate the correct view record.

B. Versioned Views

In order to support incremental view maintenance, our
system stores versioned views. Versioned views contain stale
rows in addition to the current records of the view. Stale rows
are used during view maintenance to ensure that the proper
view records can be located and updated, as was illustrated in
the preceding example.

A versioned view contains all of the records defined for a
plain non-versioned views (Definition 1) - we refer to these
as the versioned view’s live rows. In addition, for each live
row, the versioned view contains zero or more stale rows. The
live rows represent the current state of the view. If the view
key of a row has been updated, there will be stale rows for
each of the old view keys. Each stale row contains a pointer
(a view key value) referring to a more recent view key for the
row. Each stale row’s pointer leads, directly or indirectly, to
its corresponding live row.

Figure 2 shows an example of a versioned view that could
result if the two updates described in Example 2 were applied
to the sample database shown in Figure 1. In versioned views,
the additional Next column is used in stale rows to hold the
pointer. In Figure 2, there are three rows that correspond to
the record for ticket 2 in the TICKETS base table. Two of
these rows are stale, and the third is the live row representing
the current state of the view after the propagation of the two
updates. In the example, the two Next pointers form a path
that links the stale rows to the live rows.

Stale rows in versioned views are used only to support view
maintenance. They are not visible to applications, which see
views as defined in Definition 1. When a client performs a
get operation on a view, any stale rows with view keys that
match the get operation’s search key are filtered out before
the result of the get is returned to the application.

C. Update Propagation

In this section we describe how base table updates are
propagated to versioned views. Because of space limitations,
we give only a high-level description of the approach. A more

detailed description of the propagation algorithms, along with
a proof of their correctness, can be found in the companion
technical report [4].

Algorithm 1: Base Table put with Update Propagation
Input: B: the base table name
Input: kB : the base key value
Input: c: base column to be updated
Input: vc: value to be written
Input: tc: update timestamp
Input: W : write quorum
Output: R: return status (success/failure)
// V is a view defined on B
// cV is the view key column for V

1 if c is the view key or a view-materialized column of V
then

// Get the view key for row kB
2 [kV , tkV

]← get(B[k, cV ],W );
// Perform the update of B

3 R← put(B[kB , c], vc, tc,W );
4 return R to the client;

// update propagation happens
asynchronously, after put has
returned to the client

5 PropagateUpdate(V, c, kB , kv, vc, tc);

6 else
7 R← Put(B[kB , c], vc, tc,W );

Each server in the system is responsible for propagating the
base table updates for which it acts as coordinator. Algorithm 1
shows how a coordinator performs a base table update. Before
performing the actual update, the coordinator obtains the
current value of the view key in the row being updated (line 2).
This will be used as the coordinator’s “guess” as to the row’s
current key in the view. The coordinator then updates the
base table. Although the get and put are shown as separate
operations in Algorithm 1, in practice they can be combined
into a single operation that the coordinator requests of all
replicas of row kB . Once the update has been acknowledged
to the client, the coordinator then performs view maintenance
(Line 5).

To propagate a base table update to the view (method
PropagateUpdate in Figure 1), the coordinator must first find
the live row in the the view that corresponds to row kB in the
base table. To do this, it first accesses row kV in the view.
If it finds the live row corresponding to kB , it proceeds to
update the view. This will involve either changing the value
of one attribute in the live row, or, if the view key has been
updated, inserting a new row into the view (with view key vc),
copying attribute values from the old row to the new one, and
marking the old row as stale by setting its Next pointer to
vc. If the coordinator does not find the live row at kV , it will
instead find a stale row. In this case, it uses a series of get
operations to follow the Next pointer from the stale row to



the live row corresponding to kB . Once it has found the live
row, it updates the view as just described.

In practice, there are several issues that complicate the
update propagation technique described in the previous para-
graph. One issue is that conflicting updates may not propagate
in their correct serialization order, which is determined by
the updates’ timestamps. However, the PropagateUpdate
can detect out-of-order updates the same way that they are
detected at the base table: each cell in the view contains the
timestamp of the latest update to that cell. An update with
an earlier timestamp than its target cell in the view is simply
ignored. A second issue is that multiple view updates may
propagate concurrently. In our decentralized system, in which
server propagates the base table updates that it coordinates,
there is no mechanism to ensure that view updates happen
sequentially. The detailed propagation algorithms presented in
the companion technical report are designed to work properly
even in the presence of concurrent updates.

Finally, there is the issue of garbage collection. Propagating
a base table update results in the creation of a new stale row in
the versioned view. A stale row remains potentially useful only
as long as its (stale) view key exists in at least one replica of
the corresponding row in the base table. If useless stale rows
are not deleted, the size of the versioned views will increase
without bound. Currently, we use a simple, time-based scheme
for garbage collection. It removes stale rows that are older
than a specified garbage collection threshold. By setting the
threshold conservatively, we can avoid garbage collecting stale
rows that are still potentially useful.

V. EVALUATION

The techniques proposed in this paper were prototyped
in Cassandra, an open-source multi-master replicated keyed-
record storage system originally contributed by Facebook.
Using the prototype, we conducted some simple experiments
intended to answer several questions:

1) Materialized views provide a means for applications to
access data using a secondary key. How does the perfor-
mance of secondary-key data access using a materialized
view compare to that of secondary-key access using
Cassandra’s native secondary indexing mechanism?

2) View maintenance introduces overhead when base ta-
bles are updated. How does the cost of maintaining
materialized views compare to the cost of maintaining
Cassandra’s native secondary indexes?

To address these questions, we ran experiments using a
small, 4 node instance of our Cassandra-based prototype. Each
node ran on a dedicated physical server with a 2.4GHz dual-
core AMD Opteron Processor, 8GB memory and a single
60GB disk, attached through a private 1 Gb network. An
additional, separate server was used for clients.

A. Read Performance

To measure read performance, we created a single column
family (table) in Cassandra and populated it with 1 million
rows, with a total size of about 1 GB - small enough to
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fit entirely in memory in our servers. We also defined a
materialized view on a secondary key attribute in this table.
Secondary key values were unique across the million rows of
the table. Both the table and the view were replicated 3 times
in our 4-server cluster, i.e., N = 3.

We wrote a simple client application that sequentially ac-
cesses randomly chosen records from the table, as quickly as
possible. The client can be configured to access data in one
of three ways

BT: The client accesses data from the base table, speci-
fying a primary key value for each record accessed.

SI: The client accesses data from the base table using
Cassandra’s native secondary indexing mechanism,
specifying a secondary key value for each record
accessed.

MV: The client accesses data from the materialized view,
specifying a secondary key value (a view key) for
each record accessed.

To measure read throughput, we varied the number of con-
current clients. The clients were run for a fixed amount of
time (5 minutes), and we measured the aggregate read request
rate across all of the clients during the run. To measure read
latency, we ran a single client until it had completed 100,000
requests and measuring the total time required.

Figure 3 shows the average latency for get (read) requests
under each of the three scenarios. Latencies for base table
(BT) and materialized view (MV) access were similar, and
about 3.5 times less than the latency of accessing the base table
through a secondary index (SI). Figure 4 presents the aggregate
read throughput we measured for each of the three types of
clients, as a function of the number of concurrent clients
of that type. Read throughput for materialized view access
(MV) is slightly lower than our baseline, which is base table
read throughput (BT). This is because view reading involves
reading and filtering out stale rows, in addition to retrieving
the desired live row. However, both BT and MV are much
less costly than secondary access using Cassandra’s native
secondary indexing mechanism. This is because Cassandra’s
secondary indexes are replicated and distributed by primary
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key, rather than secondary key. This makes it possible for
Cassandra to update the index synchronously when the base
table is updated. However, reads are relatively slow because
the target secondary key must be broadcast to all servers,
each of which must check for the record using its part of the
index. In summary, materialized views provide a lower latency,
higher throughput alternative to native secondary indexes for
secondary-key-based read access, although the data may be
stale.

B. Write Performance

To measure write performance, we ran similar experiments
except that the clients performed base table updates using the
record’s primary keys. We compared the performance of these
updates under three conditions:

BT: The base table has no materialized views or native
secondary indexes.

SI: The base table has a native secondary index defined
on the column updated by the client.

MV: The base table has a materialized view whose key is
the column updated by the client

In the SI and MV cases, each base table update requires view
or index maintenance.
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Figure 5 shows the average latency of put requests in
each of our three scenarios. Write latencies in the BT and
SI scenarios were similar. Native secondary indexes can be
updated quickly because they are partitioned and distributed
by primary key. Thus, each server that updates a copy of the
base table can also update its copy of index. Write latency in
the MV case was about 2.5 times higher. Although most view
maintenance activity is asynchronous and does not increase
write latency, our update propagation algorithm requires that
the updating server read the old value of the view key when a
base table record is updated. This accounts for the additional
write latency. As noted in Section IV-C, it may be possible to
eliminate some or all of this additional latency by combining
the put and get operations of Algorithm 1, but our prototype
does not do so.

Figure 6 shows the aggregate write throughput we measured
in each of the three scenarios, as a function of the number of
concurrent clients of that type. Both SI and MV have lower
throughput than BT because of the additional costs imposed
by view or index maintenance. This experiment represents a
best case for the update throughput of MV, because updates
were randomly and uniformly distributed over the base table
records. As a result, the stale record chains that need to be
traversed to find a live view record to update are usually
short. However, update chains can grow longer, and update
performance can grow corresponding worse for MV, if the
update pattern is highly skewed, so that some records are
updated very frequently. The extended version of this paper [4]
includes and experiment that illustrates the effect of highly
skewed updates on write performance.

VI. RELATED WORK

Materialized views for relational database systems have
received considerable attention in the database research com-
munity [8], [9], [10], [11], [12] and they are widely imple-
mented [13], [14], [15]. In relational systems, views can be
defined using relational queries - a much richer class of views
than the simple single-table views we consider in this paper.
This gives rise to a variety of view maintenance issues that



do not arise in our work, or arise in a very simple form. In
relational systems, views may be maintained synchronously
or asynchronously [11], [16], [12]. However, in either case
updates are normally applied to the views in transaction
serialization order. In contrast, we consider a scenario in which
updates may be propagated concurrently and out of order, but
for a much simpler class of views.

Materialized views also play a role in data warehousing,
where a view may be materialized in a different database
system than its the base relations. Several algorithms have
been proposed to reduce the cost of updating such views
in situations in which the base relations must be queried in
order to update the view [17], [18], [19]. Such situations do
not arise in our work because of the simplicity of our self-
maintainable [20] single-table views.

Materialized views are also widely used, in an ad hoc,
application-managed manner, by applications running on
keyed-record stores. However, most keyed-record stores do
not yet support materialized views. One exception is PNUTS,
a replicated key-value record store. PNUTS implements a
more general class of materialized views than that used in
this work, and it can perform asynchronous incremental view
maintenance [7]. The views that we consider in this paper
correspond to what PNUTS calls Remote View Tables (RVTs),
since view records may be located on different servers than
the base records on which they depend. However, there is a
single master copy of each record in PNUTS, and PNUTS
relies on this to serialize updates and to ensure that updates
are propagated sequentially and in the correct order when it
maintains RVTs.

VII. CONCLUSION

In this paper we have considered the problem of provid-
ing simple, single-table materialized views in a multi-master
keyed-record storage system. Such views are useful because
they provide applications with a means of accessing stored
records, or parts of stored records, using a secondary key rather
than the primary key.

We have presented a technique for asynchronous, incre-
mental maintenance of such single-table views. Our technique
is decentralized, meaning that many servers can propagate
updates concurrently, and they need not be propagated in
serialization order. We prototyped this technique in Cassandra
and used the prototype to evaluate its performance. Our experi-
ments show that materialized views can be used to provide fast
access to data by secondary key - almost as fast as access using
a primary key, and significantly faster than secondary key
access using Cassandra’s native secondary indexing. However,
views may be stale because they are updated asynchronously,
and view maintenance introduces a significant overhead when
the base table is updated. Thus, our technique is probably best-

suited to views for which the underlying base data (especially
the view keys) are updated infrequently.
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