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Abstract

Cloud computing is an increasingly popular paradigm for accessing computing resources. A popular

class of computing clouds is Infrastructure as a Service (IaaS) clouds, exemplified by Amazon’s Elastic

Computing Cloud (EC2). In these clouds, users are given access to virtual machines on which they can

install and run arbitrary software, including database systems. Users can also deploy database appli-

ances on these clouds, which are virtual machines with pre-installed pre-configured database systems.

Deploying database appliances on IaaS clouds and performance tuning and optimization in this environ-

ment introduce some interesting research challenges. In this paper, we present some of these challenges,

and we outline the tools and techniques required to address them. We present an end-to-end solution to

one tuning problem in this environment, namely partitioning the CPU capacity of a physical machine

among multiple database appliances running on this machine. We also outline possible future research

directions in this area.

1 Introduction

Cloud computing has emerged as a powerful and cost-effective paradigm for provisioning computing power

to users. In the cloud computing paradigm, users use an intranet or the Internet to access a shared computing

cloud that consists of a large number (thousands or tens of thousands) of interconnected machines organized as

one or more clusters. This provides significant benefits both to providers of computing power and to users of

this computing power. For providers of computing power, the push to cloud computing is driven by economies

of scale. By operating massive clusters in specially designed and carefully located data centers, providers can

reduce administrative and operating costs, such as the costs of power and cooling [15, 16]. In addition, the

per-unit costs of hardware, software and networking become significantly cheaper at this scale [4]. For users,

cloud computing offers simple and flexible resource provisioning without up-front equipment and set up costs

and on-going administrative and maintenance burdens. Users can run software in the cloud, and they can grow

and shrink the computing power available to this software in response to growing and shrinking load [4].

There are different flavors of cloud computing, depending on how much flexibility the user has to customize

the software running in the cloud. In this paper, we focus on computing clouds where the user sees a bare-

bones machine with just an operating system and gets full flexibility in installing and configuring software on

this machine. These clouds are known as Infrastructure as a Service (IaaS) clouds. A very prominent example
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of this type of cloud is Amazon’s Elastic Computing Cloud (EC2) [2], which enables users to rent computing

power from Amazon to run their software. Other providers of this style of cloud computing include GoGrid [13]

and AppNexus [3]. Additionally, many organizations are building IaaS clouds for their internal use [6, 22].

In IaaS clouds, users are typically given access to virtual machines (VMs) [5, 23] on which they can install

and run software. These virtual machines are created and managed by a virtual machine monitor (VMM) which

is a layer of software between the operating system and the physical machine. The VMM controls the resources

of the physical machine, and can create multiple VMs that share these physical machine resources. The VMs

have independent operating systems running independent applications, and are isolated from each other by the

VMM. The VMM controls the allocation of physical machine resources to the different VMs. The VMM also

provides functionality such as saving and restoring the image of a running VM, or migrating VMs between

physical machines.

A common model for deploying software in virtual machine environments is the virtual appliance model.

A virtual appliance is a VM image with a pre-installed pre-configured application. Deploying the application

simply requires copying this VM image to a physical machine, starting the VM, and performing any required

configuration tasks. The cost of installing and configuring the application on the VM is incurred once, when the

appliance is created, and does not need to be incurred again by users of the appliance. A database appliance

is a virtual appliance where the installed application is a database system. With the increasing popularity of

virtualization and cloud computing, we can expect that a common way of providing database services in the

future will be through database appliances deployed in IaaS clouds. As an example of this deployment mode,

Amazon offers MySQL, Oracle, and Microsoft SQL Server virtual appliances for deployment in its EC2 cloud.

An important question to ask is how to get the best database system performance in this environment. Cloud

providers are interested in two related performance objectives: maximizing the utilization of cloud resources

and minimizing the resources required to satisfy user demand. Users are interested in minimizing application

response time or maximizing application throughput. Deploying database appliances in the cloud and tuning the

database and virtualization parameters to optimize performance introduces some interesting research challenges.

In this paper, we outline some of these challenges (Section 2), and we present the different tools and techniques

required to address them (Section 3). We present our work on partitioning CPU capacity among database

appliances as an example end-to-end tuning solution for virtualized environments (Section 4). We conclude by

outlining some possible future research directions in this area (Section 5).

2 Deployment and Tuning Challenges

Our focus is on deploying and tuning virtual machines running database systems (i.e., database appliances) on

large clusters of physical machines (i.e., computing clouds). This raises deployment and computing challenges,

which we describe next.

2.1 Deployment Challenges

Creating a database appliance that can easily be deployed in a cloud, and obtaining an accessible, usable database

instance from this appliance require addressing many issues related to deployment. These issues are not the

research focus of our work, but we present them here since these seemingly simple and mundane tasks can be

very tricky and time consuming. These issues include:

Localization:

When we start a VM from a copy of a database appliance, we need to give this new VM and the database system

running on it a distinct “identity.” We refer to this process as localization. For example, we need to give the

VM a MAC address, an IP address, and a host name. We also need to adapt (or localize) the database instance

running on this VM to the VM’s new identity. For example, some database systems require every database
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instance to have a unique name, which is sometimes based on the host name or IP address. The VMM and the

underlying operating system and networking infrastructure may help with issues such as assigning IP addresses,

but there is typically little support for localizing the database instance. The specific localization required varies

from database system to database system, which increases the effort required for creating database appliances.

Routing:

In addition to giving every VM and database instance a distinct identity, we must be able to route application

requests to the VM and database instance. This includes the IP-level routing of packets to the VM, but it also

includes making sure that database requests are routed to the correct port and not blocked by any firewall, that

the display is routed back to the client console if needed, that I/O requests are routed to the correct virtual storage

device if the “compute” machines of the IaaS cloud are different from the storage machines, and so on.

Authentication:

The VM must be aware of the credentials of all clients that need to connect to it, independent of where it is run

in the cloud.

2.2 Tuning Challenges

Next, we turn our attention to the challenges related to tuning the parameters of the virtualization environment

and the database appliance to achieve the desired performance objectives. These are the primary focus of our

research work, and they include:

Placement:

Virtualization allows the cloud provider to run a user’s VM on any available physical machine. The mapping

of virtual machines to physical machines can have a significant impact on performance. One simple problem

is to decide how many virtual machines to run on each physical machine. The cloud provider would like to

minimize the number of physical machines used, but running more VMs on a physical machine degrades the

performance of these VMs. It is important to balance these conflicting objectives: minimizing the number of

physical machines used while maintaining acceptable performance for users.

A more sophisticated mapping of virtual machines to physical machines could consider not only the number

of VMs per physical machine, but also the resource requirements of these VMs. The placement algorithm

could, for example, avoid mapping multiple I/O intensive VMs to the same physical machine to minimize I/O

interference between these VMs. This type of mapping requires understanding the resource usage characteristics

of the application running in the VM, which may be easier to do for database systems than for other types of

applications since database systems have a highly stylized and often predictable resource usage pattern.

Resource Partitioning:

Another tuning challenge is to decide how to partition the resources of each physical machine among the virtual

machines that are running on it. Most VMMs provide tools or APIs for controlling the way that physical

resources are allocated. For example VMM scheduling parameters can be used to apportion the total physical

CPU capacity among the VMs, or to control how virtual CPUs are mapped to physical CPUs. Other VMM

parameters can be used to control the amount of physical memory that is available to each VM. To obtain the

best performance, it is useful to take into account the characteristics of the application running in the VM so that

we can allocate resources where they will provide the maximum benefit. Database systems can benefit from this

application-informed resource partitioning, as we will show in Section 4.

Service Level Objectives:

To optimize the performance of a database appliance in a cloud environment, it is helpful to be able to ex-

press different service level objectives. The high-level tuning goal is to minimize the cloud resources required

while maintaining adequate performance for the database appliance. Expressing this notion of “adequate per-

formance” is not a trivial task. A database system is typically part of a multi-layer software stack that is used to
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serve application requests. Service level agreements are typically expressed in terms of end-to-end application

performance, with no indication of how much of this performance budget is available to the database system vs.

how much is available to other layers of the software stack (e.g., the application server and the web server). De-

riving the performance budget that is available to the database system for a given application request is not easy,

since an application request can result in a varying number of database requests, and these database requests can

vary greatly in complexity depending on the SQL statements being executed. Tuning in a cloud environment

therefore requires developing practical and intuitive ways of expressing database service level objectives. Differ-

ent workloads can have different service level objectives, and the tuning algorithms need to take these different

service level objectives into account.

Dynamically Varying Workloads:

Tuning the performance of a database appliance (e.g., placement and resource partitioning) requires knowledge

of the appliance’s workload. The workload can simply be the full set of SQL statements that execute at the appli-

ance. However, it is an interesting question whether there can be a more succinct but still useful representation

of the workload. Another interesting question is whether some tuning decisions can be made without knowledge

of the SQL statements (e.g., if this is a new database instance). It is also important to detect when the nature of

the workload has changed, possibly by classifying the workload [11] and detecting when the workload class has

changed. The tuning algorithms need to be able to deal with dynamically changing workloads that have different

service level objectives.

3 Tools and Techniques

Next, we turn our attention to the tools and techniques that are needed to address the tuning challenges outlined

above. These include:

Performance Models:

Predicting the effect of different tuning actions on the performance of a database appliance is an essential com-

ponent of any tuning solution. This requires developing accurate and efficient performance models for database

systems in virtualized environments. There are two general classes of models: white box models, which are

based on internal knowledge of the database system, and black box models, which are typically statistical mod-

els based on external, empirical observations of the database system’s performance.

White box modeling is especially attractive for database systems for two reasons. First, database systems

have a stylized and constrained interface for user requests: they accept and execute SQL statements. This

simplifies defining the inputs to the performance model. Second, and more importantly, database systems already

have highly refined internal models of performance. One way to build a white box model is to expose these

internal models to the tuning algorithm and adapt them to the tuning task at hand. For example, the query

optimizer cost model, which has been used extensively as a what-if cost model for automatic physical database

design [7], can be used to quantify the effect of allocating different shares of physical resources to a database

appliance (see the next section for more details). Self-managing database systems have other internal models that

can be exposed for use in performance tuning in a cloud environment. These include the memory consumption

model used by a self-tuning memory manager [8, 21] or the model used for automatic diagnosis of performance

problems [10].

The disadvantage of white box modeling is that the required performance models do not always exist in the

database system, and developing white box models from scratch is difficult and time consuming. Even when

internal models do exist in the database system, these models are sometimes not calibrated to accurately pro-

vide the required performance metric, and they sometimes make simplifying assumptions that ignore important

aspects of the problem. For example, the query optimizer cost model is designed primarily to compare query

execution plans, not to accurately estimate resource consumption. This cost model focuses on one query at a
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time, ignoring the sometimes significant effect of concurrently running interacting queries [1]. Because of these

shortcomings of white box modeling, it is sometimes desirable to build black box models of performance by

fitting statistical models to the observed results of performance experiments [1]. When building these models

it is important to carefully decide which performance experiments to conduct to collect samples for the model,

since these experiments can be costly and they have a considerable impact on model accuracy [18]. However,

the illusion of infinite computing resources provided by IaaS clouds can actually simplify black box experimen-

tal modeling of database systems, since we can now easily provision as many machines as we need to run the

performance experiments required for building an accurate model.

An interesting research question is whether it is possible to combine the best features of black box and white

box modeling, by using the internal models of the database system as a starting point, but then refining these

models based on experimental observations [12].

Optimization and Control Algorithms:

Solving the performance tuning problems of a cloud environment requires developing combinatorial optimiza-

tion or automatic control algorithms that use the performance models described above to decide on the best

tuning action. These algorithms can be static algorithms that assume a fixed workload, or they can be dynamic

algorithms that adapt to changing workloads. The algorithms can simply have as a goal the best-effort maximiza-

tion of performance [20], or they can aim to satisfy different service level objectives for different workloads [17].

Tools for System Administrators:

In addition to the models and algorithms described above, system administrators need tools for deploying and

tuning database appliances. These tools should expose not only the performance characteristics of the VM, but

also the performance characteristics of the database system running on this VM. For example, it would be useful

to expose the what-if performance models of the database system to system administrators so that they can make

informed tuning decisions, diagnose performance problems, or refine the recommendations of automatic tuning

algorithms.

Co-tuning and Hint Passing:

The focus of the previous discussion has been on tuning virtual machine parameters. It is also important to tune

the parameters of the database system running on this virtual machine. For example, if we decide to decrease

the memory available to a VM running a database system, we need to decrease the sizes of the different memory

pools of this database system. This co-tuning of VM and database system parameters is important to ensure

that the tuning actions at one layer are coordinated with the tuning action at the other layer. Another way to

coordinate VM tuning with database system tuning is to pass hints that can be used for tuning from the database

system to the virtualization layer. These hints would contain information that is easy to obtain for the database

system and useful for tuning at the virtualization layer. For example, these hints could be used to ensure that

VM disks storing database objects (i.e., tables or indexes) that are accessed together are not mapped to the same

physical disk. Information about which objects are accessed together is easily available to the database system

and very useful to the virtualization layer.

4 Virtual Machine Configuration

In this section, we consider the following tuning problem: Given N virtual machines that share one physical

machine, with each VM running an independent database system instance, how can we optimally partition the

available CPU capacity of the physical machine among the virtual machines? Recall that the VMM provides

mechanisms for deciding how much CPU capacity is allocated to each VM. We outline a solution to this resource

partitioning problem below. Full details of our solution can be found in [19, 20].

We decide the partitioning of the available CPU capacity of the physical machine among the N virtual

machines with the goal of maximizing the aggregate throughput of the N workloads (or minimizing their total
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completion time). This is a best-effort performance goal that does not consider explicit service level objectives

for the different workloads.

The benefit that each database system will obtain from an increase in CPU allocation depends on that sys-

tem’s workload. We assume that we are given the set of SQL statements that make up the workload of each

of the N database systems. These workloads represent the SQL statements executed by the different database

systems in the same time interval, so the number of statements in a workload corresponds to its intensity (i.e., the

rate of arrival of SQL statements). We assume that the workloads are fixed, and we do not deal with dynamically

varying workloads.

To determine the best CPU partitioning, we need a model of the performance of a database workload as

a function of the CPU capacity allocated to the VM running this workload. In our solution, we use the cost

model of the database system’s query optimizer as a what-if model to predict performance under different CPU

allocations. This requires the query optimizer cost model to be aware of the effect of changing CPU capacity

on performance. The cost model relies on one or more modeling parameters to describe CPU capacity and

estimate the CPU cost of a query. We use different values of these CPU modeling parameters for different CPU

allocations, thereby adding awareness of CPU allocation to the query optimizer cost model. We call such a cost

model virtualization aware. The calibration procedure required to determine the values of the CPU modeling

parameters to use for each CPU allocation is performed only once for every database system and physical

machine configuration, and can be used for any workload that runs on this database system.

We use the virtualization aware cost models of the N database systems on the N VMs in a greedy search

algorithm to determine the best partitioning of CPU capacity among the VMs. We also provide heuristics for

refining the cost models based on comparing estimated performance to actual observed performance. We apply

these refinement heuristics periodically, and we obtain a new partitioning of CPU capacity after each refinement

of the cost model.

To illustrate the effectiveness of our approach, consider the following example (Figure 1). Using the Xen

VMM [5] we created two virtual machines, each running an instance of PostgreSQL. We ran both VMs on the

same physical machine, a Sun server with two 2.2GHz dual core AMD Opteron Model 275 x64 processors

and 8GB memory, running SUSE Linux 10.1. For this example, we used a TPC-H database with scale factor

1. On one PostgreSQL instance we ran a workload consisting of three instances of TPC-H query Q4. On the

other instance, we ran a workload consisting of nine instances of TPC-H query Q13. First, we allocated 50%

of the available CPU capacity to each of the two virtual machines, ran the two workloads, and measured the

total execution time of each workload. The results are illustrated by the bars on the left for each of the two

workloads in Figure 1. Next, we repeated the experiment, but this time we allocated CPU capacity according

to the recommendations of our CPU partitioning algorithm. The algorithm recommended giving 25% of the

available CPU capacity to the first PostgreSQL instance (Workload 1) and the remaining 75% to the second

instance (Workload 2). The execution times of the two workloads under this CPU allocation are shown in

Figure 1 by the bars on the right for each of the two workloads. This change in CPU allocation reduces the

execution time of the second workload by approximately 30%, while having little impact on the first workload.

Thus, we can see the importance of correctly partitioning CPU capacity and the effectiveness of our approach to

solving this problem.

5 Future Directions

The previous section illustrates a simple performance tuning problem in a cloud computing environment and its

solution. Extending the research outlined in the previous section opens up many possibilities for future work,

which we are exploring in our ongoing research activities. Instead of partitioning the resources of one physical

machine among the VMs, we can consider multiple physical machines and partition their resources among the

VMs, that is, decide which physical machine to use for each VM and what share of this machine’s resources are
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Figure 1: Effect of varying CPU allocation on workload performance.

allocated to the VM. We can also extend the work to deal with dynamically varying workloads, possibly with

different explicit service level objectives. Another interesting research direction is improving the way we refine

the query-optimizer-based cost model in response to observed performance.

Another interesting research direction is optimizing the allocation of I/O resources to different VMs. Some

VMMs, such as VMWare ESX server [23], provide mechanisms for controlling how much of the I/O bandwidth

of a physical machine is allocated to each VM running on this machine. Another mechanism to control the

allocation of I/O resources to VMs is controlling the mapping of VM disks to physical disks. Using these two

mechanisms to optimize the performance of database appliances is an interesting research direction, especially

since many database workloads are I/O bound.

It would also be interesting to explore whether we can expose internal database system models other than

the query optimizer cost model and use these models for tuning VM parameters or co-tuning VM and database

system parameters. For example, the memory manager performance model can be used to control memory

allocation.

The cloud environment also offers new opportunities, beyond the challenges of tuning database appliances.

For example, since we can provision VMs on-demand, it would be interesting to explore the possibility of scaling

out a database system to handle spikes in the workload by starting new replicas of this database system on newly

provisioned VMs. This requires ensuring consistent access to the database during and after the replication

process, coordinating request routing to the old and new VMs, and developing policies for when to provision

and de-provision new replicas.

Finally, this idea of application-informed tuning of the virtualized environment is not restricted to database

systems. This idea can be used for other types of applications that run in a cloud environment, such as large

scale data analysis programs running on Map-Reduce style platforms [9, 14].

6 Conclusion

As cloud computing becomes more popular as a resource provisioning paradigm, we will increasingly see

database systems being deployed as virtual appliances on Infrastructure as a Service (IaaS) clouds such as

Amazon’s EC2. In this paper, we outlined some of the challenges associated with deploying these appliances

and tuning their performance, and we discussed the tools and techniques required to address these challenges.

We presented an end-to-end solution to one tuning problem, namely partitioning the CPU capacity of a physical

machine among the database appliances running on this machine. We also described some future directions

for this research area. It is our belief that the style of application-informed tuning described in this paper can

provide significant benefits to both providers and users of cloud computing.
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