
1

Latency Amplification: Characterizing the Impact of
Web Page Content on Load Times

Cătălin Avram, Kenneth Salem, Bernard Wong
Cheriton School of Computer Science, University of Waterloo

Abstract—Web users like sites that load quickly. Longer web
page load times translate to reduced user satisfaction and loss of
revenue and mindshare. The time required to load a given web
page is difficult to predict because it is a complex function of
many factors, such as the latencies associated with the network
requests used to retrieve that content from remote servers.
However, one of the most important factors is the page content,
including the scripts, images, style sheets and other objects that
are present on the page. In this paper we propose a simple
metric for characterizing the content of a web page in terms
of its impact on page loading times. This metric, called the
latency amplification factor (LAF), characterizes the content of
a web page in terms of how it affects the page load time. The
LAF of a web page can be estimated quickly and easily, and
we describe a lightweight method for doing so. In addition, we
propose an extended version of the basic LAF metric, called
CLAF, that relates page load time to underlying request latencies
in the presence of content delivery networks. We estimated LAFs
for a variety of popular web sites, and found that they varied
substantially. To validate our approach for estimating LAFs, we
compared estimated LAFs against measured LAFs and found
that our methodology, though simple, gave reasonably accurate
estimates.

Keywords-performance modeling, network latency, web appli-
cation performance.

I. INTRODUCTION

The web has, in recent years, become the dominant platform
for deploying large-scale applications. The shift from a mostly
static information distribution medium to an application plat-
form has led to significantly more complex web pages, which
in turn has increased page load time. Several recent studies [1],
[2] have found that even a small increase in web page load
times can substantially increase the likelihood that a customer
would switch to a competing service or store. Therefore, it
is critically important for web-based companies to understand
what contributes to page load time.

Factors that affect page load times include the HTML and
JavaScript processing time within the browser, as well as the
network latency between clients and servers. These factors are
amplified by the need of complex web pages to load tens
or hundreds of objects from multiple servers. These objects
may include scripts, style sheets, images, and other types of
content. Furthermore, the structure of modern web pages often
introduces object loading dependencies, where certain objects
are only retrieved after another object has been retrieved and,
if the object is HTML or JavaScript, parsed and/or executed.
Because of this amplification, a user with high network latency
to the web server may experience orders of magnitude worse
page load times than a user with low network latency.

Given the importance of page load times to user satisfaction
and the strong impact of web page content on load times, it is
important to understand exactly how web page content affects
page load time. In this paper, we take a step in this direction by
proposing a simple content metric - a means of characterizing
the content of a web page and the impact of that content on
page load times. One possible approach to this task would be
to use some kind of “syntactic” metric, such as a count of the
number of component objects on the page. However, since our
real interest lies in the effect of page content on the page load
time, the metric that we propose - which we call the latency
amplification factor (LAF), is behavioral rather than syntactic.

The LAF for a web page can be interpreted as the answer
to a simple hypothetical question: if the individual request
latencies between the client and the servers that hold the web
page content were to increase by a constant factor, by what
factor would the total load time for the web page increase? In
other words, the LAF of a page is a measure of the sensitivity
of a page’s load time to changes in underlying request latencies
for the objects on that page. A simple, small, plain HTML page
that does not have any component objects would have a LAF
of 1. More complex pages, with many interdependent objects,
will have higher LAFs. A key feature of this metric is that it
is simple and easy to compute.

This paper makes several contributions. First, we introduce
the LAF metric, which captures the relationship between
network latency and web page load time as a single number.
Second, we present a lightweight methodology for estimating
the LAF for a given web page using a page retrieval log
that can be generated by any modern browser. Third, we
estimate the LAFs of a selection of popular websites, and
compare them to the actual increase in page load time from
injecting a controlled amount of synthetic latency between
the downloading client and the content servers. Finally, we
consider an extended version of the LAF metric, which we
refer to as core LAF, or CLAF. This metric distinguishes
objects retrieved from content delivery networks (CDNs) from
those fetched from non-CDN, or core, servers. By comparing
a page’s LAF and CLAF, we can characterize how effective
the CDN is at reducing the page’s load time.

II. WEB LATENCY

Modern web pages are rich and complex. Each HTML,
JavaScript, and CSS object on a website may reference many
other objects. Thus, a browser loading a web page will have to
issue many server requests to retrieve those objects. Further-
more, the presence of inter-object references, or dependencies,



2

means that the browser must retrieve and parse the parent
object, at least partially, before it can determine the objects
that the parent refers to and issue requests for those objects.

We will use a very simple example web page to illustrate
this process. The web page displays a single user-clickable
button over a background image. As the button is clicked by
the user, the background rotates through a sequence of three
possible images.

Loading a web page generally begins with the user initiating
a page load by clicking a link or manually entering an
URL. The browser then retrieves the requested web page.
In this example, the user requests the page http://www.
example.com/example.html, the contents of which are shown
in Figure 1. We will assume that browser has previously
resolved the example.com domain name, and can imme-
diately fetch the requested web page from the remote server.
Once the user’s browser downloads and parses the root object
(example.html), it will be able to identify references to a
CSS stylesheet and two different script files.

<html lang="en">
<head>
<link rel="stylesheet" href="example.css"/>
<script src="//code.jquery.com/jquery.js"/>
<script src="example.js"/>

</head>
<body>
<button>Change Background</button>

</body>
</html>

Fig. 1. example.html: A simple web page with a single button.

The stylesheet (example.css) is shown in Figure 2. It is
responsible for loading a background image for the web page.
The stylesheet is dependent on an image file (fruit.jpg),
which the browser must retrieve by issuing another asyn-
chronous request. This example also illustrates that the various
objects on which the root page (example.html) may come
from a variety of different servers.

body {
background-image:url(’http://pics.com/fruit.jpg’);
background-repeat:no-repeat;

}

Fig. 2. example.css: A stylesheet specifying the background image.

As for the script files: The first (jQuery) is a well known
JavaScript library that is used by many website developers.
The second, example.js (not shown), attaches an event
listener to the button on the page so that clicking the button
will cause the background image to change.

In this paper, we are primarily interested in the load time
of a web page. We define this to include the time to load the
root web page as well as any additional objects on which
the root object depends, either directly or indirectly. It is
not uncommon for complex web pages to request additional
objects after the page load time. This may occur, for example,
in response to additional user actions (like clicking the button
in our example web page), or timers in background scripts.
Nevertheless, we consider a web page’s load time to be the
time from the initial user request for the root page until
the time when all of its dependent objects have been fully

retrieved, as the page is fully ready to use by the user once
this occurs.

III. LATENCY EXPANSION

Our objective is to arrive at a metric to characterize the
content of a web page in terms of its effect on the page’s
loading time. Previous work, such as WebProphet [3], has
focused on building models that can predict the absolute load
time for a web page, taking the page content (and many other
factors) into account. In contrast to such relatively complex
models, our characterization cannot, by itself, be used to
predict absolute page load times. Rather, we characterize web
page content by considering how much the page structure
magnifies the request latencies of the individual components
that make up the page. As described in Section I, we call this
the latency amplification factor (LAF) for the page.

The following simple thought experiment gives some intu-
ition for the LAF. Suppose that a browser loads a web page
P , and the load time for P is tP (0) Now suppose that the
browser loads the same page again, but this time the retrieval
latency for every component of the page is increased by a
constant amount α. Suppose that the measured page load time
for this second experiment is tp(α). The latency amplification
factor (LAF) for P is:

tP (α)− tP (0)
α

(1)

The numerator in this expression (tP (α) − tp(0)) indicates
the amount by which the page load time increased, while the
denominator (α) indicates the amount by which the component
latencies increased. For a simple web page with a single
component, the latency amplification factor will be 1. For more
complex pages that contain multiple dependent components,
we expect to see amplification factors greater than one. The
larger the LAF for page P , the more a change in underlying
latency will affect the page load time experienced by the user.

In order to estimate a page’s LAF we need to extract
and then analyze its dependency graph which represents the
structure of the page contents, i.e., its components, and the
relationships among those components.

A. Dependency Graph
As was illustrated by the example in Section II, loading

a web page involves loading multiple objects, potentially
from multiple servers. Modern browsers load multiple objects
concurrently and asynchronously, however resource limits and
browser settings, such as the maximum number of threads per
page load, place restrictions on this process. More importantly,
the structure of the web page content itself may fundamentally
limit the amount of concurrency.

We use a dependency graph to represent the structural
dependencies of a given web page. A page’s dependency
graph contains one node for each retrievable object referred
to, either directly or indirectly, by the given page. There is a
directed edge V1 → V2 in the dependency graph if the object
V1 refers to the object V2. Dependency graphs are rooted
directed graphs, with the root node representing the web page
which the dependency graph represents. Figure 3 illustrates
the dependency graph for our example in section II.



3

 

example.com
/example.html

(322 bytes)

code.jquery.com
/jquery.js

(267,395 bytes)

example.com
/example.css
(115 bytes)

pics.com
/fruit.jpg

(2,021,452 bytes)

example.com
/example.js
(307 bytes)

Fig. 3. Dependency Graph for example.html from Section II

B. Producing Dependency Graphs

A number of different techniques can be used to generate a
dependency graph for a given web page. One option, which we
will refer to as the white box approach, is to analyze the web
page content, along with the content of any dependent objects,
to extract object references. This approach will correctly
identify static references to objects. However, it requires the
ability to parse and extract object references from all types
of commonly used web objects. In our simple example, a
white box approach must be able to parse HTML, JavaScript,
and CSS objects. The main disadvantage of this approach
is that, since it is based on static analysis, it will fail to
detect dynamically-generated object references, which is very
common especially within JavaScript objects.

Li et al [3] propose a black box approach, embodied in their
WebProphet system, to generate a dependency graph similar
to the graph that we use. WebProphet builds the dependency
graph for a page by inspecting a log of object retrievals
generated by the browser as it loads the page. Each log entry
identifies a retrieved object, and provides some information
about the timing of the retrieval, such as the retrieval request
time and the request response time. To infer dependencies
among the objects, WebProphet retrieves the page multiple
times. On each retrieval, WebProphet uses a proxy-based
technique to add artificial latency to the retrieval time of a
target object from the trace. WebProphet then identifies other
objects (in addition to the target) whose retrieval times are
delayed, and infers that they are dependent on the target.

For our work, we instead use a lightweight black box
approach to construct the dependency graph for a page. Like
WebProphet, we use a browser to retrieve the web page for
which we wish to construct the dependency graph, and then
inspect the browser-generated request log. The log contains
one entry for each object retrieved, with each entry containing
the following information:

• The object’s URL and total size in bytes.
• The request time, i.e., the time at which the request for

the object was sent by the browser.
• The wait delay, which is the interval between the request

time and the receipt of the first byte of the object.
In particular, we use logs in the standard HTTP Archive
(HAR) [4] format, which contains the necessary information
and can be generated natively by modern browsers such as
Chrome and Firefox.

We create dependency graphs with one node for each object
referred to in the log, annotating each node with the object’s
size and site (extracted from the URL). We assume that object
V2 is dependent on object V1, and create the corresponding
directed edge from V1 to V2 in the graph, if and only if V2’s
request time is after the end of the wait delay for V1.

Clearly, this simple method of creating the dependency
graph will identify all actual dependencies, both static and
dynamic. However, it will also identify false dependencies, i.e.,
dependencies that do not reflect the structure of the web page.
For example, an edge from V1 to V2 may exist in the graph
simply because object V2 was loaded after object V1, and not
because of an actual structural dependency between V1 and V2.
On the other hand, this lightweight approach is considerably
simpler than the black box approach used by WebProphet and
does not require multiple page retrieval iterations.

C. Estimating the LAF

Latency amplification occurs because the browser must
make multiple sequential round trips to retrieve objects. If the
browser must make k network round trips to some site to
retrieve content and the request latency for that site increases
by an amount α, then the time the browser requires to retrieve
all data from that site will increase by a factor kα - an
amplification by k of change in request latency. Thus, to
estimate a LAF from a dependency graph, we want to estimate
how many sequential round trips are implied by that graph.

A very basic way to estimate the number of round trips
implied by a dependency graph is to assume that any objects
that can be retrieved concurrently will be retrieved concur-
rently. Furthermore, as a starting point we can assume that
retrieving each object in the graph involves one network round
trip. Under these simplifying assumptions, if there is a path
of length k from root to leaf in the graph then the client will
require at least k sequential round trips. Since the client is
assumed to retrieve the objects along different paths in parallel,
the LAF (the number of sequential round trips) would be the
length of longest root-to-leaf path in the dependency graph.

Although this basic approach would give a simple approx-
imation of the LAF, it fails to take into account a variety of
relevant factors, such as the sizes of the objects, the properties
of the TCP connections over which the object requests are
issued, and the behavior of modern browsers. To estimate the
LAF from the dependency graph, we therefore enhance the
basic procedure to take the following factors into account:

Object Size: The number of network packets required to
retrieve an object depends on the object’s size.
TCP Characteristics: The number of round trips required to
retrieve an object depends on the TCP window size, which is
governed by TCP’s congestion protocol. Additionally, there is
a fixed overhead associated with the TCP handshake required
to establish a connection.
Connection Reuse: The browser can reuse a connection to
retrieve multiple objects from the same site.

Our algorithm for estimating the LAF from a given depen-
dency graph can be outlined as follows:



4

1) Estimate the number of round trips required to retrieve
each individual node in the dependency graph.

2) For each distinct root-to-leaf path in the graph, count the
total number of round-trips required along that path by
summing the individual round trip counts for the nodes
along the path.

3) Choose the maximum round-trip count over all root-to-
leaf paths in the graph, and report that as the LAF.

To estimate the number of round trips required for each node,
we use a simple model of the client’s browser. Specifically, we
assume that the browser will initiate the request to retrieve a
node as soon as that node’s predecessors have been retrieved,
and that there is no limit on the number of concurrent requests
that the browser may have outstanding. These assumptions will
of course lead to inaccuracies in our model. However, they also
ensure that the model is browser and machine independent,
which is critical as most large-scale websites have very diverse
clients. The number of round trips required to retrieve an
object thus depends on the size of the object and on the state
of the TCP connection (specifically, on the TCP window size)
at the time the object is retrieved.

Consider a node in the graph with size s bytes, and suppose
that the TCP window size for the connection used to retrieve
the node is of size wstart bytes when retrieval starts. The value
of s for each node can be found in the dependency graph, and
we will explain shortly how wstart is determined. We estimate
r, the number of round trips required to retrieve this node, as:

r =

⌈
log2

(
s

wstart
+ 1

)⌉
(2)

The factor of log2 in this expression arises from the fact
that the TCP window size doubles with each round trip until
the object has been completely retrieved. We can also define
wfinish, which indicates what the TCP connection’s window
size will be after the node has been retrieved. If s ≤ wstart,
then no window size doubling will occur and wfinish will be
the same as wstart. Otherwise, the window size will double
one or more times during the retrieval of the node. Thus,
the final window size can be determined using the following
expression.

wfinish = 2r−1wstart (3)

where r is the round trip count for the node, as defined by
Equation 2. This model assumes that objects are relatively
small, and that most users will finish retrieving their objects
before reaching their actual maximum window size.

The value of wstart for a node depends on which TCP
connection is used to retrieve the object. A node’s wstart

will depend on whether that node has any ancestors in the
dependency graph that are retrieved from the same site. We
consider two cases. If there are no such ancestors, then we
set wstart = 4440 bytes, which corresponds to TCP’s default
initial window size for new connections. On the other hand,
if there are one or more such ancestors, then the browser will
have one or more TCP connections already open to the target
site. In this case, we conservatively set the node’s wstart to the
maximum wfinish among all of its same-site ancestors. This
is a conservative choice because choosing the largest wfinish

results in the smallest possible estimate for the number of
round trips (Equation 2) for the current node, which in turn
gives the smallest possible estimated LAF.

IV. LAF EXAMPLES

We have chosen a set of ten popular web pages for testing.
Most of our choices appear among the top ten most visited
web sites in the Alexa top 500 global sites ranking [5]. Our set
includes a variety of different types of sites, including search
engines, web portals, a social network, and e-commerce, news,
and media delivery sites.

For each chosen web page, we used the PhantomJS [6]
web browser to retrieve the page while capturing a request
log. In all cases, the web client was located at the University
of Waterloo, in Canada. Using these logs, we generated
dependency graphs and then estimated the LAF for each page.
We repeated this process 20 times for each web page. Figure 4
shows the mean estimated LAF for each page. (The figure also
shows measured LAFs, which we will discuss in Section V.)

Except for GMail, we did not see a wide variation among
the 20 different estimated LAFs for each web page. Each
LAF was generated using a different retrieval log, and we
expect that different retrieval logs (for the same page) should
include different request timing information because of natural
variations in the request times and wait delays across the
different runs. Nonetheless, such variations had only a small
effect on the LAF estimates.

 

0

20

40

60

80

100

120

140

LA
F

Measured LAF Estimated LAF

Fig. 4. Mean measured and estimated LAF for different web pages. Error
bars show the 90% confidence interval around the measured mean.

In this experiment, we observed a wide range of LAFs as
illustrated in Figure 4. Not surprisingly, the search engines
(Google and Baidu), with their simple pages, had the lowest
LAFs. At the other end of the spectrum were GMail (webmail)
and MSNBC (news page), which had LAFs an order of
magnitude higher than those of the search engines. Previous
work [7] has suggested that news web pages often load objects
from a large number of hosts. This was certainly true for
the MSNBC front page, which has references to objects from
almost 60 distinct hosts. The other websites we tested typically
only reference about 10 hosts, and the search engines reference
only 3. The large number of hosts translates to a lot of
separate TCP connections, which, together with small initial
congestion window size values, account for the large LAF
value for the MSNBC page. In contrast to MSNBC, GMail’s



5

high LAF value is due to its high structural complexity, which
is manifested as a long critical path in its dependency graph.

The remaining sites we tested are between these extremes,
with LAFs from just under 20 to just over 30. These LAFs,
though much lower than those of GMail and MSNBC, are
still very significant. For example, with a LAF near 30, a 30
ms change in network latency results in an almost 1 second
change in user-perceived page load time.

V. LAF MODEL VALIDATION

In order to validate our LAF estimation methodology against
empirical data, we measured web page loading times while
manipulating the latency between our browser and the web-
servers. By comparing such measurements against baseline
measurements with no added latency, we can determine the ac-
tual LAF of a web page. We then compare these measurements
to the estimates made using the methodology from Section III.

Suppose that tP (0) is the measured baseline page load time
for a web page P , with no added latency. Similarly, suppose
that tP (α) is the page load time for P if we introduce an
additional latency α/2 to each incoming and outgoing network
packet between the browser and the webservers, for a total
additional round trip latency of α. The measured LAF for P
can then be calculated using Equation 1.

To introduce network latency, we used the network traffic
control tool (tc) and the technique described by Nussbaum
and Richard [8] to allow us to add latency to both incoming
and outgoing traffic.

Figure 4 shows a comparison of measured and estimated
LAFs, with α = 100ms. for the measured LAFs. We repeated
each page load measurement 20 times. For each web page we
measured, the figure shows the mean estimated LAF, the mean
measured LAF, and a 90% confidence interval around the
measured LAF. For most of our test pages the estimated LAF
was reasonably close to the measured value, which suggests
that our estimation methodology is capturing the important
factors that contribute to page load times.

For several sites, including Baidu, QQ, MSNBC and GMail,
there was significant variance in measured page load times,
resulting in relatively large confidence intervals around the
mean measured LAF. For Baidu and QQ, both of which
include a substantial amount of content served from China, this
is due to the relatively long network path from those servers
to our measurement point in Canada. MSNBC’s content is
served from closer sites, but as we have previously noted,
that page includes content from a large number of servers,
delays to any one of which can affect our measured page
load times. GMail uses a single long request to download a
substantial and dynamically adjusted amount of data in the
background to the client. In addition to the substantial variance
this introduces into our measured LAF, such requests also
highlight a challenge for our LAF estimation methodology:
In estimating the LAF, we include all objects on which the
root page depends. However, the page may be usable well
before all of those objects have been retrieved.

VI. ACCOUNTING FOR CDNS

We estimate a page’s LAF by asking what would happen to
the page load time if all of the objects on which a page depends
took longer to retrieve. However, in some cases, we may wish
to focus only on certain objects, and ask how sensitive the
page’s load time is to the retrieval time of those objects. For
example, many web service providers make use of content
delivery networks (CDNs) to cache static page content at the
edge of the network, closer to end users. For a web page from
such a provider, we may wish to characterize only that part
of the page that is not served by the CDN.

It is very easy to modify our methodology to answer such
questions. In the remainder of this section, we show how to
estimate the core latency amplification factor (CLAF) of a
page. The CLAF is similar to the LAF, but it only considers
the effect of page content that is not served by CDNs. A
page’s LAF can be interpreted as an estimate of the number of
sequential network round trips that will be required to load that
page, while its CLAF can be interpreted as an estimate of the
number of sequential network round trips to core (non-CDN)
servers. Comparing the LAF and CLAF of a page provides a
measure of the CDN’s effectiveness for that page.

After generating the dependency graph for a web page as
described in Section III-B, we tag all CDN nodes. We then
use the same algorithm described in Section III-C but force
the number of round trips for tagged (CDN) nodes to be 0 in
order to obtain the CLAF. We use a simple pattern-matching
approach to determine whether an object is served from a
CDN: we query the DNS (using dig) for information about
the host part of an object’s URL and look for certain key words
in the answer section of the DNS reply. If the DNS response
contains any reference to well known CDNs such as “akamai”
or “cloudfront” or the character sequence “cdn”, we tag the
node. This approach is not comprehensive, but it allows us to
approximate the impact of CDNs on the amplification factor.

 

0.00

20.00

40.00

60.00

80.00

Amazon Facebook MSNBC QQ Yahoo

Mean CLAF Mean LAF

Fig. 5. LAF and CLAF for Different Web Pages

Figure 5 shows both the CLAF and LAF for several sites.
The five sites presented are the only ones for which our
basic approach has been able to identify the CDNs used. We
know that websites under Google’s administration (Google,
GMail and YouTube) make use of CDNs, however the simple
pattern matching approach was unable to identify the servers
responsible for these services. As expected, the CLAF values
are consistently lower than the LAF. For websites like Amazon
and Facebook, the reduction is significant; for both websites,



6

all but one host are CDN nodes. With MSNBC and QQ, one
third to one half of the hosts have been identified as CDNs, so
the reduction is more moderate. For these two sites however,
even the lower CLAF values are still quite high. This suggests
that, for some sites, using a CDN may not be sufficient to
ensure that a user has low page load time.

In the case of Yahoo, our methodology identified only 2
CDN hosts out of the 12 hosts it uses. However neither of
the associated nodes were on a critical path when calculating
the LAF, so their omission from the CLAF calculation did not
affect the final value. It may be possible that other CDN hosts
are being used that our methodology was unable to identify.

VII. RELATED WORK

Butkiewicz et al [7] have presented a detailed analysis of
the complexity of modern web pages. This analysis, which
included more than 1700 web sites, considers how web page
features are related to the time required to render the page.
This analysis also introduces a regression-based model that
can be used to predict the rendering time of a page given
values for key page features of the page content. The model
we present in this paper is complementary to this work. While
our model is sensitive to the content of the page, they predict
the impact of individual request latencies on the page loading
time.

Much like LAF, WebProphet [3] models a page using
a graph, with edges representing dependencies among the
objects on the page. Its main objective is to predict the absolute
load time of a web page under hypothetical conditions. To infer
dependencies, WebProphet retrieves the page while adding
latency to the download of specific objects. By identifying
which other objects’ latencies change as a result of these
injections, WebProphet can infer that dependencies exist. In
contrast, our proposed technique produces a much simpler
model that is intended only to relate page load time to
latencies of the requests for the objects on the page. Our
model cannot, for example, be used to predict the effect
of a change in browser configuration on page load time.
Although WebProphet’s model is considerably richer, this
richness comes with a price: its models are larger, more
expensive to build, and more expensive to use than our models.
We are trying to answer a narrower yet still important question
using a model that is simple and easy to use.

A 5000 broadband access network study conducted by
Sundaresan et al [9] also emphasizes the importance of latency
in page loading time, however their focus is on imporving the
speed of establishing network connections by caching DNS
records and maintaining active TCP connections within the
home router.

The “What-If Scenario Evaluator” (WISE) [10] takes a
machine learning approach to model the effects of changes in
a web service’s deployment configuration. For example, WISE
was used to predict the effect on users’ page load times when a
CDN node serving those users was moved. WISE requires an
extensive collection of monitoring data which it uses to infer
dependencies among system parameters of interest, such as
client response times and CDN node locations. Chen et al [11]

focus on the effect of changes in the inter-tier latencies in a
multi-tier service architecture. They propose a metric called
the link gradient to capture the effect of the latency between
two tiers on the overall performance of the system.

VIII. CONCLUSION

Although user satisfaction depends strongly on the load time
of a web page, there is no simple way to characterize the
relationship between the content of a page and its load time.
We have proposed a simple metric, the LAF, to address this
problem. This metric is easy to estimate and to interpret. We
have estimated LAFs for some of the world’s most popular
websites. Some are surprisingly high, indicating the small
changes in network latencies can lead to large increases in
page load times.

We validated our procedure for estimating LAFs by measur-
ing LAFs and comparing those measurements to our estimates.
In most cases, our LAF estimations were reasonably accurate.
Finally, we have considered an enhanced metric called CLAF
that can distinguish web page content loaded from CDNs from
other content. Comparing the LAF and CLAF for a web page
gives a way of quantifying CDN effectiveness for that page.

REFERENCES

[1] R. Kohavi and R. Longbotham, “Online experiments: Lessons learned,”
Computer, vol. 40, no. 9, pp. 103 –105, sept. 2007.

[2] M. Mayer, “What google knows,” in Proceedings of the Third Annual
Web 2.0 Summit, San Francisco, CA, USA, November 2006.

[3] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. G. Greenberg, and Y.-M. Wang,
“Webprophet: Automating performance prediction for web services,” in
NSDI. USENIX Association, 2010, pp. 143–158.

[4] J. Odvarko, “Http archive specification version 1.2,” http://www.
softwareishard.com/blog/har-12-spec/.

[5] Alexa, “Global top sites list,” http://www.alexa.com/topsites/global.
[6] PhantomJS, http://phantomjs.org/.
[7] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding web-

site complexity: measurements, metrics, and implications,” in Internet
Measurement Conference, P. Thiran and W. Willinger, Eds. ACM,
2011, pp. 313–328.

[8] L. Nussbaum and O. Richard, “A comparative study of network link
emulators,” in SpringSim, G. A. Wainer, C. A. Shaffer, R. M. McGraw,
and M. J. Chinni, Eds. SCS/ACM, 2009.

[9] S. Sundaresan, N. Feamster, R. Teixeira, N. Magharei et al., “Measur-
ing and mitigating web performance bottlenecks in broadband access
networks,” in ACM Internet Measurement Conference, 2013.

[10] M. M. B. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. H.
Ammar, “Answering what-if deployment and configuration questions
with WISE,” in SIGCOMM, V. Bahl, D. Wetherall, S. Savage, and
I. Stoica, Eds. ACM, 2008, pp. 99–110.

[11] S. Chen, K. R. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D.
Schlichting, “Link gradients: Predicting the impact of network latency
on multitier applications,” in INFOCOM. IEEE, 2009, pp. 2258–2266.


