
Managing Geo-replicated Data in Multi-datacenters

Divyakant Agrawal1, Amr El Abbadi1, Hatem A. Mahmoud1,
Faisal Nawab1, and Kenneth Salem2

1 Department of Computer Science, University of California at Santa Barbara
{agrawal,amr,hatem,nawab}@cs.ucsb.edu
2 School of Computer Science, University of Waterloo

kmsalem@uwaterloo.ca

Abstract. Over the past few years, cloud computing and the growth of global
large scale computing systems have led to applications which require data man-
agement across multiple datacenters. Initially the models provided single row
level transactions with eventual consistency. Although protocols based on these
models provide high availability, they are not ideal for applications needing a
consistent view of the data. There has been now a gradual shift to provide transac-
tions with strong consistency with Google’s Megastore and Spanner. We propose
protocols for providing full transactional support while replicating data in multi-
datacenter environments. First, an extension of Megastore is presented, which
uses optimistic concurrency control. Second, a contrasting method is put forward,
which uses gossip-based protocol for providing distributed transactions across
datacenters. Our aim is to propose and evaluate different approaches for geo-
replication which may be beneficial for diverse applications.

1 Introduction

During the past decade, cloud computing and large-scale datacenters have emerged as
a dominant model for the future of computing and information technology infrastruc-
tures. User and enterprise applications are increasingly being hosted in the cloud and
as a consequence much of user data is now stored and managed in remote datacenters
whose locations remain completely transparent to the users. For most users, the main
concern is the guarantee and confidence that they can access and quickly retrieve their
data on demand from anywhere and at anytime. Much progress has been made in the
successful realization of this model especially by Internet companies, such as Google,
Amazon, Yahoo!, and others, who were confronted with the problem of supporting
their respective Internet-scale applications designed to serve hundreds of millions of
users dispersed around the world. Initial design considerations were primarily driven
by the scalability and interactive response-time concerns. In fact these concerns were
so paramount that the first generation of cloud computing solutions abandoned the tra-
ditional (and proven) data management principles and instead proposed and developed
a radically different data management paradigm that is now commonly referred to as
the NoSQL or key-value data stores [1, 2]. The prevailing argument was that the tradi-
tional data management approach takes a holistic view of data, which makes it almost
impossible to scale commercial database management solutions (DBMSs) on a large

A. Madaan, S. Kikuchi, and S. Bhalla (Eds.): DNIS 2013, LNCS 7813, pp. 23–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

24 D. Agrawal et al.

number of commodity servers. Key-value stores, instead, constrain the atomicity to a
single key-value pair and hence can be scaled to thousands or even tens of thousands of
servers.

As our reliance on the cloud computing model has become prevalent as well as the
initial cynicism1 with this model has subsided, there is a renewed interest both within
the academic community and in the industrial arena to address some of the formidable
research and development challenges in this context. The first and foremost challenge
is the issues of data management and data consistency of the distributed applications
hosted in the cloud. Initial designs in the context of these applications took the radi-
cal approach that consistency of distributed data need not be addressed at the system
level; rather, relegated to the applications. With this design consideration, cloud datas-
tores provided only eventually consistent update operations, guaranteeing that updates
would eventually propagate to all replicas. While these cloud datastores were highly
scalable, developers found it difficult to create applications within the eventual consis-
tency model [3, 4]. Many cloud providers then introduced support for atomic access to
individual data items, in essence, providing atomicity guarantees for a single key-value
pair. Atomic access of single data items is sufficient for many applications. However,
if several data items must be updated atomically, the burden to implement this atomic
action in a scalable, fault tolerant manner lies with the software developer. Several re-
cent works have addressed the problem of implementing ACID transactions in cloud
datastores [5, 6, 7], and, while full transaction support remains a scalability challenge,
these efforts demonstrate that transactions are feasible so long as the number of tuples
that are transactionally related is not “too big”.

While many solutions have been developed to provide consistency and fault tolerance
in cloud datastores that are hosted within a single data center, these solutions are of
no help if the entire datacenter becomes unavailable. For example, in April 2011, a
software error brought down one of Amazon’s EC2 availability zones and caused service
disruption in the entire Eastern Region of United States [8]. As a result, major web sites
like Reddit, Foursquare, and Quora were unavailable for hours to days [9]. In August
2011, lightning caused Microsoft and Amazon clouds in Dublin [10] to go offline for
hours. Similar outages have been reported by other service providers such as Google,
Facebook, and others. In many of these instances, failures resulted in data losses.

These recent outages demonstrate the need for replication of application data at mul-
tiple datacenters as well as the importance of using provably correct protocols for per-
forming this replication. In a recent work, Baker et al. [5] proposed Megastore which
enabled applications within Google with transactional support in the cloud with full
replication at multiple datacenters. Recently, Google has just announced a completely
revamped cloud computing architecture called Spanner [11] where cross-datacenter
geo-replication is supported as a first-class notion to all its hosted applications. While
these papers present an overview of the respective systems, they lack the formality and
details required to verify the correctness of the underlying protocols. We assert that such
formal analysis is needed for cloud datastores, especially in light of the recent outages

1 In its early stages, cloud computing received a lot of criticism from both academic and indus-
trial communities that it is just a marketing tool redefining earlier notions such as distributed
systems and grid computing.

Managing Geo-replicated Data in Multi-datacenters 25

described above and the widely acknowledged difficulties associated with the imple-
mentation of complex distributed synchronization protocols [12, 13, 14]. The other con-
cern that arises is the performance and latency issues that must be addressed in the de-
sign of such protocols. Protocols to manage replication face significant challenges with
large latencies between datacenters. These concerns mandate that systematic investiga-
tion is needed to develop robust and reliable approaches for managing geo-replicated
data in multi-datacenters especially since data management over multi-datacenters will
be extremely critical for national technology and information infrastructures.

Geo-replication of data across multiple datacenters offers numerous advantages. First,
due to the geographic availability of data in multiple parts of the world, services and
applications can be structured in such a way that user accesses from different parts of
the world can be directed to the nearest datacenter. However, this operational mode
requires that data replication is based on peered replication model in that all replicas
are treated in the same manner. Second, peered replication across multiple datacen-
ters provides the necessary fault-tolerance in case of datacenter outages. Replicating
data within a datacenter, a common practice in all cloud computing architectures, en-
sures data availability in the case of host-failures but fails when the entire datacenter is
lost due to an outage. Finally, geo-replication of data across multiple datacenters also
facilitates disaster recovery in case of catastrophic failures when an entire facility is
lost due to natural disasters (e.g., a earthquake) or a human-induced activity (e.g., a
terrorist attack).

Data replication has been an active area of research for more than two decades [15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]
and it is only recently that wide-area replication solutions are being adapted in prac-
tice [5, 11, 38]. A natural question arises as to what has changed in the intervening years
to cause this transformation? Prior approaches for wide-area replication solutions were
all in a context of wide-area networks where data was maintained on individual host
machines geographically dispersed in the network. Given the unreliability of individual
machines and the network as well as high-latency and low-bandwidth links connecting
these machines rendered many of the proposed wide-area data replication protocols im-
practical. During the past decade, with the advances in cloud computing and datacenter
technology the infrastructure landscape has undergone a significant transformation. In
particular, even though each individual datacenter is a large distributed system com-
prising thousands to tens of thousands of machines connected by a high-speed network,
software techniques such as Google’s Chubby [39] and Apache’s Zookeeper [40] allow
us to model an individual datacenter as a unified centralized architecture2. Furthermore,
given the level of investment that is involved to create such facilities, these datacenters
are interconnected with dedicated network connections that are very high-bandwidth
and extremely low-latency. With these transformations in the infrastructure space, new
generation of replica management protocols need to be designed that can leverage from
a small number of datacenters (in single digits) with high-speed and high-bandwidth
interconnections.

2 Essentially these software techniques maintain a globally consistent view of the system state
at all times.

26 D. Agrawal et al.

2 Design Elements for Multi-datacenter Data Management
Architecture

In our quest to build storage infrastructures for geo-replicated data that are global, re-
liable, and arbitrarily large in scale, we have to start from hardware building blocks,
i.e., individual datacenters, that are geographically confined and failure-prone. In order
to bind these individual datacenters into a unified data infrastructure, data needs to be
replicated across multiple datacenters. In this section, we start by identifying the key
design components that are critical in designing cross-datacenter replica management
protocols. We note that all these components are well-studied and well-researched. The
novel aspect of our research is to conduct an investigation in combining these compo-
nents in different ways so that they take advantage of the properties of the underlying
infrastructure substrate, i.e., multiple datacenters. As will become clear in our exposi-
tion, some of the design choices are indeed influenced by the requirement that these
systems remain highly scalable.

2.1 Data-Model for Datacenters

Application data in the cloud is stored using a key-value store [1, 41, 2, 5, 11, 42] where
each data item consists of a unique key and its corresponding value, an arbitrary number
of attributes (also called columns). The original data model for key-value stores was in
terms of a single table, e.g., Google’s BigTable [1] and Apache’s HBase [42], where
each key was considered an independent entity. Furthermore, the atomicity of accesses
was constrained to a single key which enabled the key-value stores to be highly scalable
since the rows in a single logical table could be arbitrarily partitioned across a large
number of servers.

In order to reduce the impedance mismatch between the traditional relational model
and the key-value store model, a new data-model has emerged that can be considered
as being loosely relational. In this model, application data is governed by a schema
which comprise a collection of tables. The collection of tables is partitioned based on
a primary key of the governing table. For example, consider a photo application that
consists of user accounts and photographs tables. The data can be partitioned in such
a way that an individual user account and all photographs of that particular user are
co-located. This hierarchical schema-based partitioning has become a prevalent data-
model which is used both in the context of relational cloud systems [7, 43, 44] and
scalable cloud systems [5, 11]. In Megastore [5], this notion is referred to as entity
groups whereas in Spanner [11], it is referred to as shards. Ensuring the locality of a
shard to a single machine enables the use of light-weight techniques for atomic access to
data in the presence of concurrent accesses and failures. Also, the system still remains
scalable and elastic since the shards of an application can be easily distributed and
migrated freely in a datacenter. An added advantage of the shard-based data model is
that database operations such as select, project, and join can be fully supported within
a shard [7, 45]. We will use the notion of shard as the underlying data-model since it is
compatible with the cloud computing database architecture that are relational [43, 45, 7,
44] and that are based on key-value stores [5, 11]. Thus, a cloud computing data model

Managing Geo-replicated Data in Multi-datacenters 27

comprises a large number of shards which are distributed over a collection of storage
servers in the datacenter.

Single-shard Consistency. The first-generation key-value stores [1, 42] in which a sin-
gle key represented a shard, the most common consistency model was to guarantee
read-modify-write operations3. Given that there is only a single data-element involved,
this amounted to mutually-exclusive or serial execution of operations. The extension of
this model to a shard which is a collection of multiple data-elements, a serial execution
can still guarantee correctness of operation executions on the shard in the presence of
concurrent accesses and failures. However, this model can be extended easily by using
a concurrency control mechanism (e.g., Two-Phase Locking or optimistic concurrency
control) to ensure serializable executions of operations on a shard. Although a dominant
trend in the cloud has been to use optimistic protocols, recent proposals have emerged
that use Two-Phase Locking [11].

Multiple Shard Consistency. Scalability and elasticity concerns in the cloud led to ini-
tial designs of data management solutions that chose not to support any notions of con-
sistency across multiple shards. Borrowing from these designs, the relational database
management solutions in the cloud [43, 45, 7] also chose not to support transactions
over multiple shards4. The rationale of this design decision was that given the fact that
shards are distributed over multiple servers in a datacenter, ensuring transactional ex-
ecution over multiple shards will require expensive distributed coordination and dis-
tributed synchronization for atomic commitment of transactions which is implemented
using the Two-Phase commit protocol. However, there is a new realization that ab-
sence of distributed transactions leads to application complexity and hence transactions
should be supported at the system level [11]. The multi-shard consistency model is
based on atomic execution of transactions over multiple shards which may be stored on
different machines.

2.2 Replica Synchronization in Multi-datacenters

Cloud data management and storage solution have historically integrated data replica-
tion for ensuring availability of data. However, in the past such replication has been
confined to a single datacenter to deal with host failures within a datacenter. With the
availability of multiple datacenters as well as the experience with large-scale outages
of datacenter facility, proposals are emerging to support geo-replication of data across
multiple datacenters [46, 5, 11, 47, 48, 49]. Commercial DBMSs, in general, support
asynchronous replication using a master-slave configuration where a master node repli-
cates write-ahead log entries to at least one slave. The master can support fast ACID
transactions but risks down-time or data loss during fail-over to a slave. In the case of

3 We note that some key-value stores support weaker notions relegating the issue of consistency
to the application tier. However given the current consensus that weaker notions of consistency
results in application complexity, we require that this is the minimal consistency model that is
warranted for data management in the cloud.

4 Relational Cloud from MIT is an exception [44].

28 D. Agrawal et al.

data losses, manual intervention becomes necessary to bring the database to a consis-
tent snapshot. Given the highly autonomic nature of the cloud, asynchronous replication
therefore is not a feasible solution for data-intensive environments.

Table 1. Design Elements for Multi-datacenter Replication

Design Features Underlying Approaches
Sharded Data Model Key-value stores:

Entity Groups
RDBMS:

Schema-level Partitioning
Single-shard Atomicity Serial Execution

Mutual-exclusion
Serializable Execution

Pessimistic (2-phase locking)
Optimistic CC (Read/Write Set validation)

Multi-shard Atomicity Atomic Commmitment
Two-phase Commit

Replica Synchronization Synchronous Replication
Distributed Consensus (Paxos)
Majority Quorums (two-way handshake)
Gossip protocol (causal communication)

All existing cross-datacenter geo-replicated data management protocols rely on syn-
chronous replication. In synchronous replication, a transaction’s updates on a shard (or
multiple shards) is performed synchronously on all copies of the shard as a part of the
transaction execution. For cross-datacenter geo-replication, existing protocols [5, 39,
49] have all chosen to use Paxos as the underlying protocol for ensuring mutual consis-
tency of all replicas. We however note that Paxos is not the only protocol that must be
used in this context. In general, from a design perspective, synchronous replication can
be implemented using at least three different types of protocols: a distributed consensus
protocol such as Paxos, a two-level handshake protocol based on majority quorums [15],
and gossip-based protocols that ensure causal dissemination of events [50, 51]. The
main advantage of Paxos is that it integrates both the normal operational mode and a
possible failure mode. In the case of other protocols, explicit recovery actions must be
taken when failures are encountered. For example, in the case of gossip-based proto-
cols, progress cannot be made if one of the datacenter fails. In this case, Paxos may be
triggered to modify the global membership information of operational datacenters [32,
52, 53, 54, 55].

2.3 Classifying Existing Multi-datacenter Replication Protocols

Table 1 summarizes the basic components that must be included to design and de-
velop protocols for managing geo-replicated data across multiple datacenters. We lever-
age this design framework for cross-datacenter geo-replication to classify the three
well-known protocols that have been proposed recently, viz., Google’s Megastore [5],
Google’s Spanner [11], and UC Berkeley’s MDCC (multi data-center consistency) pro-
tocol [49]. Although this classification does not formally establish the correctness of

Managing Geo-replicated Data in Multi-datacenters 29

these proposed systems, it however gives us the understanding whether all the necessary
design elements are indeed present to ensure correctness. In addition, this step allows
us to explore possible variations and modifications.

Megastore was developed to meet the storage requirements of Google’s interactive
online services. Megastore moved away from a single-entity based data-model (i.e.,
key-value pairs) to hierarchically organized entity-groups (i.e., shard) where entities
within a shard are logically related and shards are replicated across multiple datacenters.
Each entity-group functions as a mini-database that provides serializable ACID seman-
tics. The basic Megastore design is intended to support atomic execution of transactions
within a single entity group. Transaction and replica synchronization in Megastore is
based on Paxos where transactions read the current value of data-items in an entity
group and when multiple transactions contend for write operations on the entity-group
concurrently, the Paxos protocol ensures that only one transaction succeeds whereas
the others fail. The authors claim that Megastore uses “optimistic concurrency con-
trol” but our assertion is that Megastore uses mutual-exclusion to enforce serial exe-
cution of transactions [56]. Under our classification, Megastore provides: (i) sharded
data-model; (ii) single-shard consistency model with serial execution of transactions;
and (iii) Paxos based replica consistency. Megastore also proposes using Two-Phase
Commit for atomic transactions across entity-groups; however, not enough details are
provided.

Spanner [11] is Google’s latest proposal to build globally-distributed database over
multiple datacenters. In that it uses a sharded data-model with data-item level accesses
within a shard. In particular, the protocol uses read and write locks in conjunction
with Two-Phase Locking to synchronize concurrent execution of transactions. Further-
more, a transaction execution can span multiple shards and all shards are replicated
across multiple datacenters. Since transaction executions span multiple shards, Two-
Phase Commit is used to ensure atomic commitment of transactions. Finally, updates to
the shards are coordinated by the synchronous replication layer which uses Paxos
to ensure consistent ordering of updates to all copies of a shard. In summary, Spanner
uses Two-Phase Commit and Two-Phase Locking to provide atomicity and isolation,
running on top of Paxos to provide synchronous replication. A similar architecture is
also used in Scatter [46].

The MDCC protocol from UC Berkeley [49] also supports atomic execution of
multi-sharded transactions with data-item level accesses within each shard. Serializ-
able execution of transactions is enforced using optimistic concurrency control. How-
ever, atomic commitment and synchronous replication is achieved by using a variant of
Paxos protocol which is referred to as multi-Paxos. In particular, a transaction initiates
a single instance of Paxos where the distributed consensus involves all shards and their
replicas. This obviates the need for an explicit Two-Phase Commit at the expense of
executing on a larger number of cohorts. As an example, if there are three data-objects
each with three copies, MDCC will require consensus with nine entities. In contrast,
Spanner requires Two-Phase Commit with three shards whereas the replication layer
runs three separate instances of Paxos on three copies of each shard.

30 D. Agrawal et al.

Fig. 1. Typical Two-Phase Commit operations when using Paxos-replicated transactional logs

2.4 Inter-datacenter Communication

Inter-datacenter message exchange’s effect on latency dominates over the effect of intra-
datacenter communication. For this, it is important to understand the behavior of current
designs regarding their wide-area message exchange. We now analyze the number of
inter-datacenter messages in Megastore. A single instance of Paxos takes five rounds of
messages. In state machine replication, the number of rounds can be reduced to three
by designating a master replica, a distinguished leader that remains in charge until it
fails [57, 12]. Megastore uses this optimization to reduce the number of message rounds
to three in cases where there is no contention for the log position [5, 56]. MDCC [49]
uses a variant of Paxos to atomically commit transactions while providing replication at
the same time. Each record requires a Paxos round to be accepted. A record is accepted
if it did not introduce any conflicts. When all records are accepted and learned, then the
transaction is considered committed.

We present an example to estimate the number of inter-datacenter messages in Span-
ner. After completing all reads, the client submits all updates to the database using
Two-Phase Commit. Consider the case when a transaction updates three data objects
x, y, and z in three different shards of the database. Figure 1 shows the messages ex-
changed during Two-Phase Commit on a system where shards are replicated across data
centers using Paxos. Solid lines are used to illustrate Two-Phase Commit communica-
tion, while dashed lines are used to illustrate Paxos communication. The setup consists
of three datacenters. Each datacenter contains three data servers, where each data server
holds a replica of a shard of the database. Hashed servers represent the Paxos leaders of
their shards.

The required number of wide-area messages is now illustrated. The client picks one
leader to be the Two-Phase Commit coordinator. A prepare message is sent from the
client to all leaders. Then, the prepare message is logged using Paxos. Logging re-
quires a round-trip message exchange, assuming the leader did not change. Afterwards,

Managing Geo-replicated Data in Multi-datacenters 31

Paxos leaders acknowledge the Two-Phase Commit coordinator. This will require one
inter-datacenter message. The Two-Phase Commit coordinator now logs the received
acknowledgments, which will take a round-trip message exchange. The Two-Phase
Commit notifies other leaders of its decision when it committed while sending the
commit decision to the client, both taking one wide-area message. At this point, the
client knows the transaction is committed, however, more rounds of communication
occur by replica leaders to log the commit decision. Thus, the required number of inter-
datacenter messages is seven until the client knows the commit decision and nine until
the transaction is fully replicated.

3 New Protocols

In this section, we sketch the outline of two new protocols for managing geo-replicated
data in multi-datacenters. The first protocol can be viewed as an extension of the original
Megastore in that the modified protocol enables serializable execution of transactions
within an entity-group thus permitting more concurrency in the underlying system. The
second protocol uses a radically different approach in that it uses gossip-messages (i.e.,
message propagation) for synchronizing the execution of distributed transactions over
replicated data. Our goal in this section is to underscore the many possible approaches
that can be used for geo-replication. In the next section we will describe our approaches
to develop a better understanding of the engineering tradeoffs of using different design
choices in the development of these protocols.

3.1 Megastore with Optimistic Concurrency Control

The original Megastore system allows multiple transactions to operate concurrently on
a replicated shard (or entity-group) at multiple datacenters. However, if multiple trans-
actions attempt to update the shard simultaneously, the Paxos protocol ensures that
only one transaction succeeds and the rest are aborted. This is facilitated using Paxos
in that all concurrent update transactions compete for the next empty log position in the
Paxos log and only one transaction is granted the log position. Although the authors
incorrectly state that Megastore uses optimistic concurrency control, this corresponds
to serial execution of transactions. At best this can be viewed as optimistic mutual ex-
clusion in that multiple transactions are allowed to enter the critical section to update
the shard but only one transaction succeeds in exiting the critical section by updating
the shard and the rest abort.

We now outline the design of extended Megastore [56]. Higher concurrency is
achieved by promoting the losing non-conflicting transactions to compete for the sub-
sequent log position. During an instance of Paxos, a losing transaction that has not
received majority of votes for log position k realizes that the value of the winner trans-
action will write its values in log position k. Therefore, there is no benefit for the loser
to continue competing for this log position. Instead, it can try to win log position k + 1
as long as the loser does not read any value that was written by the winning transaction
for log position k. In this case, the loser then initiates the commit protocol for log posi-
tion k+1 with its own value. Otherwise, the client stops executing the commit protocol

32 D. Agrawal et al.

and returns an abort status to the application. If the client does not win log position
k+ 1, it can try again for promotion to the next log position as long as its writes do not
conflict with the writes of the winners at the log positions k and k + 1. As the number
of tries increases, there is an increased possibility that the transaction will be aborted.
With this simple enhancement we are able to support serializable execution of trans-
actions in Megastore. Multi-shard execution of transactions can be supported by using
two-phase commit over Paxos as was the case in the original Megastore proposal.

We note that when several transactions compete for the log position, there is a pos-
sibility that no transaction gets the majority during the Paxos commit. In that situation,
it may be possible to combine non-conflicting transactions into a single log position
instead of aborting all competing transactions. However, this approach requires a com-
binatorial number of comparisons to construct all possible non-conflicting subsets of
concurrent transactions that can be combined and choosing a subset with the largest
number of transactions. We are developing a protocol that incorporates the above- men-
tioned enhancements and will conduct experimental evaluations to compare the pro-
posed variants with the original Megastore protocol.

3.2 Message Futures: Fast Transaction Commitment in Multi-datacenters

We now propose Message Futures (MF), a cross-datacenter geo-replication protocol that
supports serializable execution of transactions in a multi-shard model where shards are
replicated across multiple datacenters. The protocol can use either two-phase locking
or optimistic concurrency control for intra-datacenter synchronization of transactions
within a single data-center. Replica consistency and inter-datacenter synchronization is
achieved by deploying a gossip-based protocol for distributed commitment of transac-
tions at all datacenters. One of the advantages of gossip-based message communication
is that an event log (e.g., transaction execution) can be propagated among datacenters
transitively while ensuring causal relationship of events in a distributed system [51].

A naive and straightforward adaptation of gossip-messages would be to execute
transactions locally and initiate a distributed commit of a transaction by appending a
transaction commit request to the log (referred to as the replicated log or RLog for
brevity) and wait for other datacenters to respond to this request. After receiving the
requisite responses either directly or transitively from other datacenters, the fate of the
transaction can be determined and the second round of atomic commitment can be fa-
cilitated again via log propagation. Although this design ensures serializable execution,
it incurs very high latency to commit transactions. We instead propose a novel approach
called Message Futures that potentially eliminates the need for blocking to achieve con-
sensus from other datacenters when transaction are ready to commit. We now present
an overview of our proposed protocol. Each datacenter, DCi, maintains the following
structures:

– Local RLog, Li, is the local view of the global RLog.
– Pending Transactions list, PTi, contains local pending transactions. These are

transactions that requested to commit but are still neither committed nor aborted.
– Last Propagated Time, LPTi, is the timestamp of the processing time of the last

sent Li at DCi.

Managing Geo-replicated Data in Multi-datacenters 33

RLogs maintain a global view of the system that can be used by datacenters to perform
their concurrency logic. RLogs consist of an ordered sequence of events. All events
have timestamps. Each transaction is represented by an event. RLogs are continuously
propagated to other datacenters. An algorithm used to efficiently propagate RLogs is
presented in [51]. An N×N Timetable, Ti, is maintained by Li, where N is the number
of datacenters. Each entry in the Timetable is a timestamp representing a bound on
how much a datacenter knows about another datacenter’s events. For example, entry
Ti(j, k) = τ means that datacenter DCi knows that datacenter DCj is aware of all
events at datacenter DCk up to timestamp τ . An event in Li is discarded if DCi knows
that all datacenters know about it. The transitive log propagation algorithm ensures
two properties about events in the system. First, all events are eventually known at all
datacenters. Second, if two events have a happened-before relation [58], their order is
maintained in the RLog.

Each datacenter is represented by one row and one column in the Timetable. Each
transaction, ti, is represented as an event record, Etype(ti), in the RLog, where type is
either Pending (Ep(ti)) or Committed (Ec(ti)). A pending event is maintained until the
transaction commits or aborts. A committed event is maintained in the RLog until it is
known to all datacenters.

DCA DCB

 A B
A ts(a2) ts(b1)
B ts(a1) ts(b1)

a1

b1

a2

a3 b3

t1.w(x)
t1.r(x)

t1.cr()

t1.commit

t2.r(y)

t2.w(y)

t2.cr()
t2.commit

{Ec(t1), Ec(t2)}

t3.r(y)
t3.w(y)
t3.cr()

t3.abort

t4.w(y)
t4.r(y)

t4.cr()
{Ep(t4)} {Ep(t5)}

t5.w(x)
t5.r(x)

t5.cr()

t4.commit t5.commit

b2{Ep(t3)}

Fig. 2. MF example scenario

Each datacenter, DCA, transmits LA, its local RLog, continuously regardless of the
existence of new events. Consider a pending transaction ti at DCA. When ti requests to
commit, the current Last Propagated Time, LPTA, is attached to ti and is referred to as
ti→LPTA. Then, ti with its read-set and write-sets are appended to the local Pending
Transactions list, PTA, while only the write-set is appended to LA. Whenever DCA

receives RLog,LB, it checks for conflicts between transactions, ti, in PTA and t′ inLB .

34 D. Agrawal et al.

If a conflict exists, ti is aborted. A conflict exist if a common object, x, exists in t′’s
write-set and ti’s read-set or write-sets. To commit ti, DCA waits until the following
commit condition holds:

Definition 1. A pending transaction ti in PTA commits if all read versions of objects
in ti’s read-set are identical to ones in local storage, and TA[B,A] ≥ ti→LPTA, ∀B
(DCB ∈ datacenters)

That is, all objects in ti’s read-set have the same versions as those in the local storage
and datacenterDCA knows that all datacenters, DCB , are aware of DCA’s events up to
time ti→LPTA. Conflicts that include ti’s write-set are detected earlier when remote
transactions are received and their conflicts are detected.

We now illustrate a simple operational scenario of MF depicted in Figure 2. The sce-
nario consists of two datacenters, DCA and DCB . The passage of time is represented
by going downward. Arrows are RLog transmissions. Events in the RLog are shown
over the arrow. If no events exist, nothing will be shown. The corresponding Timetable
is also displayed in one case for demonstration purposes. The notation on the sides
are operations performed or issued at the datacenter. ti.operation(key) represents per-
forming an operation on the object key for transaction ti. Client operations are read (r),
write (w), and commit request (cr). Commits and aborts are shown inside dotted boxes.
As introduced above, RLog transmissions are represented by the notation δi, where δ
is the lower case character of the datacenter’s name and i is a monotonically increasing
number.

Consider transaction t1 ofDCA. It reads and writes object x and then requests a com-
mit. t1→LPTA is set to ts(a1). DCA waits until the commit condition (Definition 1)
holds. When LB , sent at b1, is received at DCA, the commit condition is satisfied and
t1 commits. Transaction t2, which also started after a1, requests a commit. t2→LPTA

is also set to ts(a1). Since it has requested to commit after the reception of the RLog
transmission at ts(b1), the commit condition holds at the time it requested to commit,
hence t2 commits immediately. Transaction t3 requests to commit at DCB . t3→LPTB

is set to ts(b1) when a commit is requested. However, when LA of a2 arrives at DCB ,
a conflict with transaction t2 is detected. In this case, t3 is aborted. Finally, we show the
case of transactions t4 and t5. When a commit is requested for both of them, t4→LPTA

is set to ts(a2) and t5→LPTB is set to ts(b2). When each datacenter receives the other
datacenter’s RLog, it contains the information of the pending transaction of the other
datacenter. However, no conflict is detected. At that point, the commit condition holds
for both of them and both t4 and t5 commit. We also included a demonstration of TA at
time ts(a2).

The performance of Message Futures based protocol depends on the frequency of log
propagation. In our initial evaluations, by tuning the propagation interval we are able to
achieve commit latency close to the maximum round-trip times among inter-datacenter
communications. Furthermore, by making the propagation asymmetric where one
datacenter propagates its log much more infrequently compared to the remaining dat-
acenters, we can simulate a master-slave configuration of replicas. In fact the mas-
ter datacenter with large propagation delays experiences lower commit latencies and
in many cases it can commit its transactions immediately. Note that by adjusting the
propagation intervals appropriately, this protocol can be extended in such a way that

Managing Geo-replicated Data in Multi-datacenters 35

master-ownership on per shard (or a collection of shards) can be dispersed over multi-
datacenters. We are exploring these extensions and developing analytical formulations
to optimize propagation intervals in terms of number of message exchanges and commit
latency. We are also conducting extensive evaluations to quantify the performance and
overhead of this protocol in comparison to others.

4 Prospective Research: Protocol Correctness, Evaluation, and
Enhancements

In this section, we provide an overview of our research methodology to conduct a sys-
tematic research investigation of cross-datacenter geo-replication protocols. First, we
present an abstract framework that will be used to establish the correctness of replica-
tion protocols. In particular, we will establish the properties of a protocol based on its
specifications and will verify that these properties collectively can be used to prove if
the protocol is correct. Next, we present the details of an implementation platform that
will be used to evaluate the performance of the proposed and existing protocols. Finally,
we identify some of the pragmatic enhancements that need to be incorporated with any
geo-replication protocols before they can be used in practice.

4.1 A Framework to Establish Correctness

The protocols considered so far in this paper all include the necessary design compo-
nents to ensure plausibly correct executions of distributed transactions over replicated
data. However, as we have shown these design components can be integrated in a va-
riety of ways. For example, Spanner [11] uses a layered approach where at the lowest
layer it implements synchronous replication using Paxos and at the upper layer it uses
two-phase commit in conjunction with two-phase locking for correct execution of trans-
actions. Megastore [5] uses Paxos for both replica synchronization and concurrency
prevention. Given this vast variation in the overall design of such protocols, it is indeed
necessary to formally establish the correctness of these protocols. This is clearly war-
ranted since multi-datacenter architectures are likely to become an integral part of our
national infrastructures. We therefore present an abstract framework that can be used to
reason the correctness of multi-datacenter protocols.

In a multi-datacenter architecture, each datacenter has its own multi-version data-
store comprising sharded data. All shards are replicated on multiple datacenters, and
hence, there are both multiple copies and multiple versions of each data-item within
a shard. Yet, when a client (an application instance) executes a transaction, it should
appear that (1) there is only one copy and one version of each data item, and (2) within
the scope of its transaction, the client is the only one accessing those data items. These
two properties are captured by the notion of one-copy serializability [59]. In a multi-
version, multi-copy (MVMC) datastore, when a client performs a read operation, it
reads a single version of a single copy of a data item. When a write operation is applied
to the cloud datastore, a new version of the item is created at one or more datacenters.
An MVMC transaction is a partially ordered set of read and write operations, with their
corresponding version and copy attributes, ending with a single commit or a single abort

36 D. Agrawal et al.

operation. We say a transaction t reads-x-from transaction s if t reads the version of x
(at one copy) that was written by s (at one or more copies). An MVMC history is a set
of MVMC transactions with a partial order. The partial order obeys the order of oper-
ations within each transaction and maintains the reads-from relation, i.e., if transaction
t reads version i of x from transaction s at copy A, then the write of version i at copy
A precedes the read of version i at copy A, and no other write occurs between these
operations at copy A.

Definition 2. A multi-version, multi-copy history H is one-copy serializable if there
exists a single copy, single version serial history S such that H and S have the same
operations, and ti reads-x-from tj in H iff ti reads-x-from tj in S.

Our goal is to prove that the system and protocols for Multi-datacenter replication guar-
antee one-copy serializability. In general, all systems implement a concurrency control
protocol with a write-ahead log. In addition to its set of data items, each shard has its
own write-ahead log that is replicated at all datacenters. The write ahead log is divided
into log positions which are uniquely numbered in increasing order. When a transac-
tion that contains write operations commits, its operations are written into a single log
position, the commit position. Read-only transactions are not recorded in the log. For
each write in the committed transaction, the commit log position serves as the times-
tamp for the corresponding write operation. While the log is updated at commit time,
these write operations may be performed later by a background process or as needed
to serve a read request.

To guarantee correct execution of transactions, we must be sure that transactions are
only written to the log if they are correct with respect to the one-copy serializability
property. Formally, we require that a concurrency control protocol ensure the following
properties.

(L1) The log only contains operations from committed transactions.

(L2) For every committed transaction that contain a write operation, all of its operations
are contained in a single log position.

(L3) An entry will only be created in a log position if the union of this log entry and the
complete prefix of the log prior to this log entry is a one-copy serializable history.

We require that transactions are consistently replicated across multiple datacenters. To
achieve consistent replication, when a transition commits, we replicate the new log en-
try at every datacenter. The replication algorithm must satisfy the following property.

(R1) No two logs have different values for the same log position.

To guarantee correctness, we need an additional assumption that relate to the handling
of read requests.

(A1) Within a transaction, all read operations read from the same log position; i.e., the
transaction reads the latest writes performed up through the specified read position in
the log.

We state the following theorem that can be formally established to verify that the prop-
erties defined above are sufficient to guarantee one-copy serializability.

Managing Geo-replicated Data in Multi-datacenters 37

Theorem 1. For the transactional data store with replication at multiple datacenters,
if the underlying protocol guarantees properties (L1) - (L3), (R1), and (A1), then the
datastore guarantees one-copy serializability.

During the course of our research we will use the above correctness framework to es-
tablish correctness of the proposed protocols.

4.2 Implementation Testbed and Performance Evaluation

Developing an infrastructure of geo-replication solutions is essential to our evaluation
plan. An infrastructure that is available to the public, including other research groups,
will allow validation of results and the ability to extend experiments. Amazon AWS
is a prominent cloud computing platform that Amazon makes available to researchers
and educators worldwide through their research and education grants. A central part of
AWS is Amazon EC2 which allows users to rent virtual machines in Amazon’s cloud.
Users can either use local storage or network-attached storage called Elastic Block Stor-
age (Amazon EBS). EC2 instances offer many variations of number of cores and main
memory. An important feature of EC2 for the purposes of this section is the number of
datacenters available and the geo-separation among them. Currently, EC2 allows cre-
ating instances in eight data centers physically located in California, Oregon, Virginia,
Ireland, Singapore, Japan, Australia, and Brazil. Availability of Amazon’s geograph-
ically distributed platforms will enable us to test the effectiveness of multi-datacenter
geo-replicated datastores in a real-life setting.

Fig. 3. The geo-replication stack of two datacenters

Operating over the infrastructure is the concurrency solution. In this section, a multi-
layer stack abstraction is assumed as shown in Figure 3. Each layer provides an interface
to the neighboring layers. By defining those interfaces, development of one layer can
be carried independently from other layers. Furthermore, deployments can exploit this
layering to plug components in each layer in such a way that is suitable for their ap-
plication. The bottom most layer, closest to the hardware infrastructure, is the storage
layer. This layer consists of the database or key-value store that maintain the data. This
layer has access to the local storage in addition to the network-attached storage. On top

38 D. Agrawal et al.

of the storage layer are the transaction layer and the replication layers. These layers
handle concurrency control and communication among different instances. There are
several different possible configurations of replication and transaction layers as shown
in Figure 4. A transaction layer can be independent from the replication layer. The trans-
action layer can be on top of the replication layer as shown in Figure 4(a), meaning that
the transaction layer relays transactions to the replication layer that finally interface
with the storage layer. This is the configuration used in Spanner [11]. Alternatively, as
shown in Figure 4(b) a replication layer can be on top of the transactional layer. The
transaction and replication layers can also be configured so they are adjacent to each
other as shown in Figure 4(c), where both units access the storage layer while being
independent from each other. In this case there is an interface between the two units.
This configuration is used in Message Futures. Finally, the transaction and replication
layers can be intermingled into a single unit as shown in Figure 4(d), hence there is no
clear distinction between the replication and transactional logic. This is analogous to the
design of MDCC [49] and Megastore [5]. The layer on top of the transactional layer is
the application layer which provides the interface for clients to access the system. The
application layer is designated for single users which can be used by clients to issue
operations and request the commitment of transactions. Furthermore, in the course of
developing our solutions presented earlier we have built many components that can be
plugged into the infrastructure to complete the stack. Some of these implementations
are designs for 2PC and Paxos that we plan to release to the community as a bundle
with our infrastructure. In addition, we leverage current open source solutions to act
as components in our implementation platform. For example, HBase [42] is a suitable
candidate of a key-value store setting in the storage layer.

Fig. 4. Different configurations of the transaction and replication layers

In addition to the implementation platform, it is critical to develop an evaluation
framework to compare configurations and implementations. Existing benchmarks are
not suitable for evaluating multi-datacenter replication for the following reasons. First,
most evaluation frameworks are not distributed and are designed for single node ex-
ecution. To measure impact of writes and reads on disjoint data centers, benchmark
workers should be local, or near, to replication components. Using a single site for

Managing Geo-replicated Data in Multi-datacenters 39

generating load will skew results. Second, many existing benchmarks use a block-
ing multi-threaded model. The high latencies encountered in geo-replication results
in lower throughput due to blocking. Increasing the number of active threads can re-
sult in extremely bursty behavior, which can saturate and throttle services. An ideal
evaluation framework would utilize asynchronous workers. Third, outside of the afore-
mentioned issues, existing benchmarks are good for evaluating throughput and latency.
A geo-replication benchmark should also evaluate the percentage of stale reads, update
propagation time, and aborted transactions due to consistency conflicts. Our plan is to
incorporate existing benchmarks, such as YCSB and TPC-C, into a custom framework
that addresses these issues. The evaluation framework will be open-sourced, and allow
for custom workloads to be incorporated.

4.3 Pragmatic Enhancements

So far in our development we have focused on multi-datacenter protocols that ensure
strong consistency, i.e., atomic execution of transactions over multiple shards and syn-
chronous updates to all replicas of the shards. Most system implementations consider
pragmatic enhancements to the basic protocols that will result in better performance.
Maintaining multiple versions for each shard allow for numerous opportunities to pro-
cess read operations efficiently. For example, Spanner [11] utilizes the availability of
synchronized clocks (i.e., TrueTime in spanner), timestamps, and version numbering
judicially to support pre-declared read-only transactions and snapshot read operations.
In particular, both read-only transactions and snapshot reads can be executed without
any locking overhead. In the same vein, Yahoo’s PNUTS system [2], uses timestamps
and versions to implement the timeline consistency model for data. Using this model,
fast read operations can be supported using past versions of data. In our research, we
will explore similar enhancements in the context of the geo-replication protocols pro-
posed in this paper. In particular, given the dominant read-only nature of many of the
applications, fast read-only transactions and fast read operations will in general be a
valuable enhancement.

The other research direction is based on the observation that although all commercial
DBMSs guarantee serializable execution of transactions, most real DBMS deployments
and installations use what is widely known as snapshot isolation [60, 61]. Snapshot iso-
lation ensures that concurrent transactions observe the most up-to-date consistent view
of the database for reads and must not have any write-write conflicts. Ensuring snap-
shot isolation of transactions in replicated environments is in general considered a hard
problem. Recently, a weaker notion of snapshot isolation, referred to as Parallel Snap-
shot Isolation (PSI) [47] has been introduced specifically for geo-replicated systems.
PSI mandates that transactions observe the most up-to-date consistent local view of the
database (which may be older than the global up-to-date consistent view), must not
have write-write conflicts globally, and that commits are causally ordered (a transaction
is propagated to other replicas after all transactions that committed before it began). We
plan to explore enhancements to the proposed protocols for both snapshot isolation [62]
and PSI based executions of transactions.

40 D. Agrawal et al.

References

[1] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Proc.
7th USENIX Symp. Operating Systems Design and Implementation, pp. 15–28 (2006)

[2] Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen,
H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow. 1(2), 1277–1288 (2008)

[3] Muthukkaruppan, K.: The underlying technology of messages (2011) (acc. October 5, 2011)
[4] McKusick, K., Quinlan, S.: Gfs: evolution on fast-forward. Commun. ACM 53(3), 42–49

(2010)
[5] Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Leon, J.M., Li, Y., Lloyd,

A., Yushprakh, V.: Megastore: Providing scalable, highly available storage for interactive
services. In: Conf. Innovative Data Systems Research, pp. 223–234 (2011)

[6] Das, S., Agrawal, D., El Abbadi, A.: G-Store: A scalable data store for transactional multi
key access in the cloud. In: Proc. 1st ACM Symp. Cloud Computing, pp. 163–174 (2010)

[7] Das, S., Agrawal, D., El Abbadi, A.: Elastras: An elastic transactional data store in the
cloud. In: USENIX Workshop on Hot Topics in Cloud Computing (2009); An expanded
version of this paper will appear in the ACM Transactions on Database Systems

[8] Amazon.com: Summary of the Amazon EC2 and Amazon RDS service disruption in the
US East Region (2011) (acc. October 5, 2011)

[9] Butcher, M.: Amazon EC2 goes down, taking with it Reddit, Foursquare and Quora (April
2011) (acc. October 5, 2011)

[10] Greene, A.: Lightning strike causes Amazon, Microsoft cloud outage in Europe. TechFlash
(August 2011)

[11] Corbett, J., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat, S., Gubarev,
A., Heiser, C., Hochschild, P., et al.: Spanner: Google’s globally-distributed database. To
Appear in Proceedings of OSDI, 1 (2012)

[12] Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering perspective.
In: Proc. 26th ACM Symp. Principles of Distributed Computing, pp. 398–407 (2007)

[13] Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–25 (2001)
[14] van Renesse, R.: Paxos made moderately complex. Technical Report (2011)
[15] Gifford, D.: Weighted voting for replicated data. In: Proceedings of the Seventh ACM Sym-

posium on Operating Systems Principles, pp. 150–162. ACM (1979)
[16] Stonebraker, M.: Concurrency Control and Consistency in Multiple Copies of Data in Dis-

tributed INGRES. IEEE Transactions on Software Engineering 3(3), 188–194 (1979)
[17] Thomas, R.H.: A Majority Consensus Approach to Concurrency Control for Multiple Copy

Databases. ACM Transaction on Database Systems 4(2), 180–209 (1979)
[18] Bernstein, P.A., Goodman, N.: An Algorithm for Concurrency Control and Recovery in

Replicated Distributed Databases. ACM Transactions on Database Systems 9(4), 596–615
(1984)

[19] Herlihy, M.: Replication Methods for Abstract Data Types. PhD thesis, Laboratory for Com-
puter Science, Massachusetts Institute of Technology (May 1984)

[20] Birman, K.P.: Replication and Fault-tolerance in the ISIS System. In: Proceedings of the
Tenth Symposium on Operating Systems Principles, pp. 79–86 (December 1985)

[21] El Abbadi, A., Skeen, D., Cristian, F.: An Efficient Fault-Tolerant Protocol for Repli-
cated Data Management. In: Proceedings of the Fourth ACM Symposium on Principles
of Database Systems, pp. 215–228 (March 1985)

[22] El Abbadi, A., Toueg, S.: Availability in partitioned replicated databases. In: Proceedings of
the Fifth ACM Symposium on Principles of Database Systems, pp. 240–251 (March 1986)

Managing Geo-replicated Data in Multi-datacenters 41

[23] Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Journal of the
Association of the Computing Machinery 32(4), 841–860 (1985)

[24] Herlihy, M.: A Quorum-Consensus Replication Method for Abstract Data Types. ACM
Transactions on Computer Systems 4(1), 32–53 (1986)

[25] Liskov, B., Ladin, R.: Highly Available Services in Distributed Systems. In: Proceedings
of the Fifth ACM Symposium on Principles of Distributed Computing, pp. 29–39 (August
1986)

[26] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., Terry, D.: Epidemic Algorithms for Replicated Database Maintenance. In: Proceedings
of the Sixth ACM Symposium on Principles of Distributed Computing, pp. 1–12 (August
1987)

[27] Jajodia, S., Mutchler, D.: Dynamic Voting. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 227–238 (June 1987)

[28] Carey, M.J., Livny, M.: Distributed concurrency control performance: A study of algo-
rithms, distribution, and replication. In: Proceedings of the Fourteenth Conference on Very
Large Data Bases, pp. 13–25 (August 1988)

[29] Agrawal, D., El Abbadi, A.: Reducing storage for quorum consensus algorithms. In: Pro-
ceedings of the Thirteenth International Conference on Very Large Data Bases, pp. 419–430
(August 1988)

[30] El Abbadi, A., Toueg, S.: Maintaining Availability in Partitioned Replicated Databases.
ACM Transaction on Database Systems 14(2), 264–290 (1989)

[31] Agrawal, D., El Abbadi, A.: The Tree Quorum Protocol: An Efficient Approach for Manag-
ing Replicated Data. In: Proceedings of Sixteenth International Conference on Very Large
Data Bases, pp. 243–254 (August 1990)

[32] Jajodia, S., Mutchler, D.: Dynamic Voting Algorithms for Maintaining the Consistency of
a Replicated Database. ACM Transactions on Database Systems 15(2), 230–280 (1990)

[33] Agrawal, D., El Abbadi, A.: The Generalized Tree Quorum Protocol: An Efficient Approach
for Managing Replicated Data. ACM Transaction on Database Systems 17(4), 689–717
(1992)

[34] Agrawal, D., El Abbadi, A.: Resilient Logical Structures for Efficient Management of Repli-
cated Data. In: Proceedings of Eighteenth International Conference on Very Large Data
Bases, pp. 151–162 (August 1992)

[35] Gray, J., Helland, P., O’Neil, P., Shasha, D.: The Dangers of Replication. In: Proceedings of
the 1996 ACM SIGMOD International Conference on Management of Data, pp. 173–182
(June 1996)

[36] Agrawal, D., El Abbadi, A., Steinke, R.: Epidemic Algorithms in Replicated Databases.
In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 161–172
(May 1997)

[37] Stanoi, I., Agrawal, D., El Abbadi, A.: Using broadcast primitives in replicated databases.
In: Proceedings of the 1998 IEEE International Conference on Distributed Computing Sys-
tems, pp. 148–155 (May 1998)

[38] Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. Operating
Systems Review 44(2), 35–40 (2010)

[39] Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In: Proceed-
ings of the 7th Symposium on Operating Systems Design and Implementation, OSDI 2006,
pp. 335–350. USENIX Association, Berkeley (2006)

[40] Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination for
internet-scale systems. In: Proc. 2010 USENIX Conference, USENIXATC 2010, p. 11.
USENIX Association, Berkeley (2010)

42 D. Agrawal et al.

[41] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value
store. In: Proc. 21st ACM Symp. Operating Systems Principles, pp. 205–220 (2007)

[42] HBase (2011), http://hbase.apache.org (acc. July 18, 2011)
[43] Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., McKelvie, S., Xu, Y., Srivas-

tav, S., Wu, J., Simitci, H., et al.: Windows azure storage: a highly available cloud storage
service with strong consistency. In: Proc. Twenty-Third ACM Symp. Operating Systems
Principles, pp. 143–157. ACM (2011)

[44] Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H.,
Zeldovich, N.: Relational cloud: a database service for the cloud. In: CIDR, pp. 235–240
(2011)

[45] Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet, D.B., Manne,
R., Novik, L., Talius, T.: Adapting microsoft sql server for cloud computing. In: ICDE, pp.
1255–1263 (2011)

[46] Glendenning, L., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Scalable consistency
in scatter. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP 2011, pp. 15–28. ACM, New York (2011)

[47] Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-replicated sys-
tems. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP 2011, pp. 385–400. ACM, New York (2011)

[48] Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for eventual: scal-
able causal consistency for wide-area storage with COPS. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 401–416. ACM,
New York (2011)

[49] Kraska, T., Pang, G., Franklin, M.J., Madden, S.: Mdcc: Multi-data center consistency.
CoRR abs/1203.6049 (2012)

[50] Fischer, M., Michael, A.: Sacrificing serializability to attain high availability of data in an
unreliable network. In: Proceedings of the 1st ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, pp. 70–75. ACM (1982)

[51] Wuu, G.T., Bernstein, A.J.: Efficient solutions to the replicated log and dictionary prob-
lems. In: Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 1984, pp. 233–242. ACM, New York (1984)

[52] Kaashoek, M.F., Tanenbaum, A.S.: Group Communication in the Amoeba Distributed Op-
erating Systems. In: Proceedings of the 11th International Conference on Distributed Com-
puting Systems, 222–230 (May 1991)

[53] Amir, Y., Dolev, D., Kramer, S., Malki, D.: Membership Algorithms for Multicast Commu-
nication Groups. In: Segall, A., Zaks, S. (eds.) WDAG 1992. LNCS, vol. 647, pp. 292–312.
Springer, Heidelberg (1992)

[54] Amir, Y., Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Ciarfella, P.: The Totem Single-
Ring Ordering and Membership Protocol. ACM Transactions on Computer Systems 13(4),
311–342 (1995)

[55] Neiger, G.: A New Look at Membership Services. In: Proceedings of the ACM Symposium
on Principles of Distributed Computing (1996)

[56] Patterson, S., Elmore, A.J., Nawab, F., Agrawal, D., Abbadi, A.E.: Serializability, not se-
rial: Concurrency control and availability in multi-datacenter datastores. PVLDB 5(11),
1459–1470 (2012)

[57] Lamport, L.: The part-time parliament. ACM Trans. Computer Systems 16(2), 133–169
(1998)

[58] Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

http://hbase.apache.org

Managing Geo-replicated Data in Multi-datacenters 43

[59] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley (1987)

[60] Adya, A., Liskov, B., O’Neil, P.E.: Generalized isolation level definitions. In: ICDE, pp.
67–78 (2000)

[61] Lin, Y., Kemme, B., Jiménez-Peris, R., Patiño Martı́nez, M., Armendáriz-Iñigo, J.E.: Snap-
shot isolation and integrity constraints in replicated databases. ACM Trans. Database Syst.
34(2), 11:1–11:49 (2009)

[62] Wu, S., Kemme, B.: Postgres-r(si): Combining replica control with concurrency control
based on snapshot isolation. In: ICDE, pp. 422–433 (2005)

	Managing Geo-replicated Data in Multi-datacenters
	Introduction
	Design Elements for Multi-datacenter Data Management Architecture
	Data-Model for Datacenters
	Replica Synchronization in Multi-datacenters
	Classifying Existing Multi-datacenter Replication Protocols
	Inter-datacenter Communication

	New Protocols
	Megastore with Optimistic Concurrency Control
	Message Futures: Fast Transaction Commitment in Multi-datacenters

	Prospective Research: Protocol Correctness, Evaluation, and Enhancements
	A Framework to Establish Correctness
	Implementation Testbed and Performance Evaluation
	Pragmatic Enhancements

	References

