
Towards Adaptive Costing of Database Access Methods

Ye Qin and Kenneth Salem
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{yqin,kmsalem}@cs.uwaterloo.ca

Anil K Goel
Sybase iAnywhere

Waterloo, Ontario, Canada
anil.goel@sybase.com

Abstract

Most database query optimizers use cost models to iden-
tify good query execution plans. Inaccuracies in the cost
models can cause query optimizers to select poor plans.
In this paper, we consider the problem of accurately esti-
mating the I/O costs of database access methods, such as
index scans. We present some experimental results which
show that existing analytical I/O cost models can be very
inaccurate. We also present a simple analysis which shows
that larger cost estimation errors can cause the query opti-
mizer to make larger mistakes in plan selection. We propose
the use of an adaptive black-box statistical cost estimation
methodology to achieve better estimates.

1. Introduction

Most database query optimizers use cost models to iden-
tify good query execution plans. Inaccuracies in the cost
models can cause query optimizers to select poor plans.
There are many potential sources of costing inaccuracies.
Cost models rely on estimates of the selectivity of query
predicates. If these estimates are poor, the resulting cost
estimates are likely to be poor as well. Hence, there is a
substantial body of work (e.g., [4, 5, 8, 10]) on problems
related to selectivity estimation. However, even if selectiv-
ity is estimated accurately, obtaining accurate cost estimates
can still be challenging.

In this paper, we focus on the problem of estimating the
I/O costs of database access methods, such as index scans
and table scans. Database systems generally use analytic
models to estimate these costs. However, the true cost of
an access method depends on factors that are difficult to
capture in such models. Two such factors are the effects of
clustering and data layout, and the impact of caching. In ad-
dition, these analytic models depend on parameters - such
as the amount of memory available for a query or the costs

of the underlying storage operations - that require calibra-
tion or are difficult to determine.

Is it important to have accurate I/O cost estimates? Reiss
and Kanungo [12] studied the relationship between errors
in calibrating storage cost model parameters (the costs of
underlying storage operations) and the cost of the plan that
was ultimately chosen by the query optimizer. They showed
that, in some circumstances, such errors can have a signifi-
cant effect on the optimality of the resulting plan.

In the first part of this paper, we consider this question
primarily in the context of Postgres. By measuring the ac-
tual I/O costs of access methods and comparing them to
cost model estimates, we present some empirical evidence
of costing inaccuracies. Next, through an analysis of Post-
gres’s analytic cost models for index scans and table scans,
we characterize the potential impact of inaccurate cost esti-
mates on the quality of the plan selected by the optimizer for
a simple class of test queries. This analysis indicates that the
order-of-magnitude cost estimation errors that we observed
empirically can cause the optimizer to choose plans that are
suboptimal by an order of magnitude.

In the second part of this paper, we present some initial
steps towards improved costing of database access methods.
We propose to adopt a statistical approach to cost estima-
tion. This approach involves observing the actual costs of
access methods as they are used in query plans, and then
inferring cost models from these observations. By applying
this procedure repeatedly, so that the current model is based
on recent observations, we can produce cost models that
adapt automatically to changes in the database system con-
figuration or operating point. Similar approaches have been
proposed for modeling the costs of complex XML query op-
erators [14], for costing UDF executions [7], and for cost-
ing remote sub-queries in federated database systems [11].
However, we argue that the problem of cost estimation for
database access methods presents some unique challenges.
We have implemented, in Postgres, a prototype of a statis-
tical cost modeling technique. We illustrate the issues by
using the prototype to learn the costs of index scans.

2. The Importance of I/O Cost Estimation

In this section, we seek to answer two questions. First,
how large are I/O cost estimation errors? Second, what is
the impact of these errors on the query optimizer? If I/O
costs are incorrectly estimated, will the optimizer choose a
bad plan? How bad might it be?

To address these questions, we present a concrete analy-
sis of a single case: the choice between an index scan and a
table scan as a table access method in Postgres. We have
used Postgres (Version 8.0.9) because it is open-source.
This allows us to directly inspect the relevant analytic cost
models. We have focused on index scans because estimat-
ing the cost of an index scan - especially for secondary,
unclustered indexes - is difficult. Although the details of
the cost model we present are specific to Postgres, every
database system’s cost model has its own sources of inac-
curacy. Parameter calibration, in particular, is a problem
faced by all models. In Section 2.4 we present a brief em-
pirical study of index scan cost estimates in SQL Anywhere,
a commercial database management system from Sybase
iAnywhere [2]. This demonstrates that the kinds of cost
estimation errors that we observed are not unique to Post-
gres.

2.1. I/O Cost Models for Table Scan and
Index Scan

We begin with a brief description of the I/O cost mod-
els used for table scans and index scans in Postgres. Post-
gres uses two configurable server parameters to model the
costs of individual I/O operations. Cseq represents the cost
of a sequential I/O, and Crand represents the cost of a ran-
dom I/O operation. The cost of a table scan is estimated as
Ttscan = CseqNP , where Np is the number of pages in the
table being scanned.

Estimating the cost of an index scan is more challeng-
ing. Postgres uses a modified version of the cost model
developed by Mackert and Lohman [9]. It first estimates
the number of page I/Os that would be required if the index
order were completely uncorrelated with respect to the clus-
tering order of the associated table. This value, Nuncorr, is
estimated using:

Nuncorr =


min(2sNP NT

2NP +sNT
, NP) when NP ≤ b

2sNP NT

2NP +sNT
when sNT ≤ D

b + (sNT −D)NP−b
NP

when sNT > D

where D = 2NP b
2NP−b . In this expression, s is the selectivity

of the index scan, NP is the number of pages in the un-
derlying table, NT is the number of tuples in the underly-
ing table, and b is Postgres’ effective buffer cache size, an-
other configurable server parameter. Next, it estimates the

number of pages that would be required if the index were
completely correlated with the physical order of the table:
Ncorr = dsNP e. Finally, Postgres uses its estimate of the
actual index correlation (denoted by r) to interpolate be-
tween the costs that would result at these extremes:

Tiscan = (1− r2)NuncorrCrand + r2NcorrCseq (1)

Postgres’s correlation estimates range from r = 0, indicat-
ing no correlation, to r = 1 indicating complete correlation.
This model can be interpreted as r2Ncorr pages read se-
quentially (at a cost of Cseq per page) and (1− r2)Nuncorr

pages read randomly, so the estimated total number of page
I/Os is given by the sum of these two numbers.

2.2. I/O Cost Estimation Errors

We ran a series of experiments intended to measure the
accuracy with which Postgres estimates the costs of index
scans under various conditions. Each index scan results in
some number of page I/O requests, each of which imposes
some load on the underlying storage system. The experi-
ments presented here characterize errors in the estimation
of I/O counts, i.e., the number of page I/O requests that
occur during a scan. The optimizer may also make errors
in estimating the per-page load (cost) imposed by these re-
quests. Since the total cost of an index scan depends on
both the number of page I/O requests and the costs of those
requests, the estimation errors reported in our experiments
may be magnified by any additional errors made in estimat-
ing per-page costs.

Our experiments used a single relation, R, with three at-
tributes: A, B, and C. Attributes A and B are of type inte-
ger. Attribute C, of type varchar, is a padding attribute that
is used to control the total size of each tuple. We define a
clustered index on A, and an unclustered index on B.

We adopted a method used by Vander Zanden, Taylor,
and Bitton [13] to populate R with skewed data for which
we can control the correlation between attributes A and B.
Values for attribute A are randomly generated in the range
[0,M] using a normal distribution with mean µ and standard
deviation σ. Given a value t.A for attribute A of tuple t, we
choose a value for B using

t.B = t.A + U

(
−Mc

2
,
Mc

2

)
where c is a parameter that is used to control the correlation
between A and B and U(x, y) is a uniform random variable
over the range [x, y]. If the resulting value t.B is outside
of the range [0,M] we discard it and choose another. As
the parameter c increases from c = 0 to c = 2, A and
B change from perfectly correlated to uncorrelated. In our
experiments, we used µ = 10000, M = 2µ = 20000, and

2

σ = 2000. We generated 6000000 tuples for relation R,
and generated values for attribute C of length 154 bytes.
The resulting relation occupied 112,548 8 Kbyte Postgres
pages.

We ran a set of experiments, each of which consisted of
the following steps:

1. Choose a value for the correlation parameter c and cre-
ate and populate relation R plus the unclustered index
on attribute B.

2. Choose a size, b, for the Postgres buffer cache and set
the corresponding Postgres server parameter.

3. Run the Postgres ANALYZE command to ensure that
Postgres has accurate statistics for table R.

4. Run a series of instances of the simple range query
“select count(*) from R where R.b ≤
:var” using successively larger values of var in
each instance. Restart Postgres after each query to
ensure that each starts with an empty buffer cache.

Postgres has two possible plans for this query, one using
a table scan of R and one using an index scan on the un-
clustered index for R.b.1 However, we forced Postgres to
choose the index scan regardless of the costs of the two
plans. For each query, we recorded Nest, Postgres’s esti-
mate of the number of page I/O operations required by the
index scan. As was noted in Section 2.1, this estimate is
given by (1 − r2)Nuncorr + r2Ncorr. However, Postgres
does not report this estimate directly. It reports Tiscan, as
defined by Equation 1. For the purposes of this experiment,
we used Nest = Tiscan/Crand, which is never greater than
the actual estimate of (1− r2)Nuncorr + r2Ncorr. We also
recorded the actual number of page I/Os (Nmeas) performed
by Postgres when the scan was executed. We define the es-
timation error, εio, as εio = Nest/Nmeas. Note that since
Postgres always overestimates the actual number of I/O op-
erations, and since the Nest that we measured is always
lower than Postgres’s actual estimate, the estimation errors
(εio) that we report underestimate the true estimation errors.

Figure 1 shows the measured (Nmeas) and estimated
(Nest) I/O counts as a function of the selectivity of the test
query when c = 0.5. Figure 2 shows the corresponding
estimation errors, εio. These figures show that Postgres’s
I/O estimates can be off by an order of magnitude. Further-
more, the amount of error depends on factors such as the
index correlation and the buffer size. Figure 3 shows how
estimation errors vary as a function of buffer size when the
index correlation parameter(c) equals 0.5 and var = 5000.
We found that estimation errors initially grow very quickly
as b increases, before gradually declining.

1Postgres does not support index-only plans, so it has to retrieve tuples
from relation R to execute the test query.

0

1000000

2000000

3000000

4000000

5000000

0
 0.2
 0.4
 0.6
 0.8
 1

Selectivity

I/O
 c

ou
nt

Nest B30k

Ndb B30k

Nest B5k

Ndb B5k

Figure 1. Estimated and actual I/O counts vs.
query selectivity, for buffer sizes b = 5000 and
b = 30000. Correlation parameter c = 0.5.

0

5

10

15

20

25

0
 0.2
 0.4
 0.6
 0.8
 1

Selectivity

E
rr

or
 R

at
io

Edb B30k

Edb B5k

Figure 2. Estimation error vs selectivity for
buffer sizes b = 5000 and b = 30000. Corre-
lation parameter c = 0.5

0

5

10

15

20

25

0
 10000
 20000
 30000
 40000
 50000
 60000

Buffer Size (Pages)

E
rr

or
 R

at
io

Edb

Figure 3. Estimation error vs buffer size for
parameters c = 0.5 and var = 5000

3

Figure 4 illustrates the relationship between estimation
errors and the index correlation when the Postgres buffer
size (b) is equal to 5000 pages. It is observed that estimates
were most accurate for indexes that were highly correlated
(c = 0) or highly uncorrelated (c = 1), but were signifi-
cantly worse for intermediate values of c. These estimation
errors speak to the difficulty of accurately accounting for
the effects of clustering and buffering in an analytic model.

0

2

4

6

8

10

12

14

16

18

0
 0.2
 0.4
 0.6
 0.8
 1

Index Correlation

E
rr

or
 R

at
io

Edb

Figure 4. Estimation error vs index correla-
tion for buffer size b = 5000

2.3. Optimizer Sensitivity

In the previous section, we showed that Postgres can
make significant errors in estimating the costs of index
scans. In this section, we address the follow-up question:
can these cost estimation errors lead to errors in cost-based
query optimization? Might Postgres choose a bad plan as a
result of these estimation errors and, if so, how bad can that
plan be?

We will not attempt to answer this question in its full
generality. Instead, we will consider a much more specific
problem. Suppose that we have a class of simple selection
queries of the form used in Section 2.2, namely:

select count(*) from R
where R.b ≤ :var

Suppose further that the query optimizer has two possible
plans to choose from for this query: a table scan of R, or
an index scan using an unclustered index on R.b. This is
the case for Postgres. We would like to quantify the effect
that I/O costing errors may have on the actual cost of exe-
cuting this query. In particular, costing errors may cause the
optimizer to choose the more expensive of the two plans.

To quantify this effect, we use the notion of global rela-
tive cost, as defined originally by Reiss and Kanungo [12].
Suppose that we have two cost models: the optimizer’s
cost model Mdbms and an ideal, correct cost model Mideal.
Suppose that, under the actual cost model, the optimizer

pl
an

 c
os

t

query selectivity
0 1

low

high

cost of table scan

s1 s2

under dbms model
cost of index scan

lower bound on
index scan cost
under ideal model

Figure 5. Analysis of table scan and index
scan costs under two cost models

chooses plan Pdbms for a given query, and that under Mideal

the optimizer would choose plan Pideal for the same query.
Note that, in general, Pideal may or may not differ from
Pdbms. We define the global relative cost of Pdbms as

GRC(Pdbms) =
Cost(Pdbms,Mideal)
Cost(Pideal,Mideal)

where Cost(P,M) refers to the cost of plan P according to
cost model M . Thus, if GRC(Pdbms) = k, then the system
is using a plan that is k times as expensive as the plan that
it would have chosen under the ideal cost model.

To simplify our analysis, we will consider the specific
case in which actual cost model accurately estimates the
cost of a table scan (which is not difficult to do) but overes-
timates the cost of index scans by a factor ε. Specifically, if
P represents the index scan plan, then Cost(P,Mdbms) ≤
εCost(P,Mideal). This scenario is illustrated in Figure 5,
which shows Mdbms and Mideal for index scan (as well as
the cost model for table scans) as functions of the scan se-
lectivity. At a query selectivity less than s1, the index scan
plan is chosen under both Mdbms and Mideal. Thus, there
is no penalty for using Mdbms and the global relative cost
will be 1. Similarly, the table scan plan is chosen under
both cost models for queries with selectivity greater than
s2. However, for queries with selectivity between s1 and
s2, the optimizer will choose a table scan, although an in-
dex scan would have been cheaper. If we assume that the
(unknown) ideal cost model for the index scan is monoton-
ically non-decreasing with respect to the query selectivity,
then the worst-case error will occur when the query selec-
tivity is equal to s1. Thus, we can write:

GRC(Pdbms) ≤
Ttscan(s1)

(1/ε)Tiscan(s1)
=

Tiscan(s1)
(1/ε)Tiscan(s1)

= ε

That is, if the optimizer’s cost model can overestimate the
cost of an index scan by a factor ε, then the cost of executing

4

a selection query may be a factor ε higher than it would have
been under the ideal cost model.

2.4. I/O Cost Estimation Errors in SQL
Anywhere

In Section 2.2 we showed that Postgres’ query optimizer
can make very inaccurate estimates of I/O counts for un-
clustered index scans. In this section we want to demon-
strate that this problem is not unique to Postgres. To this
end, we studied index scan cost estimates in the SQL Any-
where database management system (Version 10) [2]. SQL
Anywhere’s cost model is more sophisticated than that of
Postgres. For example, it considers the current buffer resi-
dency ratio (BRR) of database objects when estimating I/O
costs. The buffer resident ratio of a relation is defined as the
ratio of the number of buffer resident pages for that relation
to the total number of pages for that relation.

We measured cost estimation errors for SQL Anywhere
using the methodology that was described in Section 2.2,
with the exception that we also controlled the buffer res-
ident ratio of queried relations. Experiments were per-
formed under two different BRR conditions: BRR=0 and
BRR=0.49. BRR=0 was achieved by flushing the DBMS
buffer before running each test query. BRR=0.49 was
achieved by first flushing the DBMS buffer and then run-
ning a buffer-warming range query against the target rela-
tion prior to running the test query. We took measures to
ensure that accurate selectivity estimates were used by the
optimizer in obtaining estimated I/O counts. These mea-
sures included building histograms with a large number of
buckets and providing user hints. Thus, the cost estimation
errors that we observed were due to inaccurate I/O count es-
timates, not inaccurate selectivity estimation. The estimated
and actual I/O counts were obtained from SQL Anywhere’s
graphical query plans. We used a buffer cache size of 1
gigabyte for these experiments.

Figure 6 shows the estimated and actual I/O counts for
two different buffer resident ratios, and Figure 7 illustrates
the corresponding estimation errors. These two figures
show that SQL Anywhere can experience I/O estimation er-
ror of the same magnitude as those we observed with Post-
gres. This is true despite the fact the SQL Anywhere is able
to use its knowledge of the BRR in making cost estimates.
This illustrates how difficult cost estimation can be: even if
we know how much of a relation is cached in the buffer, it is
difficult to estimate how effective the cache will be. On the
other hand, we also note that when BRR = 0.0 and queries
were very selective, SQL Anywhere’s I/O count estimates
were better than those produced by Postgres.

0.0

500000.0

1000000.0

1500000.0

2000000.0

2500000.0

3000000.0

0.00
 0.20
 0.40
 0.60
 0.80
 1.00

Selectivity

I/O
 C

ou
nt

Est+BBR0.0

Act+BBR0.0

Est+BBR0.49

Act+BBR0.49

Figure 6. Estimated and actual I/O counts for
two different buffer resident ratios (BRR=0.0
and BRR=0.49)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.00
 0.20
 0.40
 0.60
 0.80
 1.00

Selectivity

E
st

im
at

io
n

E
rr

or
(E

io
)

BBR0.0

BBR0.49

Figure 7. Estimation error (Eio) for two dif-
ferent buffer resident ratios (BRR=0.0 and
BRR=0.49)

5

3. Black-Box I/O Cost Estimation

It is difficult to build and calibrate accurate analytic I/O
cost models, and model inaccuracies can lead to poor plans.
To address this problem, we are exploring the use of black-
box statistical I/O cost models for database operators. The
general idea is to measure the actual costs of database op-
erators and then fit a model to these observations. More
specifically, for each type of database access method (e.g.,
index scans) and each physical database object used by that
method, we model the cost of accessing the object using the
method. These models are parameterized in the same way
as the corresponding access method. For example, the cost
models for index scans are parameterized by the selectivity
of the scans.

This general approach to cost estimation has been ap-
plied in a variety of settings in which it is difficult to de-
velop good analytic models. Examples include estimating
the costs of user-defined functions [7], estimating the costs
of remote sub-queries in federated database systems [11],
and estimating the costs of complex XML query opera-
tors [14]. The so-called “parade-of-runs” approach [1] re-
lies on a synthetic calibration workload to produce a train-
ing data set that covers the entire input parameter space. Al-
ternatively, calibration can be avoided in favor of an adap-
tive approach that measures the costs of operators (or func-
tions or subqueries) that occur as a result of the normal sys-
tem workload, and then uses these costs to build a model.
A drawback of the adaptive approach is that there is no
guarantee that the resulting training data will cover the en-
tire parameter space. Hopefully, though, they are represen-
tative of the actual workload and thus cover the interest-
ing part of the space. We adopt the latter approach, as it
avoids the calibration step and allows for the possibility of
models that will adapt to changes in workload and system
configuration. Thus, for each database access method, this
approach will over time produce a succession of models,
M0,M1,M2, . . ., with each new model somehow incorpo-
rating more recent observations than its predecessors.

We are currently exploring the application of this idea
to the problem of costing database access methods. One
challenge in using this approach for costing database access
methods is the problem of optimizer-induced “gaps” in the
training data. These are gaps that occur because the query
optimizer may have more than one access method to choose
from, and the model learning mechanism can observe only
those access methods that are actually selected for use by
the query optimizer.

To illustrate this problem, we return to the scenario de-
scribed in Section 2 in which the database includes the re-
lation R with an index on R.B and is handling a workload
consisting of simple range queries on R.B. Suppose that
the initial cost model M0 for index scans on R.B is given

by the upper (solid) index scan cost model in Figure 5. In
this situation, the learning algorithm will only observe in-
dex scans with selectivity s < s1, since the optimizer will
choose an index scan rather than a table scan under that con-
ditions. Thus, there is a “gap” in the training data for the
index scan model, since the portion of the input parameter
space for which s > s1 will not be represented.

To address this problem, we first try to construct a cost
model that is accurate in that portion of the selectivity space
for which we have training data: s < s1 in our example.
Next, we extrapolate the model into the gaps, resulting in a
complete model that covers the entire selectivity space. In
our prototype, described in Section 4, we have considered
two possible extrapolation techniques.

4. Prototype

We have implemented an adaptive, statistical learning
mechanism in Postgres and applied it to the problem of
learning cost models for index scans. When a query plan
uses an index scan, our prototype records the selectivity of
the scan and the actual number of page I/O operations that
are performed by the scan. Periodically, a learning mod-
ule is invoked. For each index, this module uses the obser-
vations that have accumulated since it was last invoked to
learn the functional relationship between index scan selec-
tivity (s) and I/O count (N). We will use Ni(s) to repre-
sent the function that is learned by the ith invocation of the
learning module. To estimate the cost of an index scan with
selectivity s, we use Ni(s)Crand. Thus, this procedure re-
sults in a series of cost models M0,M1, . . . ,Mi, . . ., where
model Mi (i ≥ 1) is based on the learned function Ni. Once
Mi has been produced by the learning module, it replaces
model Mi−1 and is used by the query optimizer until the
learning module is next invoked to produce model Mi+1.
We use Postgres’s built-in analytic index scan cost model as
the initial model, M0, for all indexes.

Note that by using Crand to translate the I/O count Ni(s)
into an I/O cost, we are overestimating the costs of I/O oper-
ations and thus introducing a bias against index scans in the
cost based optimizer. For the purposes of our experiments
this is not a problem. However, a more realistic implemen-
tation of this technique would need to incorporate a better
means of estimating per-page I/O costs. The issue of esti-
mating I/O counts rather than I/O costs is discussed further
in Section 5.

To determine the I/O count function Ni(s) from a set
of observations, the learning module proceeds in two steps.
Let ŝi represent the largest scan selectivity observed for the
target index during the ith iteration. The learning module
first creates a model for the selectivity range [0, ŝi], where
we have training data. To produce this partial model, we
have tried two regression methods: standard linear regres-

6

sion (LM) and the multivariate adaptive polynomial spline
regression (POLYMARS) [6]. Next, it extrapolates this
model into the range (ŝi, 1]. The result is a two-part model
that covers the entire range of scan selectivities. To ex-
tend the model into (ŝi, 1], we also tried two approaches.
The first, which we call linear extension (LN), extends the
[0, ŝi] model linearly into (ŝi, 1]. The second, which we call
mixed extension (MIX), uses a selectivity-weighted average
of a linear extension and the original Postgres analytic I/O
count estimates. Specifically, for s > ŝi, we use:

Ni(s) = N0(s)− (N0(ŝi)−Ni(ŝi))
1− s

1− ŝi

where

N0(s) = (1− r2)Nuncorr + r2Ncorr

as described in Section 2.1. Since the original Postgres
model overestimates the costs of index scans, MIX extrap-
olation results in higher cost estimates than LN extrapola-
tion. We ran a series of experiments to explore the behav-

0

0.25

0.5

0.75

1

0
 5
 10
 15

Iteration

R
-s

q
u

ar
ed

LM+LN

LM+MIX

POLY+LN

POLY+MIX

Figure 8. Correlation coefficient (R2) vs itera-
tion number for the index on lineitem

ior of the prototype. Our test database was a small (scale
factor 0.1) TPC-H instance with skewed data generated us-
ing a technique developed by Chaudhuri and Narasayya [3].
The Postgres cache size was set to its default value (1000
pages). The query workload consisted of two simple tar-
get queries plus a “background” workload consisting of the
TPC-H queries. The first target query was a simple range
query on the orderkey attribute of the lineitem table. The
second target was simple range query on the orderkey at-
tribute of the orders table. The physical database design
includes unclustered indexes on each of these attributes, so

0

0.25

0.5

0.75

1

0
 5
 10
 15

Iteration

R
-s

q
u

ar
ed

LM+LN

LM+MIX

POLY+LN

POLY+MIX

Figure 9. Correlation coefficient (R2) vs itera-
tion number for the index on orders

that both of the target queries are answerable using an in-
dex scan if the optimizer chooses to use one. Our goal
in these experiments was to to learn cost models for index
scans on the orderkey attributes of the lineitem and orders
tables. Each experiment consisted of fifteen cost model it-
erations. On each iteration, we ran 100 consecutive batches
of queries, with each batch consisting of a random permuta-
tion of the TPC-H queries plus the two target queries. Thus,
each of our two target queries occurs 100 times on each it-
eration.

By combining a regression technique (LM or POLY-
MARS) with an extrapolation technique (LN or MIX), we
obtain four potential cost model learning modules. Fig-
ures 8 and 9 show the correlation coefficient of the fitted
models for the lineitem index and the orders index, respec-
tively, in the range [0, ŝi] as a function of the iteration num-
ber, for each of these techniques. These graphs show that
both regression techniques resulted in good fits to the ob-
served costs.

Of more interest are Figures 10 and 11, which show
the maximum observed scan selectivity (ŝi) as a function of
the iteration number, i. Under each cost model Mi, there
exists a crossover selectivity, at which the modeled index
scan becomes more expensive than a table scan. When Mi

is used, we expect to observe index scans with selectivities
up to this crossover point. Thus, ŝi will be a lower bound
on the crossover selectivity for Mi.

In our test configuration, the true crossover selectivities
for index scans on lineitem and orders are approxi-
mately 0.254 and 0.3, respectively. However, as shown in
Figure 11, ŝi peaked as high as 0.7 when LN extrapola-
tion was used in the case of orders. This indicates that

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0
 5
 10
 15

Iteration No.

C
ri

tic
al

 P
oi

nt

LM+LN

LM+MIX

POLY+LN

POLY+MIX

Figure 10. Maximum observed scan selectiv-
ity (ŝi) vs iteration number for the index on
lineitem

0

0.2

0.4

0.6

0.8

0
 5
 10
 15

Iteration

C
ri

tic
al

 P
oi

nt

LM+LN

LM+MIX

POLY+LN

POLY+MIX

Figure 11. Maximum observed scan selectiv-
ity (ŝi) vs iteration number for the index on
orders

LN underestimated costs when it extrapolated, resulting an
a crossover selectivity much higher than the true crossover.
This illustrates an interesting tradeoff. By extrapolating ag-
gressively, using low cost estimates, the learning module
will quickly be able to observe index scans - and hence build
an accurate cost model - over a wide range of selectivities.
However, the price is potentially poor query performance
while those observations are collected. In our example, in-
dex scans with selectivity greater than 0.3 are slower than a
table scan would have been. In contrast, MIX interpolation
was much less aggressive. Under MIX, ŝi moves slowly
towards the actual crossover selectivity, but it avoids over-
shooting. Note that failure to find the true crossover selec-
tivity quickly also results in performance penalties, since
the optimizer may fail to choose an index scan when it
should. However, these are the same kind of errors that
were made under Postgres’s original cost model M0. Thus,
a virtue of MIX is that it gradually improved on M0 without
using index scans inappropriately.

5. Conclusion and Future Work

In this paper, we showed that I/O cost models for
database access methods can be very inaccurate, and that
such inaccuracies can cause the query optimizer to choose
suboptimal plans. For example, if the cost of an index scan
is overestimated by a factor of ten (which we observed), the
query optimizer may choose to use a table scan even though
an index scan would have been ten times faster.

To obtain better cost estimates for database access meth-
ods, we propose to use an adaptive statistical approach that
learns cost models from observations of the actual costs of
access methods under normal operating conditions. We pre-
sented some preliminary results from a prototype imple-
mentation of this approach in Postgres. These results il-
lustrate one of the challenges of this approach, namely the
difficulty of building a complete cost model for a given ac-
cess method using only observations of index scans that are
actually selected by the query optimizer.

Currently, our prototype learns to predict I/O counts for
index scans. The optimizer must then somehow translate
these estimated counts into costs. One advantage of this ap-
proach is that I/O counts are insensitive to the load on the
underlying storage system, and to the performance char-
acteristics of that storage system. As a result, we expect
our predictions to be robust with respect to changes in load
or storage system configuration. Of course, the disadvan-
tage is that we have not solved the problem of modeling
the costs associated with requests made to the underlying
storage system. An alternative approach would be to use
the adaptive learning mechanism to directly learn I/O costs,
rather than I/O counts. For example, instead of observing
the I/O counts associated with index scans at particular se-

8

lectivities, we could observe the total time required by the
scan. This would allow the learning module to directly
learn the cost models Mi, rather than the I/O count mod-
els Ni. One challenge associated with this approach is that
costs will fluctuate, perhaps rapidly, with the storage sys-
tem load. The adaptive nature of our methodology would
allow it to accommodate fluctuations that are not too fast.
To account for more rapid changes, we may have to con-
sider techniques such as addition of a load parameter as an
input to our learned cost function. A second challenge is to
ensure that the access “costs” that we learn are compatible
with the rest of the optimizer’s cost model. In particular, for
throughput-based optimizers, it may be undesirable to in-
clude contention-induced latencies in the learned costs. We
are currently exploring these and other related problems.

6. Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] J. Boulos and K. Ono. Cost estimation of user-defined meth-
ods in object-relational database systems. ACM SIGMOD
Record, 28(3):22–28, 1999.

[2] I. T. Bowman, P. Bumbulis, D. Farrar, A. K. Goel, B. Lucier,
A. Nica, G. N. Paulley, J. Smirnios, and M. Young-Lai.
SQL Anywhere: A holistic approach to database self-
management. In Proc. Second International Workshop on
Self-Managing Database Systems, Apr. 2007.

[3] S. Chaudhuri and V. Narasayya. Program for TPC-
D data generation with skew. Microsoft Corp.
ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew,
1999.

[4] Y. Ioannidis. The history of histograms(abriged). In Proc.
Int’l Conf. on Very Large Data Bases, pages 19–30, 2003.

[5] Y. E. Ioannidis and S. Christodoulakis. On the propagation
of errors in the size of join results. In Proc. ACM SIGMOD
Int’l Conf. on Management of Data, pages 268 – 277, 1991.

[6] C. Kooper, S. Bose, and C. J. Stone. Polychotomous re-
gression. Journal of the American Statistical Association,
92(437):117–127, 1997.

[7] B. S. Lee, L. Chen, J. Buzas, and V. Kannoth. Regression-
based self-tuning modeling of smooth user-defined function
costs for an object-relational database management system
query optimizer. The Computer Journal, 47(6):673–693,
2004.

[8] R. Lipton, J. Naughton, and D. Schneider. Practical selec-
tivity estimation through adaptive sampling. In Proc. ACM
SIGMOD Int’l Conf. on Management of Data, pages 1–11,
1990.

[9] L. F. Mackert and G. M. Lohman. Index scans using a finite
lru buffer: A validated i/o model. ACM Transactions on
Database Systems, 14(3):401–424, Sept. 1989.

[10] M. V. Mannino, P. Chu, and T. Sager. Statistical profile
estimation in database systems. ACM Computing Surveys,
20(3):191–221, Sept. 1988.

[11] A. Rahal, Q. Zhu, and P.-A. Larson. Evolutionary techniques
for updating query cost models in a dynamic multidatabase
environment. VLDB Journal, 13(2):162–176, 2004.

[12] F. Reiss and T. Kanungo. A characterization of the sensitiv-
ity of query optimization to storage access cost parameters.
In Proc. ACM SIGMOD Int’l Conf. on Management of Data,
pages 385–396, 2003.

[13] B. T. V. Zanden, H. M. Taylor, and D. Bitton. Estimating
block accesses when attributes are correlated. In Proc. Int’l
Conf. on Very Large Data Bases, pages 119–127, 1986.

[14] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and
C. Zhang. Statistical learning techniques for costing XML
queries. In Proc. Int’l Conf. on Very Large Data Bases,
pages 289–300, 2005.

9

