®

Check for
updates

Renormalization of NoSQL Database
Schemas

Michael J. Mior® and Kenneth Salem

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{mmior,kmsalem}@uwaterloo.ca

Abstract. NoSQL applications often use denormalized databases in
order to meet performance goals, but this introduces complications as
the database itself has no understanding of application-level denormal-
ization. In this paper, we describe a procedure for reconstructing a nor-
malized conceptual model from a denormalized NoSQL database. The
procedure’s input includes functional and inclusion dependencies, which
may be mined from the NoSQL database. Exposing a conceptual model
provides application developers with information that can be used to
guide application and database evolution.

Keywords: Renormalization - NoSQL + Database design
Conceptual modeling

1 Introduction

NoSQL databases, such as Apache Cassandra, Apache HBase, and MongoDB,
have grown in popularity, despite their limitations. This is due in part to their
performance and scalability, and in part because they adopt a flexible approach
to database schemas. Because these systems do not provide high-level query
languages, applications must denormalize and duplicate data across physical
structures in the database to answer complex queries. Unfortunately, the NoSQL
database itself typically has no understanding of this denormalization. Thus, it
is necessary for applications to operate directly on physical structures, coupling
applications to a particular physical design.

Although NoSQL systems may not require applications to define rigid
schemas, application developers must still decide how to store information in
the database. These choices can have a significant impact on application perfor-
mance as well as the readability of application code [6]. For example, consider an
application using HBase to track requests made to an on-line service. The same
requests may be stored in multiple tables since the structures available deter-
mine which queries can be asked. The choice of data representation depends
on how the application expects to use the table, i.e., what kinds of queries and
updates it needs to perform. Since the NoSQL system itself is unaware of these
application decisions, it can provide little to no help in understanding what is
being represented in the database.

© Springer Nature Switzerland AG 2018
J. C. Trujillo et al. (Eds.): ER 2018, LNCS 11157, pp. 479-487, 2018.
https://doi.org/10.1007/978-3-030-00847-5_34

480 M. J. Mior and K. Salem

Together, the lack of physical data independence and the need for workload-
tuned, denormalized database designs creates challenges for managing and
understanding physical schemas, especially as applications evolve. In our on-
line service example, request information might be stored twice, once grouped
and keyed by the customer that submitted the request, and a second time keyed
by the request subject or the request time. If the application updates a request,
or changes the information it tracks for each request, these changes should be
reflected in both locations. Unless the application developer maintains external
documentation, the only knowledge of this denormalization is embedded within
the source code. We aim to surface this knowledge by generating a useful con-
ceptual model of the data.

ProjName Project ProjID
DeptName
WorkingOn
DeptID Department :
EmpID
Manages
Employee EmpName

Fig. 1. Schema example after renormalization

We refer to this surfacing task as schema renormalization. This work
addresses the schema renormalization problem through the following technical
contributions:

— We present a semi-automatic technique for extracting a normalized concep-
tual model from an existing denormalized NoSQL database. It produces a
normalized conceptual model for the database, such as the one shown in
Fig. 1.

— We develop an normalization algorithm in Sect.5 which forms the core of
our approach. This algorithm uses data dependencies to extract a conceptual
model from the NoSQL system’s physical structures. Our algorithm ensures
that the resulting model is free from redundancy implied by these dependen-
cies. To the best of our knowledge, this is the first normalization algorithm to
produce a schema in interaction-free inclusion dependency normal form [9].

— Finally, Sect. 6, presents a case study which shows the full schema renormal-
ization process in action for a NoSQL application. We use this case study to
highlight both the advantages and the limitations of our approach to renor-
malization.

Renormalization of NoSQL Database Schemas 481

The conceptual data model that our algorithm produces can serve as a sim-
ple reference, or specification, of the information that has been denormalized
across the workload-tuned physical database structures. We view this model as
a key component in a broader methodology for schema management for NoSQL
applications.

2 Renormalization Overview

We renormalize NoSQL databases using a three step process. The first step is
to produce a generic physical schema describing the physical structures that
are present in the NoSQL database. We describe the generic physical model
in more detail in Sect. 3, and illustrate how it can be produced for different
types of NoSQL systems. The second step is to identify dependencies among the
attributes of the generic model. The dependencies, which we discuss in Sect. 4,
can be provided by a user with understanding of the NoSQL system’s application
domain or automatically using existing mining techniques. We provide a brief
overview of these steps in the following sections. More detail is available in an
extended technical report [14].

The final step in the renormalization process is to normalize the generic
physical schema using the dependencies, resulting in a logical schema such as
the one represented (as an ER diagram) in Fig. 1. This step is automated, using
the procedure described in Sect.5. Our algorithm ensures that redundancy in
the physical schema captured by the provided dependencies is removed.

3 The Generic Physical Schema

The first step in the renormalization process is to describe the NoSQL database
using a generic schema. The schemas we use are relational. Specifically, a generic
physical schema consists of a set of relation schemas. Each relation schema
describes a physical structure in the underlying NoSQL database (e.g., a docu-
ment collection). A relation schema consists of a unique relation name plus a set
of attribute names. Attribute names are unique within each relation schema.

If the NoSQL database includes a well-defined schema, then describing the
physical schema required for renormalization is a trivial task. The generic schema
simply identifies the attributes that are present in the table, and gives names
to both the attributes and the table itself. For example, Cassandra stores table
definitions which can directly provide the generic schema.

In general, we anticipate that the definition of a generic physical schema for
an application will require user involvement. However, there are tools that may
assist with this process. For example, Izquierdo et al. [7] have proposed a method
for extracting a schema from JSON records in a document store, which could be
applied to extract the generic physical schema required for renormalization.

482 M. J. Mior and K. Salem

4 Dependency Input

The second step of the renormalization process is to identify dependencies among
attributes in the generic physical schema. Our algorithm uses two types of
dependencies: functional dependencies (FDs) and inclusion dependencies (INDs).
These two forms of dependencies are easy to express and are commonly used in
database design [11].

For input to our algorithm, we require that all INDs are superkey-based. That
is, for an IND R (A) C S (B), B must be a superkey of S. We do not believe that
this is a significant restriction since we intend for INDs to be used to indicate
foreign key relationships which exist in the denormalized data. Indeed, Mannila
and Ré&ih& [11] have previously argued that only key-based dependencies are
relevant to logical design.

5 Normalization Algorithm

Levene and Vincent [9] define a normal form for database relations involving
FDs and INDs referred to as inclusion dependency normal form (IDNF). They
have shown that normalizing according to IDNF removes redundancy from a
database design implied by the set of dependencies. However, one of the necessary
conditions for this normal form is that the set of INDs is non-circular. This
excludes useful schemas which express constraints such as one-to-one foreign key
integrity. For example, for the relations R (A, B) and S (B, () we can think of
the circular INDs R (A) = S (B) as expressing a one-to-one foreign key between
R(A) and S (B).

Levene and Vincent also propose an extension to IDNF, termed interaction-
free inclusion dependency normal form which allows such circularities. The goal
of our normalization algorithm is to produce a schema that is in interaction-free
IDNF. This normal form avoids redundancy implied by FDs and INDs while still
allowing the expression of useful information such as foreign keys. As we show
in Sect. 6, this produces useful logical models for a real-world example.

Data: A set of relations R, FDs F, and INDs I
Result: A normalized set of relations R”” and new dependencies F’ and I'"
begin

1"’

|) Expand (F, I); // Perform dependency inference

R/, I+/ «— BCNFDecompose (RF' I ; // BCNF normalization

R”,I+” «— Fold (R',F’,I+/) ; // Remove attributes/relations

R, I+W «— BreakCycles (R”,I+”) // Break circular INDs
end

Fig. 2. Algorithm for normalization to interaction-free IDNF

Figure 2 provides an overview of our normalization algorithm, which consists
of four stages. In the reminder of this section, we discuss the normalization

Renormalization of NoSQL Database Schemas 483

algorithm in more detail. We will make use of a running example based on the
simple generic (denormalized) physical schema and dependencies shown in Fig. 3.

Physical Schema

EmpProjects(EmpID, EmpName, ProjID, ProjName)
Employees(EmpID, EmpName, DeptID, DeptName)
Managers(DeptID, EmpID)

Functional Dependencies

EmpProjects : EmpID — EmpName Employees : EmpID — EmpName, DeptID
EmpProjects : ProjID — ProjName Employees : DeptID — DeptName
Managers : DeptID — EmpID

Inclusion Dependencies

EmpProjects (EmpID, EmpName) C Employees (. . .)
Employees (DeptID) C Managers (. . .)
Managers (EmpID) C Employees (. . .)

When attributes have the same names, we use . . . on the right.

Fig. 3. Example generic physical schema and dependencies.

5.1 Dependency Inference

To minimize the effort required to provide input needed to create a useful nor-
malized schema, we aim to infer dependencies whenever possible. Armstrong [1]
provides a well-known set of axioms which can be used to infer FDs from those
provided as input. Similarly, Mitchell [15] presents a similar set of inference rules
for INDs.

Mitchell further presents a set of inference rules for joint application to a set
of FDs and INDs. We adopt Mitchell’s rules to infer new FDs for INDs and vice
versa. The pullback rule enables new FDs to be inferred from FDs and INDs.
The collection rule allows the inference of new INDs. These new dependencies
allow the elimination of attributes and relations via the Fold algorithm (see
Sect. 5.3) to reduce the size of the resulting schema while maintaining the same
semantic information.

There is no complete axiomatization for FDs and INDs taken together [3].
Our Expand procedure, which uses Mitchell’s pullback and collection rules for
inference from FDs and INDs, is sound but incomplete. However, it does ter-
minate, since the universe of dependencies is finite and the inference process
is purely additive. Although Expand may fail to infer some dependencies that
are implied by the given set of FDs and INDs, it is nonetheless able to infer
dependencies that are useful for schema design.

484 M. J. Mior and K. Salem

5.2 BCNF Decomposition

The second step, BCNFDecompose, is to perform a lossless join BCNF decom-
position of the physical schema using the expanded set of FDs. When rela-
tions are decomposed, we project the FDs and INDs from the original rela-
tion to each of the relations resulting from decomposition. In addition, we add
new INDs which represent the correspondence of attributes between the decom-
posed relations. For example, when performing the decomposition R (ABC) —
R' (AB),R" (BC) we also add the INDs R’ (B) C R” (B) and R" (B) C R’ (B).
In our running example, we are left with the relations and dependencies shown
in Fig. 4 after the Expand and BCNFDecompose steps.

Physical Schema
Employees (EmpID, EmpName, DeptID) Departments <DeptID, DeptName)
EmpProjects (EmpID7 ProjID) EmpProjects’ (EmpID, EmpName)
Managers <DeptID7 EmpID) Projects (ProjID7 ProjName)

Functional Dependencies

Employees : EmpID — EmpName, DeptID Departments : DeptID — DeptName
Projects : ProjID — ProjName Managers : DeptID — EmplID
EmpProjects’ : EmpID — EmpName

Inclusion Dependencies

Projects (ProjID) = EmpProjects (. . .) EmpProjects (EmpID) C Employees (.. .)
EmpProjects’ (EmpID) = EmpProjects (. . .) Managers (DeptID) C Departments (. . .)
EmpProjects’ (EmpID, EmpName) C Employees (. ..) Managers C Employees (. . .)

Fig. 4. Relations and dependencies after BOCNF decomposition. Note that = is used to
represent bidirectional inclusion dependencies.

5.3 Folding

Casanova and de Sa term the technique of removing redundant relations fold-
ing [2]. A complete description of our algorithm, Fold, is given in an extended
technical report [14]. Fold identifies attributes or relations which are recoverable
from other relations. Specifically, folding removes attributes which can be recov-
ered by joining with another relation and relations which are redundant because
they are simply a projection of other relations. Fold also identifies opportunities
for merging relations sharing a common key.

Consider the EmpProjects’ relation which contains the EmpName attribute.
Since we have the IND EmpProjects’ (EmpID,EmpName) C Employees(...) and
the FD Employees: EmpID — EmpName we can infer that the EmpName attribute
in EmpProjects’ is redundant since it can be recovered by joining with the
Employees relation.

Renormalization of NoSQL Database Schemas 485

5.4 Breaking IND Cycles

Interaction-free IDNF requires that the final schema be free of circular INDs.
Mannila and R&ihé [11] use a technique, which we call BreakCycles, to break
circular INDs when performing logical database design. We adopt this technique
to break IND cycles which are not proper circular.

5.5 IDNF

The goal of our normalization algorithm is to produce a schema that is in
interaction-free IDNF with respect to the given dependencies. The following
conditions are sufficient to ensure that a set of relations R is in interaction-free
IDNF with respect to a set of FDs F and INDs I: (1) R is in BCNF [5] with
respect to F, (2) all the INDs in I are key-based or proper circular, and (3)
F and I do not interact. A set of INDs is proper circular if for each circular
inclusion dependency over a unique set of relations R (X;) C R2(Y2), R2(X2) C
R3(Y3),..., Rn(Xm) C R1(Y1), we have X; =Y, for all . The schema produced
by the normalization algorithm of Fig. 2 is in interaction-free IDNF. We provide
a proof in an extended technical report [14].

6 RUBIS Case Study

In previous work, we developed a tool called NoSE [13], which performs auto-
mated schema design for NoSQL systems. We used NoSE to generate two Cas-
sandra schemas, each optimized for a different workload (a full description is
given in an extended technical report [14]). In each case, NoSE starts with a
conceptual model of the database which includes six types of entities (e.g., users,
and items) and relationships between them. The two physical designs consist of
9 and 14 Cassandra column families.

Our case study uses NoSE’s denormalized schemas as input to our algorithm
so that we can compare the schemas that it produces with the original concep-
tual model. For each physical schema, we tested our algorithm with two sets of
dependencies: one manually generated from the physical schema, and a second
mined from an instance of that schema using techniques discussed in an extended
technical report [14]. The first set of dependencies resulted in a conceptual model
that was identical (aside from names of relations and attributes) to the original
conceptual model used by NoSE, as desired.

For the second set of tests, renormalization produced the original model for
the smaller Cassandra schema. The mining process identified 61 FDs and 314
INDs. Ranking heuristics were critical to this success. Without them, spurious
dependencies lead to undesirable entities in the output schema. For the larger
schema, mining found 86 FDs and 600 INDs, many of them spurious, resulting
in a model different from the original. No set of heuristics will be successful in
all cases and this is an area for future work.

These examples show that FDs and INDs are able to drive meaningful denor-
malization. Runtime for the normalization step of our algorithm was less than
one second on a modest desktop workstation in all cases.

486 M. J. Mior and K. Salem

7 Related Work

Much of the existing work in normalization revolves around eliminating redun-
dancy in relational tables based on different forms of dependencies. However,
it does not deal with the case where applications duplicate data across rela-
tions. Inclusion dependencies are a natural way to express this duplication. Other
researchers have established normal forms using inclusion dependencies [9-11] in
addition to FDs. Our approach borrows from Manilla and Raiha, who present
a variant of a normal form involving inclusion dependencies and an interactive
normalization algorithm. However, it does not produce useful schemas in the
presence of heavily denormalized data. Specifically, their approach is not able to
eliminate all data duplicated in different relations.

A related set of work exists in database reverse engineering (DBRE). The
goal of DBRE is to produce an understanding of the semantics of a database
instance, commonly through the construction of a higher level model of the data.
Unlike our work, many approaches [4,17] present only an informal process and
not a specific algorithm.

There is significant existing work in automatically mining both functional [12]
and inclusion [8] dependencies from both database instances and queries. These
approaches complement our techniques since we can provide the mined depen-
dencies as input into our algorithm. Papenbrock and Naumann [16] present of
heuristics for making use of mined dependencies to normalize a schema accord-
ing to BCNF. We leverage these to incorporate mining into our algorithm as
discussed in an extended technical report [14].

8 Conclusions and Future Work

We have developed a methodology for transforming a denormalized physical
schema in a NoSQL datastore into a normalized logical schema. Our method
makes use of functional and inclusion dependencies to remove redundancies com-
monly found in NoSQL database designs. We further showed how we can make
use of dependencies which were mined from a database instance to reduce the
input required from users. Our method has a variety of applications, such as
enabling query execution against the logical schema and guiding schema evolu-
tion as application requirements change.

References

1. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580-583 (1974)

2. Casanova, M.A., de Sa, J.E.A.: Mapping uninterpreted schemes into entity-
relationship diagrams: two applications to conceptual schema design. IBM J. Res.
Develop. 28(1), 82-94 (1984)

3. Casanova, M.A.: Inclusion dependencies and their interaction with functional
dependencies. J. Comput. Syst. Sci. 28(1), 29-59 (1984)

10.

11.

12.

13.

14.

15.

16.

17.

Renormalization of NoSQL Database Schemas 487

Chiang, R.H., et al.: Reverse engineering of relational databases: extraction of an
EER model from a relational database. Data Knowl. Eng. 12(2), 107-142 (1994)
Codd, E.F.: Recent investigations into relational data base systems. Technical
report RJ1385, IBM, April 1974

Goémez, P., Casallas, R., Roncancio, C.: Data schema does matter, even in NoSQL
systems! In: RCIS 2016, June 2016

Cénovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON data.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68-83.
Springer, Heidelberg (2013)

Kantola, M., et al.: Discovering functional and inclusion dependencies in relational
databases. Int. J. Intell. Syst. 7(7), 591-607 (1992)

Levene, M., Vincent, M.W.: Justification for inclusion dependency normal form.
IEEE TKDE 12(2), 281-291 (2000)

Ling, T.W., Goh, C.H.: Logical database design with inclusion dependencies. In:
ICDE 1992, pp. 642-649, Feburary 1992

Mannila, H., Raiha, K.J.: Inclusion dependencies in database design, pp. 713-718.
TEEE Computer Society, February 1986

Mannila, H., Raiha, K.J.: Algorithms for inferring functional dependencies from
relations. DKE 12(1), 83-99 (1994)

Mior, M.J., Salem, K., Aboulnaga, A., Liu, R.: NoSE: Schema design for NoSQL
applications. In: ICDE 2016, pp. 181-192 (2016)

Mior, M.J., Salem, K.: Renormalization of NoSQL database schemas. Technical
report CS-2017-02, University of Waterloo (2017)

Mitchell, J.C.: Inference rules for functional and inclusion dependencies. In: PODS
1983, pp. 58-69. ACM (1983)

Papenbrock, T., Naumann, F.: Data-driven schema normalization. In: Proceedings
of EDBT 2017, pp. 342-353 (2017)

Premerlani, W.J., Blaha, M.R.: An approach for reverse engineering of relational
databases. Commun. ACM 37(5), 42-49 (1994)

