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Abstract—An important goal for database systems today is
to provide elastic scale-out, i.e., the ability to grow and shrink
processing capacity on demand, with varying load. Database
systems are difficult to scale since they are stateful – they
manage a large database, and it is important when scaling to
multiple server machines to provide mechanisms so that these
machines can collaboratively manage the database and maintain
its consistency. Database partitioning is often used to solve this
problem, with each server machine being responsible for one
partition. In this paper, we propose that the flexibility provided
by a partitioned, shared nothing parallel database system can be
exploited to provide elastic scale-out. The idea is to start with
a small number of server machines that manage all partitions,
and to elastically scale out by dynamically adding new server
machines and redistributing database partitions among these
servers. We present an implementation of this approach for
elastic scale-out using VoltDB – an in-memory, partitioned,
shared nothing parallel database system. Our main goal in this
paper is to identify several manageability problems that arise
when using this approach for elastic scale-out. The paper presents
some of these problems and outlines a research agenda for this
area.

I. INTRODUCTION

A software system is said to be scalable if it is able to handle

increasing load simply by using more computing resources. A

system can be scaled up by adding more computing resources,

such as memory or CPUs, to the machine that it runs on.

Scale-out permits a system to handle even larger workloads

by adding more machines (which we call nodes in this

paper), for example in a cluster. The computing platforms of

today, namely computing clouds and private clusters, enable

applications to access a large number of physical nodes and

scale out and in elastically, by adding more nodes when the

load increases and removing them when the load decreases.

Stateless systems, such as web and application servers, can

be scaled elastically by simply running more instances on

additional physical nodes provisioned on demand. On the

other hand, stateful systems, such as database management

systems (DBMSes), are hard to scale elastically because of

the requirement of maintaining consistency of the database that

they manage. There is currently a lot of interest in elastically

scaling database systems, and a good way to solve this problem

is to start with scalable (but not elastic) database systems.

Scalable database systems enable multiple nodes to manage

a database, but the set of nodes is static. These systems

distribute the database among the nodes by relying on replica-

tion [1], [2], [3], [4] or partitioning [5], [6]. Replication comes

with a cost due to data duplication and maintaining consistency

among the replicas. Partitioning is also non-trivial since it

requires users to define how to partition the database, and

it makes dealing with multi-partition transactions problematic.

However, partitioning seems to be gaining popularity as a way

to scale database systems (e.g., [7], [8]), and in this paper we

argue that partitioned, shared nothing databases are a good

starting point for DBMS elasticity.

Our basic approach is to start with a small number of

nodes that manage the database partitions, and to add nodes

as the database workload increases. These new nodes could

be (spare) physical servers that are dynamically provisioned

from a local cluster. Alternatively, in cloud computing envi-

ronments such as Amazon’s EC2 [9], the new nodes could

be dynamically provisioned virtual machines. When adding

new nodes, the database partitions are redistributed among

the nodes so that the workload gets shared among a larger

set of nodes. Conversely, when the workload decreases, the

number of nodes can be reduced and partitions can be moved

to a smaller set of nodes. Redistributing partitions under this

approach can be costly and difficult to manage because of its

disruptive effect on transaction processing. Thus, this approach

requires efficient mechanisms for partition redistribution.

We have implemented this elastic scale-out and scale-in

approach in VoltDB [10], including the required efficient

partition redistribution mechanism. VoltDB is a parallel shared

nothing partition-based database system. Like other shared

nothing database system [11], [12], [13], [14], VoltDB divides

the database into disjoint partitions based on some partitioning

key and distributes these partitions to the nodes of a cluster. In

this paper, we describe the changes that we made to VoltDB

to enable us to dynamically add new nodes to the cluster and

redistribute partitions, and we experimentally demonstrate the

effectiveness of our elastic scale-out and scale-in mechanisms

under varying load. We also show that this approach to

database elasticity gives rise to a number of research problems

in the area of database provisioning and manageability. A main

goal of this paper is to discuss some of these problems and

present potential research directions in this area.

There is an increasing body of work in the area of elasti-

cally scalable data stores, in particular, for cloud computing

environments. Key-value stores [15], [16], [17] can be scaled

elastically, similar to our solution. At a superficial level, such



systems bear some resemblance to relational database systems

in that they also store data as rows and columns. However,

these systems provide a very simple interface that allows

clients to read or write a value against a given key from the

store i.e., SQL is not supported, hence the name “NoSQL”.

In addition, they typically support only single-row atomic

updates, not general application-defined transactions like those

that are supported by relational database systems. Some key-

value stores provide only eventual consistency guarantees.

These limitations make it easier for these systems to scale.

In contrast, our system implements elastic scalability in an

ACID compliant DBMS (i.e., VoltDB) that provides full SQL

functionality.

ElasTras [18] is an elastically scalable, fault-tolerant, trans-

actional DBMS for the cloud, and is closest to our work.

Like VoltDB, ElasTras uses database partitioning and performs

scaling at the granularity of a partition. However, ElasTras

relies on a shared storage tier which allows for a simpler

mechanism for data migration. VoltDB stores the data com-

pletely in-memory on each host, requiring a more elaborate

mechanism for data migration (Section III). Furthermore, Elas-

Tras relies on schema-level database partitioning and limits

update transactions to a single partition. VoltDB, on the other

hand, uses table level partitioning and allows multi-partition

transactions at the cost of reduced performance for only these

transactions. Aside from these differences, our work is very

similar to ElasTras and the research challenges that we outline

in this paper are applicable to both of these systems.

The rest of this paper is organized as follows. In Section II,

we present an overview of VoltDB. Section III presents the

changes that we made to VoltDB to make it elastically scalable.

In Section IV, we present some open research problems that

need to be addressed in order to implement a self-managing

database system that is able to automatically provision itself by

scaling elastically with varying load. Section V then focuses

on the specific problem of data placement with elastic scale-

out. Section VI concludes the paper.

II. OVERVIEW OF VOLTDB

VoltDB [10] is a in-memory database system derived from

H-Store [19]. VoltDB has a shared nothing architecture and is

designed to run on a multi-node cluster. It divides the database

into disjoint partitions and makes each node responsible for a

subset of the partitions. Only a node that stores a partition can

directly access the data in that partition, and such nodes are

therefore sometimes called the “owners” of that partition. This

shared nothing partitioning has been shown to provide good

scalability while simplifying the DBMS implementation.

VoltDB has been designed to provide very high throughput

and fault tolerance for transactional workloads. It does so by

making the following design choices: a) all data is stored

in main memory, which avoids slow disk operations, b) all

operations (transactions) that need to be performed on the

database are pre-defined in a set of stored procedures that

execute on the server, i.e., ad hoc transactions are not allowed,

c) transactions are executed on each database partition serially,

with no concurrent transactions within a partition, thereby

eliminating the need for concurrency control, and d) partitions

are replicated for durability and fault tolerance.

A VoltDB cluster comprises one or more nodes connected

together by a local network, each running an instance of

the VoltDB server process. Each node stores one or more

database partitions in main memory. The VoltDB server at each

node is implemented as a multi-threaded process. For each

partition hosted on a VoltDB node, a separate thread within

the server process manages that partition and is responsible for

executing transactions against that partition. The best practice

for achieving high performance with VoltDB is to keep the

number of partitions on a node slightly smaller than the

number of CPU cores on that node. This way, each thread

managing a partition will always be executing on its own CPU

core, and there will still be some cores for the operating system

and other administrative tasks. Thus, threads never contend

with other threads for cores. Furthermore, these threads never

wait for disk I/O since the database is in memory, and never

wait for locks since transactions are executed serially. This

means that the CPU cores can be running at almost full

utilization doing useful transaction processing work, which

leads to maximum performance.

Clients connect to any node in the VoltDB cluster and

issue requests by calling pre-defined stored procedures. Each

stored procedure is executed as a database transaction. VoltDB

supports two types of transactions: 1) single-partition trans-

actions, as the name implies, are the ones involving only a

single database partition and are therefore very fast, and 2)

multi-partition transactions, which require data from more

than one database partition and are therefore more expensive

to execute. Multi-partition transactions can be completely

avoided if the database is cleanly partitionable, which is the

case for the kinds of transactional workloads that VoltDB

targets.

In order to tolerate node failures, VoltDB replicates parti-

tions to more than one node. The replication factor can be

specified as part of the initial configuration of the VoltDB

cluster. A VoltDB cluster configured with k-safety will have

k+1 instances of every partition, and can tolerate at most k

node failures. Transactions are executed on the different repli-

cas of a partition in the same serial order, and VoltDB waits

for all copies of a transaction to finish before acknowledging

its success to the client.

III. ENABLING ELASTIC SCALE-OUT WITH VOLTDB

In order to implement elastic scale-out, we need to provide

mechanisms to: 1) dynamically add new nodes to the cluster,

and 2) move database partitions from one node to another.

One of the reasons for choosing VoltDB for elastic scale-out is

that it already provides much of the needed functionality. This

simplifies the implementation of our scale-out mechanism.

A. Growing the size of the cluster

In large cluster deployments, node failures are common.

Therefore, VoltDB implements an efficient way of identifying



failed (down) nodes and a node rejoin mechanism which

introduces a node back into the cluster after it recovers from

failure.

In our implementation, we violate the VoltDB best practices

and assign more partitions to a node than the number of

CPU cores on that node. This means that VoltDB threads

will contend for CPU cores, but this is acceptable in a lightly

loaded system. As the load on the system increases and we

need to scale out, we will introduce new nodes into the cluster

and move some partitions to these new nodes. When the

system scales out to its limit, we will have one VoltDB thread

per core. We made the design decision to build our system with

the notion of a maximum scalability limit since this notion

greatly simplifies the scale-out mechanism. The simplification

stems from the fact that VoltDB can be made aware in advance

of the number of nodes that can potentially participate in the

cluster, and the mapping of partitions to these nodes. Knowing

this information in advance enables us to use VoltDB’s failure

handling mechanism for managing scale-out as we describe

next.

To enable the number of nodes in the cluster to grow

dynamically we introduce a new type of node called the scale-

out node. A scale-out node is a node that initially has no

database partitions mapped to it, and that looks to VoltDB like

a “failed” node. We initialize the cluster with a fixed number of

additional scale-out nodes. These nodes begin as inactive (i.e.,

they do not store data or process transactions), so the cluster

will ignore them with little overhead. Note that at this point,

a scale-out node is merely a data structure with no physical

counterpart. When we need to actually introduce such a node

into the cluster, we can bring up an actual physical server (or

a virtual machine) that corresponds to a scale-out node. To

dynamically grow the size of the cluster, we use a slightly

modified version of VoltDB’s node rejoin mechanism. At the

completion of rejoin, the scale-out node will have transitioned

from the “failed” state to the “active” state, and will have

database partitions mapped to it. Effectively, we have made

VoltDB think that this node was part of the cluster all along,

but was just failed, and is now back up. However, at this

point the node still has no data for any of the partitions. The

partitions need to be moved from one of the active nodes,

which is the second step of scale-out.

B. Moving database partitions between nodes

Introducing a new node into the cluster requires copying

data from one of the existing nodes to the new node. This data

copying step is also required when recovering a failed node.

For this purpose, VoltDB implements a recovery mechanism

that runs after a node has rejoined the cluster. The recovery

mechanism works at the database partition level, and copies

the data from a source partition to a destination partition in a

consistent manner. Note that source partitions reside on one of

the active nodes, while destination partitions reside on the node

that has rejoined the cluster. Once all the database partitions

mapped to the rejoining node have been recovered, it can start

accepting new transactions.

For scale-out, we made small changes to the recovery

mechanism. Once the scale-out node has rejoined the cluster,

it will run recovery on all the database partitions mapped to it

to populate them. In the original recovery mechanism, after the

data is copied from the source node to the destination node,

both nodes are active and accept transactions. In contrast, once

recovery is finished when scaling out, the source partitions are

shutdown – reflecting the change of “ownership” for scaled-

out partitions from the source node to the scale-out node.

The converse of the operations described above are used

when scaling in because the load on the system has become

lower: partitions are moved away from scale-out nodes and

back to the original nodes, and when all the partitions on a

scale-out node are moved back to the original nodes, that node

is shutdown and returned to the pool of (inactive) scale-out

nodes.

C. Demonstrating elastic scale-out and scale-in

In this section, we present experiments to illustrate that the

mechanism that we implemented in VoltDB can be used to

efficiently grow and shrink the size of the VoltDB cluster

elastically, depending on the load.

For these experiments, we use a modified, cleanly parti-

tionable version of the TPC-C benchmark [20]. VoltDB is

intended for transactional applications in which the database

fits in the total memory of all nodes in the cluster. A TPC-

C database grows continuously as transactions run. Thus,

without modification, a TPC-C workload is not suitable for

VoltDB, since the database will eventually grow beyond the

memory limit. Because VoltDB can execute transactions very

quickly, the memory limit will be reached very quickly -

in less than 5 minutes in our server environment. Thus, to

produce a transactional test application suited to VoltDB’s

memory constraint, we made several changes to TPC-C to

avoid database growth. First, we removed the History table,

which keeps track of payment history and thus continues

to grow. Second, in the original TPC-C specifications, the

delivery transaction removes rows from the NewOrder table.

We modified the delivery transaction to remove corresponding

rows from Orders and OrderLine table at the same time, to

prevent these tables from growing. Finally, to make TPC-C

cleanly partitionable by warehouse, we eliminated new order

transactions that access remote warehouses.

The first experiment that we present here was run with a

total of three physical hosts. We have a total of 8 unique

database partitions, and we run this experiment without k-

safety. One of the three hosts is used to run the TPC-C

benchmark clients and the other two are used as VoltDB

servers. We start the VoltDB cluster with just one physical

host that stores all eight partitions. We call this the primary

host. We have one spare scale-out host which will be inactive

initially. Clients connect to the VoltDB cluster (which is just

one primary host) and submit TPC-C transactions. Clients in

this experiment are open loop clients that submit the requests

at a fixed rate, which we call the offered load. Offered load is

varied during the experiment to vary the load on the VoltDB
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Fig. 1. Cluster Throughput with Increasing Load

cluster. We run the test for a total of 30 minutes and measure

the throughput of the cluster in terms of transactions per

second (TPS). Our goal is to demonstrate that we can handle

increases and decreases in the offered load by adding or

removing hosts to the VoltDB cluster.

Figure 1 shows the offered load and the actual throughput

of the cluster. Figure 2 shows the CPU utilization of each host

(primary and scale-out) during the duration of the experiment.

Initially, there is just one host, which is offered a fixed load of

10,000 requests/sec. The single host is able to service this load

successfully, with about 60% CPU utilization (Figure 2). At

about 400 seconds into the test, we increased the offered load

to 20,000 requests/sec. A single host is not able to handle this

load, and can provide only 15,000 TPS, as shown by the green

line in Figure 1. We also see that the primary host (Host 0) is

highly loaded now with about 90% CPU utilization (Figure 2).

At about 750 seconds into the test, we do a scale-out operation

by adding another host (Host 1) to the VoltDB cluster. Note

that before this point, Host 1 was idle thus its CPU utilization

was at 0% (Figure 2). During the scale-out operation, we move

4 out of 8 partitions from the primary host (Host 0) to the

scale-out host (Host 1). The amount of data moved was about

1 GB. After the scale-out operation, the cluster is once again

able to successfully service the offered load of 20,000 TPS.

We reduce the offered load back to 10,000 requests/second at

around 1100 seconds. Now both hosts are very lightly loaded

at around 30% CPU utilization (Figure 2). We perform a scale-

in operation at around 1450 seconds, once again leaving only

one node in the cluster that stores all partitions. The green line

in Figure 1 shows that our scale-out and scale-in mechanisms

have a minimal transient effect on throughput. When doing a

scale-out or scale-in there is a small drop in throughput (as

expected) but the drop lasts only for a very short time.

The second experiment, which is similar to the first, was

run with a total of five physical hosts. Like before, one of

the three hosts is used to run the TPC-C benchmark clients

but now we have four hosts in the VoltDB cluster instead

of two. We start the VoltDB cluster with just one physical

host, the primary host. When the offered load is increased, the
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Fig. 2. Per Host CPU Utilization with Increasing Load

number of hosts in the VoltDB cluster is also increased, up to a

total of four hosts (including the primary host). This approach

ensures that the cluster is always adequately provisioned to

handle the offered load, thus proactively avoiding any overload

conditions. Similarly, when the offered load is decreased, we

decrease the number of hosts in the VoltDB cluster to avoid

underload. In total, we perform three scale-out operations at

points A, B, and C in Figure 3, and we perform three scale-in

operations at points D, E, and F. In addition to showing the

offered load and scale-out/scale-in points, Figure 3 shows the

throughput during this experiment. Figure 4 shows the CPU

utilization of the different hosts over time. The experiment

starts with 16 TPC-C partitions on one host, and through scale-

out we get to four hosts, and then back to one host through

scale-in. Figure 5 shows the mapping of partitions to hosts

at different points in the experiment, along with the expected

mapping of partitions to cores within a host. (The mapping

of partitions to cores is managed by the operating system and

not by VoltDB.) The total amount of data migrated during the

scale-out operations is approximately 3 GB.

Note that a single host in our system can handle up to 10,000

TPS. With a total of four hosts, the system is able to effectively

handle approximately 40,000 TPS during the peak. As the

offered load starts to subside around 1,000 seconds into the

test, the cluster gradually becomes over-provisioned, so it is

still able to handle the offered load even after the scale-in

operations at points D, E, and F in Figure 3. Figure 4 shows

that none of the hosts in the cluster is ever overloaded because

of our anticipatory scale-out policy. In this experiment, we add

and remove nodes at fixed pre-defined points that we know will

match the pre-defined offered load. In a more realistic setting,

a DBMS that is able to scale elastically would implement a

controller that would automatically add or remove hosts from

the cluster whenever it anticipates an overload or underload

condition.

These experiments show that the changes we implemented

in VoltDB allow us to effectively handle varying load by

dynamically growing and shrinking the size of the VoltDB

cluster.
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IV. RESEARCH PROBLEMS

We envision a number of different research challenges that

need to be addressed to implement a database management

system that can scale elastically in response to a time-varying

workload. In this section, we discuss a number of these chal-

lenges. Some of these challenges are specific to the VoltDB

scale-out implementation presented earlier while the rest are

more generally applicable to any approach for elastic scale-

out.

A. When to scale-out/in?

A DBMS needs to be equipped with mechanisms that are

able to trigger scale-out/scale-in at the required times. Timing

of these scaling decisions is critical. Responding to a load

spike too early or too late will result in an over- or under-

provisioned system, respectively. A simple reactive strategy

is to monitor some observable system parameter such as per

host CPU utilization. If CPU utilization of a particular host is

greater than a max threshold (say 80%), it is considered to be

overloaded and thus a scale-out operation is performed. Simi-

larly, if the load on a particular host is less than a min threshold

(say 40%), that host is considered to be underloaded and so the

DBMS can perform a scale-in operation to minimize wasted

server resources. On the other hand, a proactive approach

would require building performance models that are able to

accurately predict load on the DBMS given some information

about its workload and resource allocation. Using such an

approach, a DBMS would be able to predict when load will

exceed server capacity and thus scale out proactively. These

are just two examples of approaches that can be used to answer

the question: when to scale-out/scale-in? More research is

needed to establish which of these approaches (or some other

approach) works best for which scenarios.

B. Minimizing the cost of scaling (speeding up scaling)

Scaling out requires some administrative work, for example,

adding a new node to the cluster, copying data to this new

node, and warming it up before client requests are redirected

to it. Each of these steps needs to be optimized in order to
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Fig. 4. Per Host CPU Utilization with Multiple Scale-out Operations

minimize the cost of the scaling operation. The most important

and probably the most costly part of scaling is the data

movement from one physical host to another physical host.

We could develop cost models that estimate the cost of data

movement for a scaling operation, e.g., I/O cost of transferring

disk blocks, and the cost of network traffic. Optimizing the

cost of the scaling operation with these models in place would

require choosing a data movement “plan” that has the least

cost, as estimated by these cost models. Such a plan can take

advantage of the fact that each VoltDB partition is replicated

k + 1 times on different hosts for k-safety.

Also, the actual implementation of the scaling operation will

play an important role in determining its cost. For example,

in our implementation of scaling for VoltDB we explored

two different strategies. A naive, and very inefficient strategy

is to do the scale-out operation as a single, multi-partition

transaction that blocks all partitions on both the source and

destination nodes and thus has an adverse effect on system

throughput. On the other hand, our optimized implementation

of scale-out divides the task into multiple phases making it

more efficient and less disruptive. We believe that such design

choices will exist in any DBMS that is being designed to be

elastically scalable and so should be evaluated carefully.

C. Exploiting replicas

VoltDB requires that database partitions be replicated in

order to provide fault tolerance and durability in the presence

of failures of nodes in the VoltDB cluster. This requirement
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not only allows the system to operate even when nodes

fail, but may also present opportunity for optimizing scaling

operations. In VoltDB, the loads on each replica of a database

partition are exactly the same. One of the ways in which this

“symmetry” of replica loads can be exploited is by minimizing

the impact on transaction processing during a scaling opera-

tion. If a database partition is being moved, there will be a

small window of unavailability for that partition. During that

window new transactions intended for that partition can be

redirected to any of its replicas, thus minimizing the impact

on system throughput. These transactions can then later be

applied to the copy of the partition that is being moved to

“catch it up” and make it consistent with other copies, before

allowing it to handle new transactions.

Note that VoltDB requires that no two replicas of a database

partition can reside on the same physical host. With this policy,

entire nodes may be replicas of each other regardless of the

placement strategy used to distribute database partitions to

nodes. For example, consider a case where there are two

physical hosts and we need to place four partitions on them,

with a replication factor k = 1, i.e., a total of eight partitions.

With the requirement that no two replicas of a partition can

reside on the same physical host, one host stores four partition,

with the other host storing the replicas of those four partitions.

What this means is that the load on these hosts will be exactly

identical. If one of them is overloaded, the other will be

as well, and vice versa. Can we manage the placement of

partitions so that we can manage load in a better manner while

implementing elastic scale-out? More research is needed to

address this question.

Note that we present the research question of exploiting

replicas in the context of VoltDB but many parallel DBMS

systems today have a similar requirement to use replication

for fault tolerance. Therefore, the discussion above applies to

these other systems as well.

D. Partitioning and partition movement

In our approach, we enable elasticity by moving database

partitions for scale-out. The key idea is that a database is

stored as a collection of partitioning units (P1, P2, ..., Pn).

When the database server becomes overloaded, it transfers the

“ownership” of some of these partitions to another node that

is dynamically added to the cluster. Similarly, for scale-in, an

underloaded node will transfer the ownership of its partitions

to some other node in the cluster.

VoltDB effectively uses a two-stage mapping of database

partitions to CPU cores. The first mapping is of database

partitions to VoltDB’s server threads. As mentioned earlier,

at every node, for each database partition hosted at that node,

VoltDB creates a server thread to manage that partition. In

our implementation, we used a one-to-one mapping between

database partitions and server threads but whether that is

always the best choice is not entirely clear. An alternative

is to map multiple database partitions to a single VoltDB

server thread. The second mapping is of these server threads

that manage database partitions to CPU cores. As mentioned

earlier, recommended best practices for VoltDB suggest having

no more server threads than the total number of CPU cores

on each physical host. This strategy means that the operating

system will most likely give each VoltDB thread its own

dedicated core, which is one of the ways that VoltDB uses to

achieve maximum performance. However, in our experience

with VoltDB, over-committing CPU cores by assigning more

server threads to a host than the number of cores that it has,

and hence running more than one thread on each core, had

minimal impact on system throughput (around 1%). These

two levels of mapping might be specific to VoltDB but similar

choices exist in other partitioned database systems. Coming



up with an optimal mapping is an interesting manageability

problem.

Lastly, the loads placed on each partition might not be the

same, as is implicitly assumed by VoltDB. It is possible that

certain partitions might be “hotter” than some other partition,

which may result in unbalanced load among the nodes of the

cluster. Nodes hosting one or more hot partitions will always

be more loaded than other nodes. With non-uniform partition

loads, the initial placement of partitions and the decision which

partitions to move to which nodes during a scaling operation

become non-trivial. We discuss this specific issue in more

detail in the following section.

V. PARITION PLACEMENT

The problem of partition placement is to find an “optimal”

allocation of partitions to physical servers. Optimality in this

case is usually defined in terms of load balancing or overall

throughput maximization. The general partition placement

problem has been shown to be NP-complete [21]. Various

heuristic techniques are typically used to find a solution.

As noted in the previous section, if the load on partitions is

not uniform, i.e., some partitions are considerably more loaded

than other partitions, the data placement problem becomes

even more important. We discuss this problem in the context of

initial placement, and for scaling out, in the following sections.

A. Initial placement

Figure 6 shows the result of a simulation that compares

two data placement strategies in terms of overall system load-

balancing when database partitions are not uniformly loaded.

In our simulation, we use 40 partitions and the loads on

these partitions are distributed according to a Zipf distribution.

The x-axis in Figure 6 shows the value of the Zipf’s skew

parameter (the higher this parameter, the more skewed the

distribution), and the y-axis shows the variance in per host

load. The higher the variance, the more unbalanced the system

is. We compare VoltDB’s default placement strategy (i.e.,

round-robin) with a simple greedy heuristic that places the

highest loaded partitions on least loaded hosts. As shown

in Figure 6, for moderate skew (0.4) both strategies provide

equally well balanced system. As the skew in partition load

grows, the default (round-robin) strategy starts to perform

worse than the simple heuristic. We see the greatest oppor-

tunity for optimization when Zipf’s skew coefficient is around

1. As the skew increases beyond 1, both strategies start to

perform worse. This is because with higher skew values, a few

partitions always have the most load, so the overall variance

in per host load will be very high regardless of the placement

strategy used.

As shown by the simulation above, initial placement of

database partitions matters when the load is non-uniform.

Moreover, there is room for improvement over a simple

strategy such as round-robin. An obvious research challenge is

to devise a technique that is able to provide close to optimal

load balance in the presence of skew in partition load. The

problem of partition placement and re-distribution for load
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balancing has been studied extensively in the past [5], [6],

[21], [22]. This problem is also very similar to the problem

of consolidating multiple database workloads with an aim to

minimize the number of physical servers used and to maximize

load balance [23]. So the question of initial placement of

partitions on VoltDB nodes can simply be a question of

choosing a suitable technique from the literature, probably

with minor modifications for this specific problem of elastic

scale-out.

Problem formulation

As an example, we present one formulation for the initial

partition placement problem for VoltDB as a non-linear binary

integer programming problem.

Notation: Let P denote the total number of unique parti-

tions that are to be placed on N physical hosts in the cluster,

where each partition is replicated k times. Let X denote the

assignment matrix of partitions to hosts, where the elements

of this matrix are Xij ∈ {0, 1}, where i = 1, 2, ..., P and

j = 1, 2, ..., N . A value Xij = 1 means that partition i is

assigned to node j. Let Cj denote the capacity of the j-th

node in terms of the number of partitions it can host, and Lj

denote maximum CPU load allowed on the j-th node. Let li
denote CPU load generated by the i-th partition. Let µ denote

the mean load across all nodes in the cluster. And finally, let

k denote the replication factor.

Constraints: Given the above notation, a feasible solution

has to satisfy the following constraints:

1) Every replica of a partition must be assigned to ex-

actly one server, and the servers must be different:∑N

j=1
Xij = k for i = 1, 2, . . . , P

2) A cluster node j can host a maximum of Cj partitions:
∑P

i=1
Xij ≤ Cj for j = 1, 2, . . . , N

3) The load of all the partitions assigned to a node j should

be less than Lj :
∑P

i=1
Xij ∗ li ≤ Lj for j = 1, 2, . . .N

Note that all of the above constraints are linear constraints.

Objective Function: For load balancing, an objective func-

tion could be to minimize variance in load across all nodes

in the cluster. Using the above notation, such an objective

function can be expressed as:

min
∑N

j=1
(
∑P

i=1
Xij ∗ li − µ)

2



Note that in our formulation the objective function is non-

linear. And because our decision variable (i.e., Xij) is binary,

we have to use non-linear binary integer programming to solve

this problem. This is just one formulation of the partition

placement problem. A different formulation might have linear

constraints and a linear objective function, and thus may be

solved by using any standard linear programming software.

B. Placement for scaling out

The possibility of the database cluster growing and shrink-

ing dynamically adds another dimension to the problem of

partition placement. Previous research either does not deal

with the data re-distribution problem for load balancing, or if it

does, it works with a fixed number of physical servers. Clearly,

this is not sufficient for the case where physical servers can

be added or removed dynamically for elastic scaling. Finding

a data placement for M physical servers starting with a

placement for N servers (M > N ) while minimizing data

migration has a lot of room for innovation and research.

For the examples that we considered in this paper, we

assumed that the database cluster will grow by one physical

server at a time. Perhaps, for certain situations, a more efficient

approach in terms of data migration cost may be to add more

than one physical server at the time of scale-out. How to

determine the number of physical servers to add at scale-out

is another interesting research question. Once the number of

servers to add has been determined, the next thing is to choose

which partitions to move from which nodes, and to which new

nodes. The strategy used for initial placement can be used here

as well.

VI. CONCLUSION

A self-managing database system should be able to automat-

ically and elastically grow and shrink the computing resources

that it uses in response to variations in load. Database systems

today do not support this kind of elastic scale-out and scale

in due to unique challenges involving the need to maintain

consistency of the database while elastically scaling. In this

paper, we outline a solution for database scale-out using

a shared nothing partition-based parallel database system,

namely VoltDB. We have presented the required changes that

can be incorporated in a system like VoltDB to make it

elastically scalable. More specifically, we present mechanisms

to dynamically add more nodes to an existing VoltDB cluster

and to move partitions from existing nodes to the new nodes

in an efficient manner. We also discuss various research

challenges that need to be overcome to build a truly elastic

DBMS. We believe that a solution implemented using the

techniques presented in this paper, and that addresses the

research challenges envisioned, can provide effective elastic

scaling for partitioned database systems.
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