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Abstract

We present a system that optimizes sequences of re-
lated client requests by combining small requests into larger
ones, thus reducing per-request overhead. The system pre-
dicts upcoming requests and their parameter values based
on past observations, and prefetches results that are ex-
pected to be needed. We describe how the system makes
its predictions and how it uses them to optimize the request
stream. We also characterize the benefits with several ex-
periments.

1. Introduction

Figure 1 shows pseudo-code for an application that is-
sues a series of small queries to a DBMS. It is a simplified,
artificially constructed application; however, its features are
a composite of elements we observed in a set of database
applications that we studied and described in an extended
version of this paper [4].

If the data needed by the application are mostly buffered,
the execution time for queries @, . . . Q. will be dominated
by overhead. One way to optimize the application’s per-
formance is to combine the small queries into larger ones.
For example, queries (7, and )}, could be combined into a
single query like the one shown in Figure 2. This would im-
prove not only response time, but also system throughput.

In previous work [3], we introduced a system called
Scalpel that can perform this kind of optimization auto-
matically, and transparently to both the client application
and the underlying database system. Scalpel is located be-
tween the client application and the server. It monitors
client/server communications and attempts to identify se-
quences of queries that can be replaced by a single com-
bined query, as was illustrated in Figure 2. We called this
technique semantic prefetching.

In our earlier work, we focused on one type of request
pattern: query nesting. In this paper, we focus instead on

a second common application pattern, which we call query
batches. A query batch is simply a sequence of non-nested
related queries, such as the sequence Q,, Qp, Q. from the
application of Figure 1. The primary contribution of this pa-
per is a technique for automatically identifying optimizable
query batches in an application request stream.

2. Scalpel System Overview

The components of the Scalpel system are illustrated in
Figure 3. The system operates in two phases: training and
run-time. During the initial training phase, Scalpel’s Call
Monitor passes all client requests through to the server with-
out modifying them. In addition, the Call Monitor passes
these requests to the Pattern Detector component, which
monitors and records a representation of the request stream.
At the conclusion of the training period, Scalpel’s Pat-
tern Optimizer analyzes this recorded information to iden-
tify optimizable batch patterns and produce corresponding
rewrites, as described in Section 3. These are recorded in
Scalpel’s rewrite database for use during the subsequent
run-time phase.

At run-time, Scalpel again monitors the application’s re-
quest stream. This time, the Call Monitor passes each appli-
cation request to the Prefetcher, which compares it against
the request patterns recorded in the rewrite database. When
the Prefetcher observes the start of a batch pattern for which
it has a prefetch optimization, the Prefetcher issues the
prefetch query to the database server. If the application be-
haves as expected, Scalpel uses the results of the prefetch
query to answer the application’s subsequent requests. If
the application behaves unexpectedly, Scalpel ignores the
results of the prefetch query and instead passes the applica-
tion’s actual requests through to the server.

Scalpel models an application’s request stream as a se-
quence of queries. For each such query in the sequence,
Scalpel will observe an Open request from the application,
followed by zero or more Fetch requests, followed by a
Close request. Figure 4 shows a hypothetical applica-



1 procedure GetCustomer (cust)

2 fetch row r1 from Q. :

3 SELECT name, accno FROM customer c
4 WHERE c.id = :cust.id

5 cust.name <« rl.name

6 if not cust.shipto then

7 cust.shipto « GetDefaultShipTo (cust)
8 fetch row r3 from Q. :

9 SELECT SUM(amount-paid) as balance
10 FROM ar a WHERE a.accno = :rl.accno
11 cust.balance = r3.balance

12 end

13 function GetDefaultShipTo (info)
14 fetch row r2 from Q4 :

15 SELECT addr FROM shipto s

16 WHERE s.cid = :info.id AND s.default=‘Y’
17 return r2.addr

18 end

19 procedure GetVendor (vend)
20 fetch row r4 from Qg :

21 SELECT name FROM vendor v
22 WHERE v.id = :vend.id
23 vend.name <«— r4.name

24 vend.mailto < GetDefaultShipTo (vend)
25 open c5 cursor for Q. :

26 SELECT partname, invlevel-onhand AS gty
27 FROM part p WHERE p.vid = :vend.id
28 AND p.onhand < p.invlevel

29 while r5 < fetch ¢5 do Addorder (vend,r5) end
30 close c5
31 end

Figure 1. An Example Application

SELECT c.name, c.accno, s.addr

FROM customer ¢ LEFT JOIN shipto s
ON s.id = c.id AND s.default = ‘Y’
WHERE c.id = :cust.id

Figure 2. Manually joining queries 0, and Q.

tion request trace as seen by Scalpel. The trace illustrates
a query sequence that might be generated by an applica-
tion that includes the code from Figure 1, as well as other
code that we have not shown. Each row of the trace ta-
ble in Figure 4 represents a single query (Open, Fetch,
and Close). The Query column indicates the query that
was opened, and the Input column shows the query pa-
rameter values with which it was opened. The query iden-
tifiers Qa, Qp, Qc, Qq and Q. refer to the SQL queries
shown in Figure 1, while queries Qx, @y, and @, refer to
other unspecified queries from elsewhere in the application.
The Output column shows the query result tuple that was
fetched by the application. If the application fetches more
than one tuple from a cursor (such as @), a set of tuples is
shown.
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Figure 3. Components of the Scalpel system.

# | Query | Input | Output
1] Qx | @2 | Gon
2| Q. | @01 | (‘Alice’, 501)
31 Q, | (101) | (‘1500 Robie St.")
41 Qo | (501) | ($400.00)
5 Qa (201) | (‘Mary’)
6 Qn (201) | (°1400 Barrington St.”)
7 Qe (201) | { (‘Bell’,3), (‘Tire’,6) }
8| Q. | (121) | (‘Bob’,537)
9 Q. (537) | ($0.00)
10 Qx 43) (31337)
11| Q. | (107) | (‘Cindy’, 523)
12| Q, | (107) | (‘1100 Sackville St.")
13 Qe | (523) | ($800.00)
14| Q, | (189) | (‘Elbereth’)
15| Qa4 | (255) | (‘Ned)
16 Qv (255) | (‘1200 Weber St.”)
17 Q. (255) | { (‘Pedal’,7), (‘Seat’,3) }
18 Q, (42) (‘Xyzzy’)
Figure 4. An example trace.
3. Training Scalpel

Scalpel predicts upcoming queries based on the queries
that it has observed so far. Like many other prefetchers,
Scalpel bases its predictions on queries that have been ob-
served in the recent past. To define what we mean by “re-
cent past”, we define the notion of a k-context. The k-
context at position p in a trace is the ordered list of queries
at trace positions p — (k—1),p— (k—2),...,p—1,p. For
example, the 5-context at position 7 in the trace of Figure 4
is the list [Qb, Qc, Qq, Qp, Qe]-

Scalpel works by learning k-contexts from which it can
predict that a particular query will occur next. Scalpel learns
by examining a training request trace like the one illustrated
in Figure 4. For example, from the trace in Figure 4, Scalpel
might learn that the 2-context [Q., Q)] predicts the query
Q.. These predictions are recorded in a rewrite database
shown in Figure 3 and used to control prefetching at run
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Figure 5. Suffix Trie After

QXa Qaa Qb7 Q07 Qd7 Qb from Figure 4

time.

The first training challenge faced by Scalpel is how to
choose the length £ of the contexts on which it should base
its predictions. Unfortunately, there is no single value of k
that is always appropriate for prediction. If k is too small,
Scalpel may miss valuable special cases. For example, in
the trace of Figure 4, the 1-context [Qy,] is sometimes fol-
lowed by Q. and sometimes by (4. However, the 2-context
[Qa, Q] is always followed by Q.. Thus, in this case,
k = 2 leads to a better prediction than k = 1. On the other
hand, unnecessarily large values of k can lead to overly spe-
cific predictions. Longer contexts also require much longer
training periods because each specific context will only be
observed infrequently.

For these reasons, the Pattern Detector tracks k-contexts
for all values of k during the training phase. Specifically,
the Pattern Detector records every k-context (0 < k < N,
where NN is the trace length) that occurs in at least one
position in the training trace. The Pattern Detector also
records the number of times that each k-context occurs in
the trace. These frequencies are used by the Pattern Opti-
mizer (Section 3.2) to estimate whether prefetching will be
cost-effective in a particular context.

Our implementation of Scalpel uses a suffix trie to track
k-contexts. The suffix trie representation offers a non-
redundant encoding of overlapping contexts of different
lengths. Figure 5 shows the suffix trie as it would look after
the sixth query from Figure 4. Edges in the trie are labeled
with the subscripts of queries from the trace, e.g., edge la-
bel a refers to query (),. Nodes represent the contexts that
have been observed in the trace. Each node is labeled with
a unique identifier, and represents the k-context consisting
of the queries labeled on the path from the root to that node.
For example, node 5 represents the 2-context [Q., @1]. The
root node, labeled A, represents the O-context. Dashed
edges are suffix links. Suffix links are related to general-
ization of contexts, which we will describe in Section 3.2.
For example, the suffix link from node 2 ([Qx, Q,]) points
to node 3, which represents the more general context [Q,].

Construction of a suffix trie as illustrated in Figure 5

would require O(IN?) space and time, where N is the length
of the training trace. However, Scalpel actually builds a
path compressed suffix trie in O(N) space and time using
an algorithm due to Ukkonen [9].

3.1. Query Parameter Correlations

Queries are often parameterized. If Scalpel is to prefetch
a query, it must predict not only that the query will occur,
but also the parameter values with which the query will be
invoked by the application. This is a significant distinc-
tion between prefetching queries and prefetching other non-
parameterized objects, such as data blocks from an I/O sys-
tem.

Often, the parameter values that are used for a given
query are related, through data dependencies in the appli-
cation code, to the input parameter values or the results of
previously-issued queries. Since Scalpel does not directly
observe the application code, it cannot infer such depen-
dencies through data flow analysis of that code. Instead, it
tries to detect correlations among the query input parameter
values and the query results that it observes in its training
trace. To illustrate how this works, consider Scalpel’s be-
havior when it observes query (). on line 4 of Figure 4.
(The trace in Figure 4 shows the query input and output pa-
rameter values.) Scalpel will note that @Q).’s input parameter
value (501) matches the value of the second result attribute
of the preceding query (), as well as the value of the first re-
sult attribute of the preceding query Q. Later, at line 13 of
the trace, Scalpel will again observe Q.. This time, it will
verify that @).’s input parameter value (now 523) matches
the second result attribute of the preceding query @Q,. How-
ever, it will be unable to verify the correlation between Q)
and the result of the preceding )y, as their parameter values
do not match this time around. Scalpel considers a param-
eter correlation to hold only if it never fails to hold in the
training trace. Thus, Scalpel will dismiss the potential cor-
relation between ().’s input and ()y’s output. More infor-
mation about detection of parameter correlations in Scalpel
can be found in the extended paper [4].

3.2. The Pattern Optimizer

At the conclusion the training period, the Pattern Opti-
mizer analyzes the suffix trie recorded by the Pattern De-
tector to determine, for each k-context (suffix trie node),
whether semantic prefetching should take place. Suppose
that C = [Q1,...,Qx] is a k-context in the trie and that
C'=1[Q1,...,Qx Qrt1] is a successor context to C' in the
trie. This indicates that, on at least one occasion, the Pat-
tern Detector observed that the query (k41 was executed
immediately after the sequence of queries in C'. The task of
the Pattern Optimizer is to make a cost-based decision as to



whether Scalpel should prefetch Qi1 from context C.

If Scalpel is to prefetch Qxy1 from C, the prefetch
should be both feasible and beneficial. We say that Qy 1
is a feasible prefetch from context C' if the Pattern Detector
observed at least one correlation for each input parameter of
Qx+1 in context C’. Intuitively, this means that whenever
Qx+1 followed C in the training trace, its input parameters
were predictable. If query Q41 is not a feasible prefetch
from context C, then Scalpel will not attempt to prefetch it
from that context. If it is feasible, then Scalpel estimates
whether prefetching (i1 would be beneficial.

3.2.1 Estimating the Benefit of Prefetching

If Scalpel chooses not to prefetch (i1, then the total cost
of Qx and Qi1 (in context C') can be estimated as

CoST(Q+1,C) = COST(Qk) + P[Q41|C]COST(Qr41)

where COST(Qy) and COST(Qy+1) are the estimated costs
of executing queries @y and @1, respectively, and
P[Qx+1|C] is the probability that the application will re-
quest query Qx41, given that it is in context C. Scalpel es-
timates COST(Qy) and COST(Qy+1) by monitoring, at the
client, the observed execution times of ()i and Qx4 during
the training period. These observed times include the over-
head and latency associated with communication between
the client and the server, as well as the server-side cost of
query execution. To estimate P[Qy1|C], Scalpel can use

an estimator p = ?L((%')) , where n(C') and n(C") are the ob-

served frequencies of contexts C and C’, as recorded by the
Pattern Detector during the training period. For example, if
n(C) = 10 and n(C") = 4, Scalpel will estimate a 40%
probability that (i1 will occur next in context C'.

If, on the other hand, Scalpel chooses to prefetch,
then Qx and Qy41 will be replaced by a single, larger
query that combines the two. We denote the cost of this
combined query by COST(QxQx+1). Unlike COST(Qx)
and COST(Qxk+1), COST(QxQx+1) cannot be directly es-
timated from observations, since Scalpel will not have ob-
served the combined query during the training period. In-
stead, Scalpel estimates this cost to be the sum of the costs
of the component queries minus a per-request overhead Uy:

CoST(QKQx+1) = COST(Qx) + COST(Qx+1) — Up (1)

This reflects the fact that combining the two queries elim-
inates the per-request overhead associated with submitting
Qx+1 to the server as a separate query. The value of Uy is
configuration-specific, and Scalpel estimates its value dur-
ing a calibration period in the training phase. Equation 1
is conservative in that it assumes that the server and client
costs are independent in the combined query. In some cases,
the combined query may actually be cheaper than the sum

of the individual costs, for example if the DBMS is able
to exploit common sub-expressions within the two queries.
However, we do not expect the combined query to be more
expensive than this sum of individual costs as the naive
nested loops strategy will give this cost.

We define the benefit of prefetching Qi1 from context
C as

BENEFIT(Qx+1,C) = COST(Qx+1,C) — COST(QrQx+1)

That is, prefetching is beneficial if the cost of doing so is
less than the cost of not prefetching. Substituting and rear-
ranging terms, we can rewrite this formula as

BENEFIT(Qx+1,C) = Uy — (1 — P[Qx+1]|C])COST(Qx+1)

2
This formula provides a basis for deciding whether
prefetching Qi1 is a cost-effective execution strategy. It
shows that the maximum benefit for a single prefetch oper-
ation is given by Uy, and that prefetching is most beneficial
when Q11 is inexpensive and highly likely to occur.

3.2.2 Estimation Confidence

To use Equation 2 to determine the benefit of prefetching
from context C, the Pattern Optimizer must rely on esti-
mates of the cost of Qi1 and on its estimate p of the prob-
ability P[Qx+1|C]. Of particular concern is p, which is
determined by the number of times (i1 was observed to
occur in context C. That estimate may be very uncertain
for contexts that were not observed frequently in the train-
ing trace. For example, n(C’) = 1 and n(C) = 2 yields
p = 0.5, as does n(C’) = 100 and n(C) = 200. How-
ever, the former estimate is based on a single observation
of Qx+1 in context C, while the latter is based on a hun-
dred such observations. In general, very specific k-contexts
(those with large k values) will be observed much less often
than very general k-contexts (those with small values of k).
Thus, Scalpel’s estimates of the benefit of prefetching from
rarely-observed contexts will be less certain than its esti-
mates from frequently-observed contexts. We would like
Scalpel’s cost-based prefetching decisions to reflect this.

To achieve this, the Pattern Optimizer defines a confi-
dence interval around its each of its estimates p, using a con-
fidence level which is specified as a parameter to the Scalpel
system. If the Pattern Optimizer can determine with the
specified confidence that it is beneficial to prefetch Qi1
from context C, then it will decide to prefetch from C. If it
can determine with confidence that prefetching is not bene-
ficial, then it will not prefetch. Otherwise, the Optimizer is
said to be uncertain.

When the Pattern Optimizer is uncertain about prefetch-
ing Qx4+1 from C, it considers generalizations of the
context C' to resolve the uncertainty. For example, if



SELECT <Ql.columns>, <Q2.columns>
FROM ( <Ql.sgl> ) T1

LEFT OUTER LATERAL ( <Q2.sqgl> ) I
ORDER BY <Ql.orderby>, <Q2.orderby>

Figure 6. Combining Two Arbitrary Queries
(Q1 and Q2) Using LATERAL.

the Optimizer is uncertain about prefetching )y from
[Qv, Qc, Qa, Qn, Qe], then it considers prefetching from
[Qc, Qa, Qb, Qel, [Qa,Qn, Qc], and so on until it is able
to decide with certainty about (). These more general con-
texts will have been observed at least as frequently as C' in
the training trace. Thus, as the Optimizer considers more
general contexts, it should become more certain about its
estimates, until eventually it can decide with confidence
that prefetching is or is not beneficial. If the Optimizer
can find no generalization for which it is confident, then
the prefetching is deemed not to be beneficial.

3.2.3 Query Rewrites

Scalpel uses a greedy heuristic optimization procedure to
choose a sequence of queries to prefetch from a each context
C'. Suppose that C' = [Q1, ..., Q] is a k-context and that
the Pattern Optimizer has decided to prefetch Q. from
C'. To accomplish the prefetch, Scalpel must generate a sin-
gle, combined query that will return the results of both @y
and Qy+1, and that can be executed in place of Qi when
context C'is entered. Figure 2 showed one way to accom-
plish this for two specific queries, @, and Q},. To combine
arbitrary queries, Scalpel uses the LATERAL derived table
construct of SQL 99, as illustrated in Figure 6 [3]. By doing
s0, Scalpel is effectively leaving the task of “flattening” the
combined query to the more sophisticated query optimizer
at the server.

4. Running Scalpel

Atrun time, Scalpel’s Prefetcher uses the decisions made
by the Pattern Optimizer to prefetch query results that are
expected to be needed. Details of Scalpel’s run-time behav-
ior are described in detail in the extended paper [4], along
with experimental results and a case study.

5. Related Work

The idea of prefetching the results of anticipated future
requests has been well studied in a number of areas. Palmer
and Zdonik [7] described Fido, a predictive cache that uses
an associative memory to learn to recognize patterns and

predicts accesses. Krishnan, Vitter and Curewitz extended
this idea using techniques from data compression [5, 6].
Ukkonen described a method for building path-compressed
suffix tries on-line in linear space and time [9]. The above
techniques treat each request as an opaque block. Bernstein,
Pal and Shutt suggested that the context of a fetch be con-
sidered to make prefetching decisions [1].

Once a sequence of predicted requests has been found,
they can be combined by a DBMS optimizer to exploit com-
mon expressions [8]. Further, Yao and An [10] and Bilgin,
Chirkova, Salo, and Singh [2] considered ways to combine
queries for the purposes of reducing latency if the probabil-
ity of future sequences of requests is known.

6. Conclusions

We have presented Scalpel, a system that learns to pre-
dict occurrences of optimizable sequences of correlated
queries by monitoring a query request stream. We evalu-
ated Scalpel’s optimizations empirically and through a case
study [4] and found that it produces significant benefits.
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