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Abstract— This paper looks at the problem of automatically
tuning the database server multiprogramming level to improve
database server performance under varying workloads. We
describe two tuning algorithms that were considered and how
they performed under different workloads. We then present the
hybrid approach that we have successfully implemented in SQL
Anywhere 12. We found that the hybrid approach yielded better
performance than each of the algorithms separately.

I. INTRODUCTION

Database servers are used in a variety of software environ-
ments. Each application has its own workload characteristics.
As a result, a database server must be configured to achieve the
best performance possible for a specific workload on specific
hardware.

One of the many configuration parameters that database
servers have is the multiprogramming level (MPL). The MPL
is the concurrency level of the server. The concurrency level
of the server is measured by how many requests are allowed to
execute concurrently. Setting the MPL too high or too low can
have an adverse effect on performance. A high MPL setting
might cause increased contention on shared resources (e.g.
the buffer pool) while a low MPL might limit the concurrency
level of the server.

In this paper we discuss the problem of choosing the MPL
setting. We show how two algorithms, Hill Climbing and
Global Parabola approximation, performed in automatically
tuning the MPL settings. We then present the hybrid approach
that we implemented in SQL Anywhere 12 along with chal-
lenges and issues that we have encountered. We found that
the hybrid approach had better performance than each of the
algorithms separately.

In the following section we give a description of the
problem. In section III we provide the details of the de-
sign and implementation of two automatic tuning algorithms.
Section IV and V describe our testing methodology and
results. Section VI discusses our practical experience with
implementing automatic tuning of the MPL setting in SQL
Anywhere 12 and also lessons learned. Finally, section VII
presents a summary of our findings.

II. BACKGROUND AND RELATED WORK

In recent years, researchers have started looking at ways
to help reduce the total cost of ownership of maintaining
and operating a database system. A new area of research
has emerged that aims to create what are called self-tuning
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database systems ( [1], [2], [3]). Database servers with self-
tuning algorithms respond to changing workload character-
istics or operating system conditions with minimal or virtu-
ally no DBA intervention. Two areas in which self-tuning
algorithms have been successfully used are automatic cache
management ( [4], [5]) and self-tuning histograms [6].

Many of the widely used commercial database servers (e.g.,
MS SQLServer [7], Oracle, and SQL Anywhere [8]) employ
a worker-per-request server architecture. In this architecture,
there is one queue that is used to queue all database server
requests from all connections. A worker dequeues a request
from the request queue, processes the request and then goes
back to process the next available request in the queue or block
on an idle queue. In this configuration, there are no guarantees
that a single connection will be serviced by the same worker.
This architecture has proved to be more effective in handling
large numbers of connections and it has less overhead [9] (if
configured properly). The difficult issue with this architecture
is how to set the size of the worker pool to achieve good
throughput levels [10]. This parameter effectively controls the
MPL of the server. DBAs have two choices when setting the
value of this parameter:

1) Large number of workers: Using a large MPL can
allow the server to process a large number of requests
simultaneously. However, the drawback is that there is
a substantial risk that a large number of workers can
put the server into a thrashing state due to hardware
or software resource contention or to excessive context
switching between threads ( [11], [12]). Another issue
with a large number of workers is that each worker has
its own stack. Having many workers can consume a
substantial part of a process’s address space. This can
negatively affect the size of the database server buffer
pool that is available to cache database pages. This issue
is more critical for 32-bit database servers.

2) Small number of workers: The immediate benefit of this
approach is that the server has more memory to be used
for caching; however, the drawback is that the MPL of
the server is reduced and the hardware resources are
under-utilized.

In order to decide on the optimal number of workers,
DBAs could run load tests as part of their capacity planning
process to find a value that can achieve the minimum required
response time needed by the database application. Bowei et



al. describe a smart hill-climbing approach to configuring
application servers [13]. A similar algorithm can be applied
to database servers. Although the experimental approach can
be very effective in configuring the database server MPL
parameter, it suffers from some drawbacks. One of the draw-
backs is that this parameter setting is only good under the
tested conditions and might not handle different or changing
workload characteristics. In addition, this discovered value is
very specific to the hardware on which the experiments were
performed. If a hardware upgrade is performed, the selected
value might be too conservative for the new hardware.

One of the earliest papers that exposed the problem of
automatic tuning of MPL in database systems was by Heiss
and Wagner [14]. They outlined different sources of contention
and suggested a possible feedback control mechanism that uses
two different algorithms: an Incremental Steps (IS) approach
and a Parabola Approximation (PA) approach. Our work
extends on those algorithms. While Heiss and Wagner used
simulations to validate their findings, we used a commercial
database server and an industry-standard benchmark TPC-
C [15].

Recent research by Bianca Schroeder and colleagues [9]
used an external controller to adjust the MPL. Their work
studied the affects of MPL on throughput and mean response
time. Their controller used a simple feedback control loop.
Our work is an extension of their work as we looked at two
different algorithms that could be used by the controller.

In this paper we are proposing an online controller that can
be used to automatically adjust the multiprogramming level of
the database server on-the-fly to achieve maximum throughput.

III. DESIGN AND IMPLEMENTATION

In this section we describe the architecture of our controller
and the two different algorithms that we initially considered.

A. Controller Architecture
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Fig. 1: Multi-Input Single-Output Controller Architecture

Any controller design involves a set of inputs and a set of
outputs. We will be using a multi-input single-output (MISO)
controller. Figure 1 illustrates the architecture of the controller.
For inputs, our controller will monitor the throughput level

of the server. This is measured by the number of server-
side requests (not transactions) completed. A single database
transaction can involve one or more server side requests.

The second input parameter to the controller is the total
number of requests that are outstanding at the server. We will
call this number the workload concurrency level and it is the
sum of the number of requests that are waiting in the request
queue and the number of requests that are being serviced by
the worker pool. For example, if the worker pool size is 10
and all of the 10 workers are busy servicing requests and there
are 5 requests waiting in the request queue, then the workload
concurrency level is 15.

The third input parameter is the control interval. If the
interval is too small, then the controller will be reacting
to potentially noisy input measurements that are caused by
natural fluctuations in the workload. A small interval will also
not give the new control setting sufficient time to have an effect
on throughput before the next input measurement. On the other
hand, if the interval is too big, it will take the controller a
long time to adapt to changing workload conditions. In our
experiments we fixed the interval length to 60 seconds. The
rationale is that 60 seconds would give the server enough time
to stabilize before making further MPL adjustments.

The controller’s output is the MPL that the server will use
during the next control interval.

B. Auto-tuning Algorithms

The tuning algorithms that we present in this section are
based on the Incremental Steps (IS) and Parabola Approxima-
tion (PA) algorithms proposed and evaluated using simulation
by Heiss and Wagner. We have modified those algorithms and
implemented them in SQL Anywhere, allowing us to evaluate
the modified algorithms experimentally. Table I introduces
some notation that we will be using to describe the algorithms.
To clarify the notation, Figure 2 shows a time-line that
illustrates how the different values relate to each other. The
parameter n*(t;) is the number of workers during the control
interval t,_q < t < t;. The n*(¢;) value is fixed during
a control interval and does not change. P(¢;) is the total
number of requests that completed during the control interval
t;i—1 < t < t;. The workload concurrency level n(¢;) is the
workload concurrency level at time ;.

[ Notation [ Description |

ti End of the current control interval and start of the

next control interval ¢; 1.

The number of workers the server has available

during the control interval (¢;_1,¢;]. This is

the control variable.

The workload concurrency level at time ¢;.

The actual measured throughput level of the server at
time ¢;. The throughput is the number of requests

that completed during the previous measurement interval.

n*(t)

n(t;)
P(t;)

TABLE I: Notation used by the tuning algorithms

Another concept that we need to introduce is the throughput
curve. A throughput curve is a function that describes the
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relationship between the MPL and the throughput of the server.
On a throughput curve, the x-axis is the MPL and is measured
by the number of workers. The y-axis is the throughput level.
Different workloads have different throughput curves. The
shape of a throughput curve depends on many factors including
the workload characteristics and the type of hardware or
software used.

Our primary goal is to maximize server throughput. Our
secondary goal is to minimize the MPL. The secondary goal
is included because in some workloads it is possible that the
throughput is not very sensitive to the MPL. Having a large
number of workers wastes server resources that could have
been otherwise used by other components in the database
server.

Both of the auto-tuning algorithms monitor the workload
concurrency level n(t;) and behave the same way in case the
workload concurrency level is less than the number of workers
n*(t;). In this case, both algorithms reduce the number of
workers gradually to match the measured concurrency level.
This is because any workers above and beyond the number
needed to accommodate the workload concurrency level will
be idle and will not provide any benefit.

1) Hill Climbing: The original IS algorithm proposed by
Heiss and Wagner tries to increase the MPL by a fixed amount
in each control interval until performance starts to drop. It then
turns around and decreases the MPL until performance starts to
drop, then turn around, and so on. By doing so, the algorithm
attempts to climb to the top of the throughput curve.

Our Hill Climbing algorithm is similar, except that when
increasing the concurrency level, it stops if the marginal
throughput gain from the additional worker is not enough. The
reason for this is that we have observed that throughput curves
may have large flat regions on the top and we prefer to stay
at low-MPL end of those flat regions rather than wandering
within them as the original IS algorithm would do.

Our Hill Climbing algorithm keeps on following the
throughput curve as long as the percentage of change in
throughput is at least C' times the percentage change in the
number of workers. On the other hand, if decreasing the
number of workers increases performance, then we keep doing
so until the performance starts to degrade. The difference
between the upward direction and downward direction is
due to the fact that this algorithm has built-in bias towards
the downward direction. This bias is included to accomplish

our second goal of keeping the number of workers as low
as possible as well as preventing the controller from going
astray in cases where the throughput curve flattens out. If the
algorithm does not see any gains in throughput in either the
forward or backward direction, it will backtrack to the previous
MPL setting.

The second parameter that this algorithm depends on is the
step size A. The step size controls how fast the algorithm
converges.

The algorithm can be described by the following formula:

P(ti)—P(ti—1) n*(ti)—n"(ti—1)
« P(tij—1) ' >C n*(ti—1) :
n*(tit1) =4 n*(t;) — A if n*(t;) < n*(t;—1) and
P(tz) > P(tifl)
n*(ti—1) otherwise

where the parameter C' takes values from O to 1.

This algorithm basically tries to build on the fact that each
additional worker added to the worker pool is going to have
a smaller benefit (i.e. requests completed) compared to the
previous worker added. This happens because every additional
thread added is going to consume additional memory (for stack
and other thread local storage data) and additional CPU over-
head (context switching time and CPU cache pressure). In [16]
we studied how those parameters effect the performance of the
algorithm.

2) Global Parabola Approximation: This algorithm at-
tempts to model the throughput curve as a parabolic function.
We chose a parabola as a model for several reasons. First,
a parabola can have a concave downward shape similar to
the throughput function found in many servers. Second, the
parabola is easy to use and easy to compute. Third, although
the real throughput function might have a tail that flattens out,
the first part of the throughput function can be approximated
by a parabola and we do not need to model the tail part where
the server can have degraded performance levels.

In order to approximate a parabola, we need at least three
data points. Two of the data points will be based on two
observations of throughput at some MPL. For the third point
we will use the origin, hence, the global aspect of the parabola
approximation. The equation of the throughput curve as a
parabolic function is:

P(t:) = a(n*(t:)* +b(n"(t:)) +c
The two points that we will be using are (n*(¢;),P(¢;)) and
(n*(t;—1),P(t;i—1)). Using the following equations, we can
solve for a, b, and c:

P(ti)n* (tifl) — P(ti,l)n* (ti)

T W ltn (o) (0 (t) — n (i)
b = P(t;i_1) —a(n*(ti—1))?

n* (ti—l)
c = 0



Once we have the values of a, b, and c, the algorithm tries to
move to the n* that maximizes throughput. This would be the
point where the slope is 0.

=b

2a

Because of possible noise in the measurements, it is possible
that a could be positive. A positive a coefficient models a
parabola that is concave up and, hence, does not model a
realistic throughput curve. Figure 3 illustrates how noise at
MPL 180 generated a concave up parabola. In this example,
the controller would suggest moving to point 45. This is clearly
a bad step from 180.

n*(tiv1) =
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Fig. 3: A concave up and a concave down parabola

If the computed parabolic function is upward opening then
we ignore the collected data and just move forward (or
backward) by a random amount between 0 and A. We keep on
alternating between moving forward or backward every time
we hit this condition until we start getting more appropriate
parabolic functions with positive a coefficient.

Noise in the measurement data can also cause the controller
to suggest a new value that is too large. To avoid extreme
jumps in the MPL, we use a parameter I' to cap the step size.
The cap is expressed as a percentage of the current number of
workers. For example, a I" value of 0.3 would cap the step size
to 30% of the current number of workers. In [16], we discuss
in detail on how we choose the values of this parameter and
its affect on the performance of the algorithm.

The algorithm actions can be summarized by the following
function:

min(32, (L' + 1)n*(¢;)) if a <0 and
n*(tig1) == 52 # n*(t:)
n*(t;) £ rand(0, A) otherwise

IV. WORKLOADS AND EVALUATION METHODOLOGY

We have implemented the Hill Climbing and Global
Parabola approximation algorithms in SQL Anywhere. For our
experiments, we derived three workloads based on the TPC-
C [15] benchmark. The TPC-C workload simulates the activ-
ities of an online transaction processing (OLTP) application.

There are five types of transactions in the TPC-C workload:
New Order, Payment, Order-status, Delivery, and Stock-level.
The performance metric for the TPC-C benchmark is the
number of New Order transactions that complete within the
90th percentile of a target transaction response times. How-
ever, for our experiments we used the total number of server
requests completed per control interval as our performance
metric, as this is what is optimized by the tuning algorithms.
This metric includes operations resulting from all types of
transactions, not just New Order transactions. We used two
different transactions mixes: TPCC1 and TPCC2. The TPCC1
transaction mix is the same as the standard TPC-C benchmark.
TPCC2 uses a slightly modified mix. Table II shows the
transaction mix of the two configurations.

[ Transaction type [ TPCC1 [ TPCC2 |

New Order 45% 25%
Payment 43% 63%
Order-status 4% 4%
Delivery 4% 4%
Stock-level 4% 4%

TABLE II: Transaction mix TPCC1 and TPCC2

Unlike TPCC1, the TPCC2 workload has fewer 1/O re-
quirements as it processes fewer New Order transactions.
The TPCC2 workload might not be realistic (more Payment
transactions than New Orders) but we use it here because it
will have a different throughput curve than TPCCI.

In addition to varying the transaction mix, we varied
the database server buffer pool size. We used two buffer
pool configurations: SMALLMEM and BIGMEM. In the
SMALLMEM configuration, we configured the server buffer
pool size to SOOMB. In the BIGMEM, it was configured to
1GB. The TPC-C database that we used in our workloads
was a 150 warehouse database. Its size is 13.8GB. For the
client application, we used 10 terminals per warehouse. The
server machine is a 32-bit dual 1.80GHz Intel Xeon(Prestonia)
processor machine running Windows 2003 Enterprise Server.

With different transaction mixes and different buffer pool
configurations, we now have three different workload config-
urations based on the TPC-C benchmark:

o TPCCI-BIGMEM
o« TPCC1-SMALLMEM
« TPCC2-BIGMEM

By experimenting with each workload separately, we gener-
ated a throughput curve for each workload. Figure 4 shows the
throughput curves for two of the TPC-C workloads. The figure
also shows the range of MPL settings for which it is possible
to achieve at least 90% of the maximum possible throughput.

We performed two sets of experiments. In the first set, the
database server was configured to use one of the auto-tuning
algorithms and a benchmark was performed using each of the
three different workloads. For each run, the database was reset
and the benchmark was restarted. In this set of experiments
we measured how quickly and how closely the automatic
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tuning algorithms were able to reach the optimal MPL for
each workload.

In the second set of experiments, we ran the server using
each of the auto-tuning algorithms but switched from one
workload to another half-way through the experiment. We
experimented with the following workload switching combi-
nations:

o TPCC1-BIGMEM to TPCC1-SMALLMEM
e TPCCI-SMALLMEM to TPCC1-BIGMEM
o TPCCI1-BIGMEM to TPCC2-BIGMEM
o TPCC2-BIGMEM to TPCC1-BIGMEM

The purpose of the changing workload experiments was to
understand how well each algorithm can adapt to changes in
the workload characteristic.

V. EXPERIMENTATION RESULTS

Because of space limitations, we will only show the results
of one of the changing workload experiments. The graphs
in Figure 5 show both throughput and MPL as functions
of time. The throughput graphs show the measured server
throughput, and the MPL graphs show the MPL setting chosen
by the tuning algorithm. In all these graphs there is a vertical
line dividing each graph into a left and right section. The
vertical line is the point in time at which the workload switch
happened. The horizontal lines indicate the regions of optimal
values (throughput or MPL) as characterized by the throughput
curve of each workload.
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Fig. 5: Changing workloads experiment from TPCCI-
BIGMEM to TPCC1-SMALLMEM. 5a and 5b show the Hill
Climbing algorithm. 5c¢ and 5d show the Global Parabola
approximation algorithm

Figure 5 shows how the two algorithms behaved when
the workload switched from TPCC1-BIGMEM to TPCCI-
SMALLMEM. In this specific experiment, we have set the
Hill climbing algorithm parameters as follows: C' = 0.4 and
A = 10. For the Global Parabola approximation, we have set
I' =0.333 and A = 10. Across a variety of experiments like
those shown in Figure 5, we found [16] that both algorithms
were able to react appropriately to workload changes. With
our selected parameter settings, the Hill Climbing algorithm
is smoother than the Global Parabola technique, though it
may take longer to approach near-optimal MPL settings. It
is possible to make the Hill Climbing algorithm somewhat
more aggressive by increasing the A parameter. However, A
cannot be increased too much without affecting the ability of
the Hill Climbing algorithm to fine tune the MPL setting, as
it never makes steps smaller than A.

In contrast, the Global Parabola Approximation technique is
able to make both large steps and small steps, and is therefore
able to react relatively quickly to workload changes. The
drawback of this this approach is that it is very sensitive to
normal, minor workload fluctuations. This sensitivity accounts
for the relatively large throughput and MPL fluctuations that
can be seen in Figure 5.

VI. PRACTICAL EXPERIENCE

Given the results of our experiments with the Hill Climbing
and the Global Parabola approximation algorithms, we have
decided to use a hybrid approach in SQL Anywhere 12. The
hybrid approach consists of doing automatic tuning using the

o L
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Hill Climbing approach for a number of control intervals
followed by a switch to the Parabola Approximation approach
for one control interval. We then go back and repeat this cycle.
During the Hill Climbing control period we collect data points.
We then fit the collected data to a parabola using the least
squares approximation method. We found using this method
allows us to generate better parabola approximation functions.
In some cases the parabola approximation may produce a
concave up curve. If this happens, then we ignore the decision
by the parabola approximation algorithm and use the Hill
Climbing algorithm to decide on the next choice of the MPL.
We have also modified the Hill Climbing approach to use a
variable step size A instead of the fixed value. The step size
is computed by solving for n*(¢;) that achieves our C' value.
We have limited the step size A to I" of the current number of
threads. Another change we made was to reduce the control
interval from 60 seconds to 30 seconds.

By combining the two algorithms, we are able to make
adjustments to the MPL setting without large oscillations.
In addition, we are able to reduce convergence times by
periodically using the parabola approximation algorithm and
using variable step sizes for the Hill Climbing algorithm.

With the hybrid approach we ran a TPC-C benchmark
but allowed the server to pick the MPL automatically. The
hybrid approach was able to reach 90-95% of the optimal
tpmC compared to a hand tuned server. In another internal
benchmark that was mostly CPU bound, the hybrid approach
was able to improve throughput by 32% compared to fixing
the MPL. The tuning algorithm achieved this improvement
by reducing the MPL setting to the minimum possible value,
which is equal to the number of cores on the system.

One limitation that we have observed is that this form of
automatic tuning is not effective for workloads that have a
pattern of bursty requests followed by long periods of idle
time. It is also not effective for workloads that consist of
requests that take a very long time to complete (e.g. creating
an index). For such workloads the algorithms took too long to
react and possibly limited the concurrency level of the server
or reacted in the wrong direction. It was more efficient to
fix the MPL setting for these types of workloads. Adjusting
the MPL dynamically is more beneficial in busy servers where
there is a continuous stream of requests. One avenue of further
research is to be able to detect and address workloads that have
those patterns of requests.

Another limitation of these algorithms is how well the
algorithms’ parameters are chosen. Different values can have
completely different outcomes. In our implementation in SQL
Anywhere 12 we have fixed the parameter C to 0.2 for the Hill
Climbing algorithm. We have reduced the C' value compared
to our experiments to make the Hill Climbing algorithm a little
more aggressive in climbing the throughput curve.

VII. CONCLUSIONS

In this paper we presented a controller that can adjust the
MPL of a database server by monitoring throughput level at the
server. We presented a Hill Climbing algorithm and a Global

Parabola approximation algorithm. We have shown that each
algorithm has its own strengths and weaknesses. Nonetheless,
these algorithms were able to adjust the MPL effectively. In
implementing the automatic tuning of MPL in SQL Anywhere
12 we have used a hybrid approach. In this approach we
combined both algorithms in order to gain the benefits of both.
The hybrid approach shows significant improvement over each
of the algorithms separately.
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