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ABSTRACT
This paper presents two techniques for reducing the power
consumed by database servers. Both techniques are in-
tended primarily for transactional workloads on servers with
memory-resident databases. The first technique is database-
managed dynamic processor voltage and frequency scaling
(DVFS). We show that a DBMS can exploit its knowledge of
the workload and performance constraints to obtain power
savings that are more than twice as large as the power sav-
ings achieved when DVFS is managed by the operating sys-
tem. The second technique is rank-aware memory alloca-
tion, the goal of which is to power memory that the database
system needs and avoid powering memory it does not need.
We present experiments that show rank-aware allocation al-
lows unneeded memory to move to low-power states, reduc-
ing memory power consumption.

1. INTRODUCTION
Data centers consume a lot of power. Koomey [20] esti-

mated in 2010 that US data center energy consumption is
in the range of 70 - 90 billion kWH/year, or approximately
2% of total US electricity use. Energy also represents a sig-
nificant share of the cost of operating data centers [8]. Since
many applications rely on a backend database, database
management systems of various kinds are ubiquitous in data
centers. The goal of the work described in this paper is to
improve database systems’ energy efficiency.

Idleness is the enemy of energy efficiency in software sys-
tems, including database systems [32]. Servers are not power
proportional, meaning power consumption does not increase
in proportion to load. In particular, idle servers consume a
substantial fraction of power consumed at peak load. For
example, Tsirogiannis et al., in 2010, reported idle power
consumption was more than 50% of peak power consump-
tion for a database server [32]. Because of on-going inten-
sive efforts to improve the power efficiencies of servers and
their components, this situation is improving. Nonetheless,
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servers are still far from being power proportional.
To maximize energy efficiency, computing resources should

not be lightly utilized. They should be busy, or they should
be off. Unfortunately, this is difficult to achieve. Workloads
fluctuate, so a server that is busy one minute may not be
the next. Systems are typically overprovisioned to ensure
acceptable performance during periods of high load.

One way to address this problem is to dynamically adjust
the capacity of the server in response to fluctuations in load.
The goal is to avoid the negative effects of overprovisioning
by ensuring that the server remains as fully utilized as possi-
ble as the load fluctuates. In this paper, we explore this ap-
proach in the context of memory-intensive database systems,
which keep most active data in memory. In particular, we
explore two techniques for dynamic adjustment of server ca-
pacity in database systems. The first uses dynamic voltage
and frequency scaling (DVFS) to adjust processor speeds.
The second allows the database system to dynamically ad-
just memory size (and power consumption) to reflect the
characteristics of the workload. Since our goal is to improve
energy efficiency while limiting the impact on performance,
we refer to these techniques collectively as green-sizing.

This paper makes the following contributions:
DVFS for Database Systems: DVFS is widely imple-
mented, and mainstream operating system kernels now rou-
tinely adjust processor frequencies based on load. In our
work, we consider management of DVFS in a database sys-
tem, with the goal of quickly adjusting processor capacity to
reflect short term load fluctuations. We show that by man-
aging DVFS in the database system, where we have more
workload information, DVFS can be more effective than it
is when managed by the kernel. Our approach assumes that
the DBMS has latency targets for database operations. It
manages DVFS to ensure that these targets are met, while
maximizing energy efficiency. This technique can be viewed
as a kind of fine-grained, dynamic server capacity manage-
ment: we reduce the capacity of the server (by slowing down
the cores) when the load is light, and increase it when the
load is higher.
Memory Sizing for Database Systems: Because of un-
certainty about the size of the database or the size of its
working set (e.g., due to fluctuations over time), database
servers are often conservatively overprovisioned with mem-
ory. This suggests that it may be possible to reduce energy
consumption by dynamically adjusting the amount of mem-
ory used by the database system, and reducing or eliminat-
ing power consumption by the rest of memory. However,
applying this idea in practice is not as simple as it sounds,
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because it requires a means of aligning memory allocation in
the database system to the underlying memory system, so
that memory power consumption can also be correlated with
the amount of memory the database system uses. We de-
scribe some of the challenges associated with doing this, and
we present the results of some experiments that characterize
the reductions in memory energy consumption that can be
achieved by applying this approach to database systems.

Our work on these topics is preliminary, and hence we
have focused in this paper on characterizing the potential
benefits of both approaches. In addition, we discuss some of
the challenges and hazards that will need to be addressed if
these techniques are to be used in practice.

2. BACKGROUND AND RELATED WORK
In this section, we provide an overview of energy consump-

tion in processors and memory, as well as a brief survey of
techniques for managing energy consumption.

2.1 Processor Power Consumption
The dynamic power consumed by a processor is propor-

tional to its operating frequency and to the square of its
voltage. Thus, it is possible to reduce a processor’s dynamic
power consumption by running it at a lower frequency. In
addition to the lower frequency’s direct effect on power con-
sumption, running the processor at lower frequency also al-
lows voltage to be reduced, resulting in further power sav-
ings. This technique, which implements a tradeoff between
performance and power, is known as dynamic voltage and
frequency scaling (DVFS) when voltages and frequencies are
adjusted on-the-fly. Själander, Martonosi and Kaxiras [30]
provide an excellent overview of DVFS.

The Advanced Configuration and Power Interface (ACPI)
standard codifies voltage and frequency scaling by defining a
set of discrete processor states, P0, P1, P2, . . ., where P0 rep-
resents the processor’s highest voltage and frequency (and
hence highest performance), and each successive Pi(i > 0)
represents a lower frequency and voltage setting. The num-
ber of processor states, and the specific frequency associated
with each state, is processor-specific.

Processors, or individual processor cores, may also spend
some of their time idle, not executing instructions. The
ACPI standard also defines a set of processor states (C
states) corresponding to different degrees of idleness. Deeper
idle states generally require lower power. However, the deeper
the idle state, the longer it takes to come out of that state
and return to normal instruction execution. Ideally, idle
cores would require little power even in shallow idle states,
but in reality, idle power can be substantial.

2.2 Managing CPU Energy Consumption
As noted by Själander et al. [30], the most common form of

DVFS is commercial implementations such as Intel’s Speed-
Step and AMD’s Cool’n’Quiet, controlled at the operating
system level. These allow voltage and frequency to be con-
trolled by the kernel, through control of processor P-states.
The granularity of control ranges from the entire processor
to individual cores, depending on the processor.

DVFS is supported in mainstream operating systems. In
particular, the Linux kernel implements a variety of DVFS
governors, which have different performance and power man-
agement objectives. These include static governors, which

fix the processors in a specific P-state, and dynamic gover-
nors which change P-state according to CPU utilization.

Scaling down frequency and voltage reduces power con-
sumption at the expense of reduced performance. This trade-
off is workload-specific. Ideal settings for DVFS are those in
which loss of performance is relatively small. For example,
for heavily memory-bound workloads, DVFS may be able
to reduce processor frequency with little impact on perfor-
mance. Another setting is situations in which reduced per-
formance can be tolerated, e.g., a server with request latency
bounds or deadlines. In such settings, there is no penalty for
slower execution as long as deadlines are not missed. This
is the scenario we focus on in the current paper.

There has been some previous work on management of
DVFS in database systems. Tu et al. [33] describe feedback
control approaches to energy management, and present pre-
liminary work towards a controller that controls both DVFS
and query optimizer to maintain a target request through-
put. Xu et al. [38] also use feedback control to manage
DVFS for database workloads, based on a throughput tar-
get. The goal is to minimize power consumption as workload
characteristics change, e.g., the workload becomes more I/O
intensive. However, since the controller uses a throughput
target, this approach may be difficult to apply in the settings
we consider, in which the workload intensity fluctuates. In
such settings, we expect throughput to vary along with the
offered load. Psaroudakis et al. [27] demonstrate that volt-
age and frequency scaling and power-aware scheduling can
affect the energy efficiency of parallelizable database query
operations, such as aggregations and scans.

Lo et al. [25] propose an external feedback control ap-
proach called iso-latency to manage DVFS for what they call
on-line, data-intensive (OLDI) workloads, such as search.
As is the case for our work, there is an explicit applica-
tion quality-of-service (QoS) target, and DVFS is managed
to minimize energy consumption while ensuring that the
QoS target is met. We address a similar problem, but our
approach uses feed-forward control implemented within a
database server. In addition, our technique is intended to
exploit shorter-term workload fluctuations. In contrast, Lo
et al. focus on longer term (diurnal) fluctuations.

Tsirogiannis, Harizopoulos and Shah [32] take a dim view
of DVFS (and of energy optimization in DBMS in gen-
eral), arguing that the gains to be had in database systems
are small. However, in their setting, power optimizations
are considered beneficial only if they improve the system’s
energy-delay product (EDP). This is a very demanding stan-
dard. For example, saving a factor of two in energy con-
sumption is only considered beneficial if the corresponding
reduction in performance is less than a factor of two. In
contrast, for iso-latency and our LAPS technique, perfor-
mance reductions are of no concern as long as the explicit
QoS target is met.

2.3 Memory Power Consumption
Memory power consumption consists of several compo-

nents, such as array power, I/O power, register power, and
termination power [10]. Some power is consumed even when
memory is not in use, while other consumption depends
on usage. For the purpose of understanding and modeling
power consumption, all memory power is usually split into
two parts: operation power and background power. Oper-
ation power is modeled as proportional to the frequency of
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operations performed on the memory devices, with a fixed
weight (energy) associated with each operation type. In
contrast, background power is consumed regardless of how
many operations the device performs. Background power
consumption differs when the memory device is in different
states. Although the number of possible states, including
substates, is large (e.g., 8 in [10]), usually a smaller number
of states is used for modeling. The STANDBY (or ACTIVE)
state is the only state in which the device is ready to ac-
cept commands, and its power consumption is the highest.
The POWER-DOWN state deactivates input and output
buffers and is has lower power consumption and the fastest
exit latency (on the order of a few DRAM clock cycles).
The SELF-REFRESH state is the deepest low-power state,
during which the clock signal is disabled and most of the
interface circuits are turned off. In this state the device per-
forms refresh using an internal counter. The exit latency
of the SELF-REFRESH state is approximately 500 DRAM
clock cycles.

Controlling memory power states is the responsibility of
the memory controller (MC). The algorithms used by the
MC are poorly documented; however, at least some memory
controllers use timer-based algorithms [3]. Timer-based al-
gorithms switch memory into increasingly deeper low-power
states after configured periods of inactivity elapse since the
last access. When the MC supports multiple power states,
deeper states are associated with larger timeout values to
compensate for increased exit latencies from those states.

2.4 Managing Memory Energy Consumption
Modern systems include tools for measuring and control-

ling DRAM power consumption. In some Intel processors,
RAPL (Running Average Power Limiting) [11] technology is
used for both CPU and DRAM to estimate and, potentially,
limit total system power consumption. In RAPL, DRAM
power estimation is based on a linear analytical model which
takes operation counters and power state durations as input.
The model coefficients are calibrated by sensing current from
the DRAM voltage regulator (VR) while running a set of
synthetic memory test patterns during boot time. Using the
VR sensor for direct measurements is deemed problematic
because of its non-uniform accuracy and the design complex-
ities associated with high frequency sampling and the need
to transfer samples to the CPU outside of the test setting.

Some memory controllers implement counters that can be
used for performance optimization and memory power esti-
mation. Intel Xeon E5/E7 processors support a set of coun-
ters [5] in each memory channel, which can be programmed
to count certain events or measure the duration of certain
states. The counters relevant for power measurement in-
clude the number of row and column access operations, re-
freshes, number of clock cycles during which the internal
clock is enabled, or the rank is in SELF-REFRESH state.

DRAM power consumption has received substantial at-
tention in recent years but most of the work has focused
on general computing systems. Maximizing low power state
residencies is the goal of operating system scheduler-based
power state management in [13]. The OS scheduler tracks
rank use for each application process and switches the rank
power state accordingly on a process context switch. Ap-
plication processes are opaque to the scheduler and rank
power management cannot be applied within a single pro-
cess. Achieving the same goal by classifying memory regions

as hot and cold and migrating them into separate ranks is
discussed in [17]. Hotness is estimated by counting mem-
ory accesses in a simulated environment with no live eval-
uation. A technique for dynamic page migration between
hot and cold ranks is analyzed in more detail in [35] and
evaluated by simulation. Recent work [39] is similar to ours
in proposing rank-aware memory allocation to save power in
datacenters, but does not focus on a particular application
class, such as databases. Managing power consumption by
memory DVFS is proposed and analyzed in [10]. A simi-
lar approach in [11] limits memory power consumption by
throttling memory operations by the memory controller.

Memory power management is less studied for database
applications. Controlling the buffer pool is the obvious tar-
get as it has the largest memory footprint. [9] proposes
a system that heuristically chooses one of two fixed buffer
pool sizes to adapt to a changing workload. [19] proposes
a power-aware buffer pool management system for real-time
databases on flash memory where reads and writes have dif-
ferent energy costs. By dynamically adjusting the dirty page
ratio in the buffer pool, the system minimizes energy use
while meeting the response time requirements.

2.5 Server-Level Energy Management
In addition to energy management at the level of system

components (processors, memory), it is also possible to man-
age energy consumption more holistically, at the server level.
In systems with multiple servers, one general approach is to
consolidate the system’s work on as few servers as possi-
ble, allowing unneeded servers to be powered down. Servers
can be dynamically (de)provisioned to accommodate time-
varying workloads [28, 29, 21, 14, 24]. Orgerie et al. [26] pro-
vide a recent survey of these techniques for managing energy
efficiency in distributed systems. Another approach is to use
multiple types of servers, with different power/performance
characteristics, and then direct work to the most appropriate
type of server [22, 29]. While all of these techniques demon-
strate improvements in energy efficiency, they are largely
complementary to the work described in this paper, which
focuses on single-server techniques.

Another approach, specific to DBMS, is energy-aware query
optimization. An energy-aware optimizer characterizes both
performance and energy consumption of candidate plans,
and chooses a plan based on some combination of perfor-
mance and energy efficiency objectives [36, 37, 23].

3. DBMS-MANAGED DVFS
Support for DVFS is widely implemented in server oper-

ating systems, and DBMS running in such systems can ben-
efit from it. No DBMS modification is required. However,
a DBMS may be able to obtain more benefit from DVFS if
DVFS is managed directly by the DBMS, rather than the
kernel. There are two reasons for this:

1. The DBMS can align DVFS with database objectives,
which the kernel is unaware of. In particular, DBMS
can use database workloads’ quality-of-service (QoS)
objectives to guide DVFS.

2. The DBMS has more detailed knowledge of its work-
load than the kernel does, and can use it to guide
DVFS. The DBMS understands the logical structure of
the workload (e.g., kernel and transaction boundaries)
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Figure 1: Request Arrival Rates from the World
Cup 98 Request Trace

and has knowledge of both query execution plans and
the internal state of the database execution engine.

Our goal in this work is to characterize the opportunity for
DBMS-managed DVFS. We have focused on transactional
workloads in which transactions have a latency objective.
When the DBMS manages DVFS, its objective is to maxi-
mize the energy efficiency of transaction execution while en-
suring that the latency objective is met. In our evaluation
of DBMS-managed DVFS, the baselines include both trans-
action execution without DVFS, and transaction execution
with kernel-managed DVFS.

The main utility of DVFS is that it allows performance
to be traded for reductions in power consumption, allow-
ing the performance of the processor to be adjusted to fit
the needs of its time-varying workload. Workloads vary on
many time scales. For example, many workloads experience
diurnal fluctuations as a result of human behavior. Shorter,
transient fluctuations are also common. For example, Fig-
ure 1 shows request arrival rates over a 100 second inter-
val from publicly available traces from the 1998 World Cup
web site. While the technique that we have explored can
adjust processor speed in response to low frequency oscilla-
tions (e.g., diurnal), our primary interest is in determining
the ability of database-managed DVFS to respond to nat-
ural short term fluctuations in the workload, down to time
scales comparable to transaction execution times. Modern
processors can switch P-states quickly, with latencies on the
order of microseconds even under user space control [15].
Thus, it should be possible to react quickly, even to tran-
sient load fluctuations. DVFS controllers at the operating
system kernel level already do so.

The remainder of Section 3 is structured as follows. We
begin by briefly describing transaction execution in Shore-
MT, which we have used as our experimental platform. Next,
present our technique for managing DVFS, and show how
it is implemented in Shore-MT. We then present the re-
sults of some experiments comparing our Shore-MT-based
DVFS to our baselines. We conclude with some discussion
of additional issues that will need to be addressed to make
DBMS-managed DVFS practical.

3.1 Shore-MT
We used Shore-MT [18] together with ShoreKits [6] as an

experimental platform for our work. Shore-MT is a multi-
threaded storage manager optimized for multi-core architec-
tures. The ShoreKits [6] OLTP benchmark suite provides

C1 C2 CnCn−1

W1

b bbb

b bbbW2 Wm−1 Wm

b b b b

Figure 2: Clients, Workers, and Request Queues

Input: lmax: max allowed request latency
Input: nmax: transaction queue length threshold
Input: Q: transaction request queue
Input: F : f1 . . . fk: allowed frequencies (low to high)
Output: fnew ∈ F : selected frequency
1: procedure LAPS(lmax, nmax, Q,F)
2: fnew ← f1
3: s[fi]← 0 . for each 1 ≤ i ≤ k
4: if |Q| > nmax then return fk

5: for each transaction t in Q do . older to younger
6: wait← now − t.arrival . wait time of t
7: for f ← fnew to fk do
8: /* cumulative service time thru t, at freq f */
9: s[f ]← s[f ]+ EstimateServiceTime(f)

10: if (wait + s[f ] > lmax) ∧ (f < fk) then
11: continue . try higher frequency
12: else
13: fnew ← f
14: break . check next transaction
15: return fnew

Figure 3: The LAPS Algorithm. Each frequency in
F corresponds to a distinct P-state.

hard-coded implementations of the TPC-C benchmark op-
erations, designed to be run against the Shore-MT interface.
ShoreKits also provides TPC-C clients, which can be used
to generate a workload for the ShoreKits/Shore-MT TPC-
C server. In the remainder of this paper, we’ll refer to the
combination of ShoreKits and Shore-MT as Shore-MT.

Shore-MT provides a set of worker threads, which are re-
sponsible for TPC-C request processing. Each worker has
its own separate request queue. Workers take requests from
their queues and execute them to completion, one request
at a time. Client threads generate transaction requests and
add them to worker queues. This is illustrated in Figure 2.
Client and worker threads are all part of a single Shore-MT
process.

For our experiments, we configured Shore-MT with one
worker per core, and pinned each worker to its core. Each
client generates requests for a single worker, with an equal
number of clients per worker. All of the client threads are
pinned to a single core to localize client interference to a
single core.

3.2 DVFS in Shore-MT
To add the ability to manage DVFS to Shore-MT, we

modified Shore-MT’s workers to control DVFS. Each worker
manages DVFS for the core to which it is pinned. DVFS for
each core is managed independently of the other cores, based
on the request queue for that core’s worker.
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Our goal is to manage core speed and power consumption
in response to short-term fluctuations in request load. To
achieve this, we took a simple approach. Each worker checks
its request queue before it starts executing a new transac-
tion, and potentially adjusts the P-state of its core. This
P-state remains in effect throughout the execution of that
transaction, until the worker prepares to execute its next
transaction.

To choose a P-state, worker uses the latency-aware P-
state selection (LAPS) algorithm shown in Figure 3. The
LAPS algorithm selects the lowest-frequency P-state such
that all requests in the worker’s request queue can be expected
to complete within an application specified request latency
bound, which is an input to the LAPS algorithm.

To choose a P-state, LAPS tracks the arrival time of each
request, so that it can determine the amount of waiting time
that request has already experienced. In addition, it must
estimate the remaining waiting time for the request, as well
as the request’s execution time. Since workers consume re-
quests from their queues in FIFO order, the remaining wait-
ing time for each queued request is the sum of the execution
times of the requests ahead of it in the queue. Thus, LAPS
requires a model that it can use to estimate request execu-
tion times. Since execution times depend on the P-state,
which LAPS is selecting, the model must provide execution
time estimates that are conditioned on P-state. In Figure 3,
this model is encapsulated by the EstimateServiceTime
function, at line 9. The LAPS algorithm traverses the queue
and checks request response time under different frequency
levels, tracking the minimum frequency that will allow it to
avoid SLO (latency bound) violations for all of the requests
it has checked so far. LAPS also incorporates an early-out
mechanism (line 4 in Figure 3) which simply chooses the
highest-frequency P-state in case the request queue length
exceeds a configurable threshold (nmax). This bounds the
overhead of the frequency selection. For all of the experi-
ments reported here, nmax was set to ten and k, the number
of P-states supported by our test CPU, is five.

Since our focus is on evaluating the potential of database-
managed DVFS, we took a simple approach to the problem
of estimating request execution times. We assume that the
workload includes a fixed set of transaction types, and that
the execution time of a request depends primarily on its type
and on the core’s P-state when the request is executed. We
modified Shore-MT to monitor request execution times, and
to track a running average execution time for each combi-
nation of request type and P-state. The EstimateService-
Time function uses these averages as its service time predic-
tions. To simplify the presentation, request types are not
shown in Figure 3, which is written is as if there is only a
single type.

After using the LAPS algorithm to choose a P-state, the
Shore-MT worker sets its core to the selected P-state and
then executes the request to completion. On our Linux test
platform, there are two different mechanisms that the worker
could use to set the P-state. One possibility to make use
of Linux’s “UserSpace” DVFS governor, which allows ap-
plication programs to set P-states. An alternative is to di-
rectly manipulate the processor’s Machine Specific Registers
(MSR). Linux exposes these registers through its filesystem
interface. Our initial experiments with these two mecha-
nisms showed that changing the P-state by directly manipu-
lating the MSR was much faster(tens of microseconds) than

doing so via the UserSpace governor, which is consistent
with latencies reported by others [15, 34]. Since our DVFS
approach approach may change the P-state frequently, we
used MSR manipulation to do so.

3.3 DVFS Evaluation
We experimented with the LAPS algorithm, with the goal

of characterizing how effectively it is able to reduce energy
consumption, and how effectively it is able to meet its spec-
ified latency targets. We compared LAPS against the ”On-
Demand” and ”Conservative” and dynamic scaling gover-
nors in the Linux kernel. In addition, we compared against
configurations in which DVFS is not used at all.

3.3.1 Methodology
Our experiments used a 12-warehouse TPC-C database.

Shore-MT was configured with 12 GB of buffer pool memory,
which is sufficient hold the entire database. We configured
twelve Shore-MT clients. To minimize data contention, each
client was configured to issue requests for a different ware-
house. To simplify the task of estimating request execution
times, clients issued only one type of request, namely TPC-
C NEW ORDER transactions.

We modified Shore-MT’s TPC-C clients to convert them
from a closed-loop design to an open-loop design, so that we
could more precisely control the load offered to the server
by the clients. Unlike closed-loop clients, open-loop clients
do not wait for previously issued requests to finish before
issuing subsequent requests. Instead, each client generates
a request, waits for a configurable think time, and then gen-
erates the next request. Thus, the expected request rate
per client is simply the inverse of the expected think time,
regardless of system load. In all experiments we report,
think times were uniformly randomly distributed, with a
mean think time that we configured to control the total re-
quest load on the system. We also experimented with think
times determined by a bounded Pareto distribution, which
can generate self-similar request loads that are bursty over
a wide range of time scales. However, the results were sim-
ilar to the results for the uniformly distributed think times,
at least for the Pareto parameters we tested, so we have
reported only the uniform results here.

For each experiment, there is warm-up phase at the begin-
ning followed by a short training phase. The training phase
is used to initialize the LAPS service time estimates by run-
ning transactions in different P-states. For the purpose of
reporting our results, we ignore transaction performance and
system power measurements made during the warm-up and
training phases.

All of our experiments ran on a server with a single 6-core
AMD FX-6300 Bulldozer processor and 16 GB of DDR3
memory, running Ubuntu 14.04 Linux, kernel 3.13. This
processor includes three modules, each with a pair of cores
sharing an L2 cache. We chose this CPU for our experi-
ments because it is able to perform DVFS independently on
each module unlike the Intel CPU used for the experiments
described in Section 4.3. Note that our LAPS algorithm is
designed to choose a P-state independently for each core.
However, on this platform, the effect is that both cores in
a module will run at the faster of the two per-core P-states
chosen by LAPS. It is becoming more common for proces-
sors to provide finer-grained (per core) control of P-states
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Figure 4: Performance vs. Power Under Medium
Load

and C-states, but we did not have such a processor available
for these experiments.

During each experiment, we measured transaction response
times so that we could determine the percentage of trans-
actions that met the workload latency objective. Our pri-
mary performance metric is successful transaction through-
put, which measures transaction throughput counting only
those transactions with response times at or below the la-
tency objective.

We used a Watts up? PRO ES power meter [7] to mea-
sure the power consumption of the entire server at one sec-
ond intervals. This meter has a rated accuracy of ±1.5%
in our experiments’ power range. The power reported for
each of our experiments is the average of these one-second
power readings over the entire measurement interval. We
also used Machine Specific Registers (MSRs) on the pro-
cessor to capture the processor’s own per-core power mea-
surements, also at one-second granularity. Unless otherwise
indicated, all the power measurements we report are total
system power measurements (from the power meter) rather
than processor-only MSR measurements.

3.3.2 Experimental Results
Before running our primary experiments, we ran some

calibration experiments determine the request loads under
which we would test the system. To do this, we first deter-
mined the maximum load the system could sustain. We fixed
all of the cores to the highest frequency P-state and then ran
a series of experiments with higher and higher offered loads.
We found that the transaction failure rate, i.e., the percent-
age of transactions with response times that exceeded the
latency threshold, increased dramatically when the offered
load exceeded 4800 transactions per second. Based on this
measurement, we defined high, medium and low load scenar-
ios for our primary experiments, with offered loads of 4350,
3000, and 2000 requests per second, respectively.

For all of the experiments reported here, we set the trans-
action latency objective to ten times the measured average
service time of the transactions in the highest-frequency P-
state. We also ran tests with a more relaxed latency ob-
jective of fifty times the mean service time. However, the
results were (somewhat surprisingly) not qualitatively dif-
ferent from those with the tighter objective, and we have
not presented them here.
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Figure 5: P-State Residency at Medium Load

Figure 4 shows our results for the medium workload, i.e.,
an offered load of 3000 transactions per second. Our server’s
processor supports five P-states, with frequencies ranging
from 1.4 GHz to 3.5 GHz. The dashed line in Figure 4 shows
the performance/power tradeoff we obtain for this workload
by running it in each of the of the five P-states. In addition,
the figure shows the performance and power we measured
when running the workload with LAPS, and with the Linux
OnDemand and Conservative dynamic frequency governors.
Figure 5 shows P-state residencies under the medium work-
load for LAPS and the two kernel dynamic governors. These
residencies describe the fraction of time the cores spend in
each P-state under each dynamic governor.

For our workload, the Conservative governor provides the
best performance, but consumes about 150 watts. The Con-
servative governor adjusts the P-state gradually, based on
the CPU utilization. Under our workload, it rarely leaves
the highest-frequency, highest-power P-state, as can be seen
from Figure 5. In contrast, the OnDemand governor is
more aggressive about power savings, and will move quickly
among P-states in response to load changes. As a result, it
reduces power consumption to about 130 watts with very
little loss in performance.

LAPS, which has knowledge of transaction latencies and
the latency objective, is able to reduce power consumption
to less than 110 watts, about twice the reduction achieved
by OnDemand. As shown in Figure 5, cores spend much
more time in the lowest frequency state under LAPS than
under OnDemand. Since LAPS is aware of latency slack, it
is able to determine when execution at low frequency will
be fast enough. OnDemand understands only that there is
work to do, not how much time is available for doing it.

LAPS is also slightly less successful than OnDemand at
ensuring that transactions hit their latency target, resulting
a slight drop in successful transaction throughput. In the-
ory, the transaction throughput under LAPS should be no
worse than it is at the highest-frequency P-state, since LAPS
should choose that P-state if necessary to ensure that trans-
actions meet their deadlines. In practice, LAPS sometimes
fails to achieve this because of mispredictons of transaction
execution times.

Figures 6 and 7 show power and performance under our
high and low loads, respectively. Under high load, the dy-
namic governors have little room to manoeuvre. The system
spends almost all of its time in the highest-frequency P-state
under both Linux governors. LAPS is able to identify some
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Figure 6: Performance vs. Power Under High Load
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Figure 7: Performance vs. Power Under Low Load

opportunities to reduce core frequencies, and manages to
reduce system power consumption by about 15 watts. How-
ever, as was the case under medium load, this power savings
comes at the cost of a higher number of transactions failing
to hit the latency target, because of mispredictions. The
misprediction problem is somewhat worse at high load be-
cause longer request queues can magnify prediction errors.

LAPS provides its most substantial benefit in the low
load case (Figure 7), where it reduces power consumption
to slightly over 90 watts, almost with minimal impact on
performance. Mispredictions are less consequential in this
setting because there is usually a substantial amount of la-
tency slack. The OnDemand governor also reduces power
consumption, but not as effectively as LAPS. Analysis of
P-state residencies at low load (not shown) indicate under
LAPS, the cores are in the lowest-frequency P-state almost
the entire time. Under OnDemand, cores are in the lowest-
frequency state only about 30% of the time, while the Con-
servative governor leaves the cores in the highest-power P-
state more than half of the time, even at this load.

3.4 Discussion
Our results suggest that DBMS-managed DVFS can be

quite effective at reducing power consumption by exploit-
ing latency slack to allow cores to remain in lower-power
P-states. However, our approach was very simple, and our
evaluation considered a highly-constrained setting. Our re-

sults also suggest that two issues in particular will be im-
portant if DBMS-managed DVFS is to be effective more
generally. These issues are prediction of request execution
times, and the brittleness of the LAPS algorithm.

No technique for managing DVFS can eliminate all vio-
lations of the latency bound, because load spikes can sim-
ply overwhelm the system, even at peak power. However,
with LAPS there is also a risk that latency bounds will be
exceeded if the scheduler underestimates request execution
times. Our simple approach to execution time estimation
used mean observed performance. Clearly, this will under-
estimate actual performance for a significant fraction of re-
quests. We can address this problem by making more con-
servative predictions based on past performance. However,
a related issue is that the LAPS algorithm itself is brittle,
since it will always choose the lowest core frequency that it
can get away with. Even small prediction errors can thus
cause requests to miss their latency targets.

To address these problems, we will need a means of quan-
tifying the potential error in service time estimates, as well
as a simple and robust technique for managing the perfor-
mance risk associated with setting a lower-power P-state.
These are the subjects of our on-going work.

4. MEMORY POWER OPTIMIZATION
Along with processors, memory is another significant con-

sumer of energy in computing systems. Studies have indi-
cated that memory can be responsible for more than 25%
of total system power [16]; however, this number strongly
depends on the installed memory size and other hardware
configuration parameters.

4.1 Power Optimization Opportunities
We can imagine two broad scenarios for memory power

optimization in database systems:

In-Memory Database Systems
In-memory database systems have a simplified archi-
tecture in which the buffer pool is eliminated, remov-
ing the corresponding management overhead and en-
abling faster transactions. The entire database must
be memory-resident all of the time. If the database size
cannot be accurately predicted, the database admin-
istrator must conservatively configure the system for
the largest possible database size, resulting in memory
overprovisioning. Virtual memory swapping, imple-
mented by the operating system, can be used as a last
resort; however, it is much less efficient than the DBMS
buffer pool and causes a larger performance drop.

Non-Memory-Resident Databases
Disk-based systems use a buffer pool to hold the most
frequently used database pages. In such systems, it is
typical that the buffer pool is the largest memory con-
sumer, and its size can be relatively easily adjusted.
Those properties make the buffer pool a natural can-
didate to consider when looking at memory power effi-
ciency. A larger buffer pool size normally corresponds
to better performance. However, skewed access pat-
terns lead to diminishing performance gains as more
memory is added to the buffer pool. Some recently
proposed systems that employ ”anti-caching” [12] or
database-assisted paging [31] can also be classified into
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this group as they operate with data larger that RAM
and expose the memory/performance trade-off.

A common feature of these two cases is that the amount of
provisioned memory is larger than the amount that is actu-
ally needed. Therefore, the idea of the memory power opti-
mization in both cases is to avoid paying energy costs for the
excess memory. We will explain our approach to tie memory
energy consumption to the needed amount of memory in the
next section. We expect the first case to be straightforward
as some of the memory is simply not needed by the DBMS.
In the second case, all memory is technically used, and re-
ducing memory capacity may increase I/O rate and impact
performance. However, due to diminishing performance re-
turns from larger buffer pools, it may be possible to reduce
the amount of memory with little impact on performance.
When this is the case, the database system is elastic with
regard to the amount of memory provisioned. In this work,
we focus on the scenario in which the database fully fits
in memory. We plan to explore the memory-performance
trade-off in the future.

4.2 General Approach
To attack memory’s energy consumption, we first need to

understand how the memory energy consumption depends
on memory use. As it was described in Section 2.3, the
total power consumed by memory consists of operational
and background power. Operational power includes the en-
ergy cost of memory access operations (such as page open,
precharge, read, write) as requested by the processor and
I/O devices. We assume that the frequency of those opera-
tions is determined by the workload and cannot be changed
by controlling how much memory is used. In fact, the prob-
lem of reducing the number of memory accesses is one aspect
of general performance optimization and can be achieved by
making better use of CPU caches or designing more efficient
algorithms. Therefore, we do not expect to obtain energy
savings due to the operational power.

On the other hand, the amount of background power con-
sumed is a complex function of workload, the total amount
of memory installed, and memory allocation and power man-
agement policies. We focus on the reducing background to
achieve power savings. Our goal is to keep memory ranks in
their lowest power state as long as possible.

4.2.1 Rank-Aware Memory Allocation
The granularity of memory power management imposed

by the current hardware architecture is a rank, which typ-
ically has a size of 4-16 GB in modern systems. We view
memory granularity not as an absolute amount but as a
portion of the total memory size. Thus, the increment of
memory allocation is 1

N
of the total capacity, where N is

the number of installed memory ranks. In practice, the
number of supported DIMM slots is not less than 8 even
in smaller servers, which corresponds to 8 or 16 memory
ranks. Therefore, such a system can support at least 8
power/performance levels. The number of slots in larger
systems is higher so the granularity will pose even less of a
problem.

Suppose that a database system that requires 32 GB of
memory is running on a server with 64 GB of memory, in
eight 8 GB ranks. If the 32 GB of memory actually used by
the DBMS is allocated across all eight ranks, it will not be
possible to save background power since all eight ranks will

be in use. Thus, to be able to connect memory energy con-
sumption to memory use, it must be possible for the DBMS
to control how the memory it is using is allocated to the sys-
tem’s memory ranks. With this capability, the DBMS could
allocate the 32 GB it requires on half of the available ranks,
leaving the remaining ranks idle. Thus, the database system
must know the physical memory configuration, and it must
be able to allocate virtual memory from a particular rank.
Since such rank-aware memory allocation is not supported
by general-purpose operating systems such as Linux, we re-
quire a new mechanism to support rank-aware allocation. It
includes the following components:

• Enumeration of physical memory ranks and determi-
nation of their physical start addresses, sizes, and NUMA
nodes.

• Communication of the physical rank information to
the application process (the DBMS).

• Mapping physical memory ranks to the application vir-
tual memory space.

• Modification of the kernel to be able to use memory
allocated in this way for I/O buffers.

We do not have an automated mechanism to enumerate
ranks and determine their addresses and sizes. For our ex-
periments in this paper, we manually reconstructed this in-
formation from various sources such as the hardware descrip-
tion and Linux kernel boot logs. In the future, it may be
possible to retrieve rank addresses from the SMBIOS/DMI
tables, or by reading the MC configuration.

Once we have enumerated the ranks, we classify each rank
as either managed or unmanaged. The unmanaged ranks
serve as a source of conventional memory for the OS and
applications, while the managed ranks are used for memory
power optimization. Usually, a minimal number of ranks
(one per NUMA zone) is necessary for the OS and other
applications to function.

To be able to use the managed ranks, we modified the
Linux kernel to reserve a preconfigured range of physical
address space at boot time. The DBMS is provided with
the list of managed ranks, including their physical address
boundaries. Knowing these boundaries, the DBMS can map
the managed ranks into its virtual address space using the
kernel’s “/dev/mem” device.

Normally, an OS uses memory for its file cache when serv-
ing file I/O. The file cache can use a substantial amount
of memory and can cause a significant number of memory
accesses due to data copying. However, the file cache is re-
dundant for a database system which implements its own
buffer pool. Therefore, we configured the database system
to use direct I/O and modified the kernel managed memory
regions can be used as targets for direct I/O.

4.2.2 Memory Power State Control
Once the DBMS has decided that it does not need to use

a managed memory rank, we would like it to be able to put
that rank into a low power state to save energy. However,
in existing systems it is typically impossible for software
to directly control the power state of a memory rank. In-
stead, power state management is handled by the memory
controller, and only a few configuration options are avail-
able for adjustment at boot time. Therefore, to cause a
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power state transition, the DBMS simply avoids using an
unneeded memory rank completely, and relies on the MC to
move that rank into a lower power state when it observes
the rank is idle. This reliance on the MC’s power manage-
ment heuristics may impose several limitations on the power
saving potential. First, the state transition may be unnec-
essarily delayed due to the idle timeout implemented by the
MC. Second, the MC may not make use of deeper low-power
states at all, since without rank-aware memory allocation
most applications would rarely exhibit access patterns that
would allow such deeper power states. However, we have
relied on this mechanism for our experiments, as it is the
only one available in our test system.

4.2.3 Memory Interleaving
Memory interleaving is an operational mode of a MC

in which adjacent memory blocks are spread over multiple
physical memory devices. Interleaving is possible on the
bank, rank, and channel level. Since physical memory de-
vices can operate in parallel, interleaving substantially im-
proves memory throughput for larger sequential transfers.
Because of potentially better performance and no apparent
drawbacks, many systems enable the most aggressive inter-
leaving by default.

Unfortunately, interleaving is clearly incompatible with
rank-aware memory allocation, as it distributes the physical
memory address space across the ranks at a very fine gran-
ularity. Therefore, disabling interleaving is a precondition
for rank-aware memory allocation. Since disabling inter-
leaving reduces memory throughput, at least for sequential
memory access patterns, overall system performance may be
affected. However, the performance impact of interleaving is
strongly application-dependent. For many database work-
loads, which are naturally concurrent, we hypothesize that
disabling interleaving may not have a significant impact on
performance. In our experiments, which focus on transac-
tional workloads, we have included a baseline configuration
with interleaving enabled, so that we can characterize exper-
imentally the performance impact of disabling it. We have
not yet evaluated the performance effect of interleaving on
other workloads.

4.3 Evaluation
All of our memory experiments used Shore-MT with open-

loop clients, as described in Section 3.3. Our memory tests
used the full, unmodified TPC-C transaction mix imple-
mented by ShoreKits.

Since the TPC-C benchmark is update-intensive and the
database grows as new orders are being added, we chose
the initial database size carefully to accommodate new rows
without exceeding the configured memory size. We also limit
the test duration to 1 minute so that database growth is
less than 10% for all runs. Since the database is entirely in
memory during all experiments, 1 minute is sufficient for the
system to reach the steady state. The offered load generated
by the open-loop clients in our tests is 178000 tpmC.

Our memory experiments ran on a dual-socket Super Mi-
cro server featuring two Intel Xeon E5-2620 v2 (IvyBridge)
processors, each with 4 channels of memory. Each memory
channel was populated with one single-rank 8 GB Samsung
DDR3L DIMM (1.35 V, part number M393B1G70QH0-YK0),
operating at 1600 MHz. One DIMM on each processor was
left for general use by the OS and applications, while the

other three DIMMs per processor were managed for power
management. A 200 GB Intel DC S3700 SSD was used to
store the database. ShoreMT transaction logs were redi-
rected to a tmpfs RAM-disk allocated in the unmanaged
memory area. A custom Linux kernel was used based on
the Ubuntu Linux kernel version 3.13.11.

4.3.1 Estimating Memory Energy Consumption
Estimating the energy consumption of DRAM is challeng-

ing. In a standard system, the DRAM power rails are inte-
grated in the motherboard and are not easily accessible by
a meter. The total system power consumption can be mea-
sured but it is difficult to know how power is distributed
between multiple components. Moreover, it was difficult to
reliably estimate memory power changes based on changes
in the total system power, since memory is a relatively small
power consumer in our test system, which has only 64GB of
memory. A common way of estimating power consumption
is modelling. In Intel processors, the RAPL mechanism [11]
estimates DRAM energy consumption using event counters
implemented in the memory controller. However, the RAPL
power model and its calibration algorithm are not docu-
mented. Moreover, RAPL’s memory power estimates for a
previous generation of the Xeon processors are known to be
inaccurate, and Intel advises against using them for mea-
surements [4].

For these reasons, we estimate DRAM power consump-
tion using an analytical model, similar to other models that
have been described in the literature [11]. The model es-
timates power as a function of the numbers of occurrences
of three types of memory operations (ACTIVATE, READ,
WRITE), and of the time spent in three different power
states (STANDBY, POWER-DOWN, SELF-REFRESH). A
real memory device exposes a larger number of finer-grained
power states [10]. However, the differences in power con-
sumption between them are small, and they are more diffi-
cult to control or measure.

The memory power model is shown in Equation 1. In
this equation, A, R, and W represent the numbers of AC-
TIVATE, READ, and WRITE operations. Tst, Tpd, and Tsr

represent the time spent in STANDBY, POWER-DOWN,
and SELF-REFRESH power states, and Tst + Tpd + Tsr is
equal to the total time of the experiment. The model uses
six coefficients, which represent either the energy consumed
per operation or the energy consumed per unit time in a
given power state. Figure 8 lists these coefficients and gives
the coefficient values we used for our experiments.

E = EAA+ERR+EWW +TstWst +TpdWpd +TsrWsr (1)

The memory power model coefficient values are derived
from the nominal currents specified in the DIMM datasheet [1],
which are specified for the test patterns from [2]. The power
coefficients (Wst, Wpd, Wsr) are obtained by multiplying
IDD3N (Active Standby Current), IDD3P (Active Power-
Down Current), and IDD6 (Self-Refresh current), respec-
tively, by the nominal voltage (1.35 V). The energy coef-
ficients (EA, ER, and EW ) are obtained from the values
of IDD0 (Operating One Bank Active-Precharge Current),
IDD4R (Operating Burst Read Current), and IDD4W (Op-
erating Burst Write Current) by subtracting the correspond-
ing background currents, converting the difference to power,
and dividing the final value by the number of operations per

9



Parameter Abbreviation Value Units
Standby power Wst 1490 mW
Power Down power Wpd 1148 mW
Self Refresh power Wsr 405 mW
Activate energy EA 19.1 nJ
Read energy ER 7.0 nJ
Write energy EW 7.6 nJ

Figure 8: Power model parameters for 8 GB Sam-
sung DDR3L R-DIMM
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Figure 9: DRAM power states residency

second. For EA, the background current is assumed to be
an average of IDD3N and IDD2Q (Precharge Quiet Standby
Current) because the module alternates between ACTIVE
and PRECHARGE states during that test pattern. For ER

and EW , the background current is IDD3N. When convert-
ing average power in test patterns to per-operation energies,
reads and writes are assumed to take 4 DRAM clock cycles,
while the ACTIVE-PRECHARGE cycle to take 39 DRAM
clock cycles (nRC).

4.3.2 Measuring Memory Activity
The input to the power model is the counts for operations

and residency times for the various power states. Those val-
ues were collected using the uncore performance monitoring
counters of the Intel Xeon processor [5]. Each memory chan-
nel has four programmable counters. Each of those counters
is a 48-bit register that can collect either occurrences of an
event or the number of DRAM clock cycles while a cer-
tain condition exists. The following counters were collected:
ACT COUNT, CAS COUNT, POWER CKE CYCLES, and
POWER SELF REFRESH. Since the number of required
counters exceeded four, sampling was used.

4.4 Estimating Potential Energy Savings for
Memory-Resident Databases

Our test system has 48GB of “managed” memory that
can be used for rank-aware memory allocation. To estimate
the potential impact of rank-aware memory allocation for
memory-resident databases, we ran a series of experiments
with database sizes (including space for growth) ranging
from 8 GB to 48 GB. In each experiment, the DBMS uses
rank-aware allocation to allocate and use only enough mem-
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ory to hold the database. Memory interleaving is disabled
when rank-aware allocation is being used. The baseline in
this experiment is the system in the default configuration:
4-way channel interleaving enabled and all available memory
(48 GB) used for the buffer pool.

To evaluate the effectiveness of the proposed memory man-
agement method, we first report raw operation counters
and power state residencies. Then, we feed that data to
our power model (1) to estimate the power consumption of
the memory subsystem. Finally, we measure transaction re-
sponse times to see how transaction processing performance
is affected by memory working in non-interleaving mode.

Memory power state residencies are shown in Figure 9.
In the baseline case, with interleaving, memory is never put
into the SELF-REFRESH state. In the managed case, the
SELF-REFRESH residency increases with the number of
ranks deactivated, reaching 50% with the smallest database.
Increased SELF-REFRESH residency is the main factor driv-
ing savings in memory power from rank-aware allocation.

Memory operation frequencies are shown in Figure 10.
As expected, there is no significant change in the number of
operations from configuration to configuration. All config-
urations see the same offered TPC-C transaction load, and
all have sufficient memory to hold the entire database.

The average memory power consumption estimated by the
model is shown in Figure 11. Operation power constitutes
a small percentage of the total in all cases, which indicates
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Transaction
Response time increase, %
min max mean

New Order 1.1 5.2 2.8
Payment 0.9 3.6 2.2
Order Status 1.2 5.4 2.8
Stock Level 0.9 6.9 3.8

Figure 12: Response Time Increase Due to Rank-
Aware Allocation

that the workload does not use memory heavily. When rank-
aware memory allocation is used, the background memory
power decreases as more ranks become idle. For the small-
est database, the use of rank-aware allocation reduces back-
ground power consumption from just under 10 W to about
6 W The average saving is 0.8 W per idled rank.

Finally, we consider the performance impact caused by
tight rank-aware allocation and the lack of memory inter-
leaving. Figure 12 shows the increase in response time for
each TPC-C transaction type when rank-aware allocation
is used, relative to its response time with interleaving. We
ran experiments using several different database sizes, with
8 runs at each database size. Figure 12 shows the minimum,
mean, and maximum increases in response time over all of
these runs. We observed response time degradation for all
database sizes, although the impact was small. Thus, the
average slowdown is 3-4% with maximum up to 7%.

4.5 Discussion
Our experimental results show that rank-aware memory

allocation can be used to idle memory in excess of what is
needed by the DBMS, and our memory power model pre-
dicts that idling memory in this way will reduce memory
power consumption by up to 30%. Total memory power
consumption in our test system is relatively low (just over
10 W in the baseline configuration). However, many sys-
tems have substantially more memory than our test server,
and correspondingly higher memory consumption.

Our experiments also identify several challenges that must
be overcome if rank-aware allocation is to be used. One chal-
lenge is accounting for the complex relationship between the
amount of non-idle memory and DBMS performance. Idling
a DIMM reduces power consumption, but also reduces the
total memory bandwidth available to the system. It will be
important to determine whether or not this will have a sig-
nificant effect on the performance of a target workload. A
second challenge is that memory power reductions are not
proportional to the amount of memory that is idled. Esti-
mated DRAM power consumption with three active ranks
(one managed, two unmanaged) was about 35% lower than
DRAM power consumption with all eight ranks active.

The degree of control of memory power states is ultimately
determined by the hardware platform. With the exception
of small embedded platforms, we could not find any gener-
ally available system that would expose power state control
of memory modules to software. At the same time, the
power control algorithms in memory controllers are rather
conservative. We believe one reason for this is that the
potential for power savings due to automatic power state
management is negligible when applications are not aware
of physical memory configuration and its power characteris-
tics. However, current DRAM technology provides more op-

portunities for power savings, such as the SELF-REFRESH
state or even completely disabling refresh for unused mem-
ory regions. We believe that the demand from applications
for better control of memory power will stimulate system
builders to implement better control mechanisms and make
them available to applications.

5. CONCLUSIONS
In this paper, we have presented two techniques for power-

optimization in database systems. Database-managed DVFS
allows the DBMS to manage DVFS on the server’s proces-
sors. This allows DBMS to exploit its knowledge of request
latency targets, trading latency slack for reduced power con-
sumption. Rank-aware memory allocation allows memory
power consumption to be scaled according to memory ca-
pacity that is required by the DBMS, rather than the total
memory capacity of the server.

Both of these techniques show promise in the in-memory,
OLTP setting we considered. Database-managed DVFS re-
sulted in higher power savings than DVFS managed by the
operating system, particularly at lower loads. Rank-aware
memory allocation enabled estimated memory power sav-
ings of nearly 40% when the database size was much smaller
than the amount of memory provisioned on the server. Such
savings are not possible without rank-aware allocation.

Although both techniques are promising, our experiments
also highlighted challenges that must be addressed before
these techniques can be applied. DBMS-managed DVFS
relies on request execution time estimates, and estimation
errors can limit its effectiveness. Since it is probably impos-
sible to eliminate estimation error, the challenge is to imple-
ment DBMS-managed DVFS in a way that is robust against
such errors. Fully exploiting rank-aware memory allocation
may require more effective tools for management of memory
power states in software. Rank-aware allocation also affects
the memory system’s bandwidth. While the performance
impacts of this were small for our TPC-C workload, in gen-
eral it will be necessary to manage the power/performance
tradeoff that rank-aware allocation introduces.
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