

CS 886: Multiagent Systems

Kate Larson

Cheriton School of Computer Science University of Waterloo

September 8, 2008

イロト 不得 とくほ とくほとう

ъ

Outline

- Introduction
- Two Communities

2 This Course

3 Examples

- Selfish Routing
- London Bus System

Introduction Two Communities

Outline

2 This Course

- Selfish Routing
- London Bus System

イロト イポト イヨト イヨト

ъ

Introduction Two Communities

Introduction

Kate Larson

- Faculty Member in CS
- Member of the AI research group
- Research Interests: Multiagent Systems
 - Strategic Reasoning
 - bounded rationality/limited resources
 - argumentation
 - Electronic market design

ヘロト 人間 ト ヘヨト ヘヨト

Introduction Two Communities

Introduction

- Focus of this course is self-interested Multiagent Systems
 - aka competitive Multiagent Systems
- Study of autonomous agents
 - Diverging information
 - Diverging interests
- Issues
 - Cooperation
 - Coordination
 - Overcoming self-interest of agents in order to achieve system-wide goals

ヘロン 人間 とくほ とくほ とう

Introduction Two Communities

Introduction

- Growth in settings where there are multiple *self-interested* interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

ヘロア 人間 アメヨア 人口 ア

э

Introduction Two Communities

Introduction

- Growth in settings where there are multiple *self-interested* interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

・ロト ・ 理 ト ・ ヨ ト ・

Introduction Two Communities

Introduction

- Growth in settings where there are multiple *self-interested* interacting parties
 - Networks
 - Electronic markets
 - Game playing...
- To act optimally, participants must take into account how other agents are going to act
- We want to be able to
 - Understand the ways in which agents will interact and behave
 - Design systems so that agents behave the way we would like

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction Two Communities

Outline

Introduction

Two Communities

2 This Course

- Selfish Routing
- London Bus System

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

Introduction Two Communities

Two Communities

Economics

- Traditional emphasis on game theoretic rationality
- Describing how agents should behave
- Multiple self-interested agents

Computer Science

- Traditional emphasis on computational and informational constraints
- Building agents
- Individual or cooperative agents

くロト (過) (目) (日)

ъ

Introduction Two Communities

New Research Problems

- How do we use game theory and mechanism design in computer science settings?
- How do we resolve conflicts between game-theoretic and computational constraints?
- Development of new theories and methodologies

イロト イポト イヨト イヨト 三日

Explosion of Research

Explosion of research in the area (Algorithmic game theory, computational mechanism design, Distributed algorithmic mechanism design, computational game theory,...)

- Papers appearing in AAAI, AAMAS, UAI, NIPS, PODC, SIGCOMM, INFOCOMM, SODA, STOC, FOCS, ...
- Papers by CS researchers appearing in Games and Economic Behavior, Journal of Economic Theory, Econometrica,...
- Numerous workshops and meetings,...

イロト イポト イヨト イヨト 三日

This Course

- Introduction to game theory, social choice, mechanism design
- Study how they are used in computer science (in particular in AI)
- Study computational issues that arise

Course structure

- Introductory lectures
- Current research papers

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

This Course

- Introduction to game theory, social choice, mechanism design
- Study how they are used in computer science (in particular in AI)
- Study computational issues that arise
- Course structure
 - Introductory lectures
 - Current research papers

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A E > A E >

Prerequisites

No formal prerequisites

- Students should be comfortable with mathematical proofs
- Some familiarity with probability
- Ideally students will have an AI course but I can provide background material when needed
- I will cover the game theory and mechanism design required

ヘロン 人間 とくほ とくほ とう

Grading

- 2-3 assignments on game theory and mechanism design: 10%
- In class presentation(s): 20%
 - Peer-reviewed
- Class participation: 20%
- Research project: 50%

ヘロト ヘアト ヘビト ヘビト

Presentations

Every student is responsible for presenting a research paper in class

- Short survey + a critique
- Everyone in class will provide feedback on the presentation
- Marks given on coverage of material + organization + presentation

ヘロト ヘアト ヘビト ヘビト

Class Participation

You must participate!

- Before each class (before 6:00 am the day of the presentation) you must submit a review of one of the papers being discussed
 - What is the main contribution?
 - Is it important? Why?
 - What assumptions are made?
 - What applications might arise from the results?
 - How can it be extended?
 - What was unclear?
 - o ...

ヘロト ヘアト ヘビト ヘビト

The goal of the project is to develop a deep understanding of a topic related to the course.

• The topic is open

- Theoretical, experimental, in-depth literature review,...
- Can be related to your own research
- If you have trouble coming up with a topic, come and talk to me
- Proposals due October 20
- Final projects due December 1st¹
- Students will present projects in class

∃ > < ∃ >

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, in-depth literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me
- Proposals due October 20
- Final projects due December 1st¹
- Students will present projects in class

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, in-depth literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

Proposals due October 20

- Final projects due December 1st¹
- Students will present projects in class

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, in-depth literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me
- Proposals due October 20
- Final projects due December 1st¹
- Students will present projects in class

★ Ξ → ★ Ξ → ...

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, in-depth literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me
- Proposals due October 20
- Final projects due December 1st¹
- Students will present projects in class

Other Information

- Class times: Monday-Wednesday 10:00-11:30
- Office Hours: By appointment (just send me email or talk to me after class to set up an appointment)
- Course website
 - http://www.cs.uwaterloo.ca/~klarson/ teaching/F08-886

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Selfish Routing London Bus System

(신문) (문)

ъ

Outline

- Introduction
- Two Communities

2 This Course

Selfish Routing London Bus System

Selfish Routing

- We want to find the least-cost route from *S* to *T*.
- Costs are private information we do not know them
- We do know that agents (nodes) are interested in maximizing revenue
- How can we use this to figure out the least-cost route?

ヘロン 人間 とくほ とくほ とう

E DQC

Selfish Routing London Bus System

★ E → ★ E →

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ

Outline

- Introduction
- Two Communities

2 This Course

London Bus System

London Bus System²

- 5 million passengers daily
- 7500 buses
- 700 routes
- The system has been privatized since 1997 by using competitive tendering
- Idea: Run an auction to allocate routes to companies

ヘロン ヘアン ヘビン ヘビン

Selfish Routing London Bus System

Auction Protocol

• Let *G* be set of all routes, *I* be the set of bidders

- Agent *i* submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1,\ldots,S_n)} \sum_i v_i(S_i)$$

• Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1, \dots, S_n)} \sum_{j \neq i} v_j^*(S_j)$$

• Allocate each agent S_i^* , each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$

イロト イポト イヨト イヨト

Selfish Routing London Bus System

Auction Protocol

- Let G be set of all routes, I be the set of bidders
- Agent *i* submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1,\ldots,S_n)} \sum_i v_i(S_i)$$

• Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1, \dots, S_n)} \sum_{j \neq i} v_j^*(S_j)$$

• Allocate each agent S_i^* , each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Selfish Routing London Bus System

Auction Protocol

- Let G be set of all routes, I be the set of bidders
- Agent *i* submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S^* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1,...,S_n)} \sum_i v_i(S_i)$$

Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1, \dots, S_n)} \sum_{j \neq i} v_j^*(S_j)$$

• Allocate each agent S_i^* , each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$

ヘロト ヘアト ヘビト ヘビト

London Bus System

Auction Protocol

- Let G be set of all routes, I be the set of bidders
- Agent *i* submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1,\ldots,S_n)} \sum_i v_i(S_i)$$

Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1,...,S_n)} \sum_{j \neq i} v_j^*(S_j)$$

Allocate each agent S^{*}_i, each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$

イロト イポト イヨト イヨト 三日

London Bus System

- Mechanism: Generalized Vickrey Auction
 - Specifies the rules
 - Describes how outcome will be determined
- Strategies
 - Policies which specify what actions to take
 - Agents are self-interested and rational
- GVA is efficient and strategy-proof

ヘロト 人間 ト くほ ト くほ トー

э

Selfish Routing London Bus System

Computational Issues

• Winner determination problem: Select bids to maximize sum of reported values

- Maximum weighted set packing (NP-hard)
- Solve this problem *I* + 1 times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2⁷⁰⁰ bids to the auctioneer

・ロ と ・ 「 日 と ・ 「 日 と ・ 「 日 と ・ 」

Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem *I* + 1 times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2⁷⁰⁰ bids to the auctioneer

ヘロン ヘアン ヘビン ヘビン

э

Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem *I* + 1 times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2⁷⁰⁰ bids to the auctioneer

ヘロン ヘアン ヘビン ヘビン

-

Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem *I* + 1 times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2⁷⁰⁰ bids to the auctioneer

ヘロン ヘアン ヘビン ヘビン

э