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ABSTRACT
Most research on auctions assumes that potential bidders
have private information about their willingness to pay for
the item being auctioned, and that they use this information
strategically when formulating their bids. In reality, bid-
ders often have to go through a costly information-gathering
process in order to learn their valuation for the item being
auctioned. Recent attempts at modelling this phenomena
has brought to light complex strategic behavior arising from
information-gathering, and has shown that traditional ap-
proaches to auction and mechanism design are not able to
overcome it. In this paper, we show that if the auction de-
signer has some information about the agents’ information-
gathering processes, then it is possible to create an auction
where, in equilibrium, agents have incentive to only gather
information on their own valuation problems and to reveal
the results truthfully to the auctioneer. Additionally, sim-
ulation results show that, from a system-level perspective,
the overall cost of information acquisition is substantially
lower in this new auction when it is compared to a classic
auction mechanism.

Categories and Subject Descriptors: 1.2.11 Multiagent
Systems
General Terms: Design, Theory
Keywords: Mechanism Design, Game Theory, Resource-
bounded Agents

1. INTRODUCTION
Most research on auctions assumes that the problem fac-

ing bidders is how to bid given their private preferences
for the item(s) being auctioned. In reality, however, bid-
ders often have to go through a costly information-gathering
process in order to determine what their actual preferences
are. This process may involve such things as asking ques-
tions about a product in order to learn whether it is of high
or low quality, solving optimization problems in order to
ensure that the bidder bids on the minimum amount of ma-
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terials needed to complete some job, or conducting research
on a firm in order to learn whether its assets complement
the assets currently held by the potential bidder.

Recently, researchers have started studying how computa-
tional and informational constraints influence both the auc-
tioneer and the bidders. One direction of research has fo-
cused on what happens if the auctioneer does not have infi-
nite computational powers. In many interesting auction do-
mains, such as combinatorial auctions, the auctioneer is re-
quired to solve (possibly multiple) NP-hard problems. De-
termining how to replace it with approximation algorithms,
while still maintaining the desirable game-theoretic proper-
ties, as well as characterizing the domains of truthful social
choice functions, has been a vibrant research area [5, 11, 13,
10, 14].

Researchers have also started studying computational and
informational constraints faced by bidders. Most of the auc-
tion literature has assumed that the bidders know how they
value the items being auctioned. However, in many set-
tings bidders do not have adequate information in order to
formulate their valuations and instead must learn them by
computing or acquiring information (at some cost). One
model that has been studied allows a bidder the choice be-
tween participating in the auction without knowing its true
valuations or paying a fee to learn them. Questions asked
using this model include what sort of incentives are required
for bidders to acquire information about their valuations [1],
and how does information acquisition depend on the rules
of the auction [3, 15, 16].

It has also been noted that a bidder’s decision as to whe-
ther to compute or gather information about it’s valuations
can depend on the preferences of others [18]. We have pro-
posed explicitly modeling the information-gathering actions
of bidders along with the decisions they make when decid-
ing how to use their information-gathering resources. We
placed this deliberative-agent model into a game theoretic
framework, and have analyzed classic auctions in order to
gain an understanding of the impact that computational and
information-gathering constraints have on agents’ strategic
behavior [7]. This brought to light new forms of strategiz-
ing on the part of the bidders where they actively gathered
information on their competitors, and provided a possible
explanation for behavior seen in practice [17].

In recent work we studied the problem of designing auc-
tions specifically for bidders who must gather information [9]
in order to determine their actual valuations and formulate
their bids. We proposed three intuitive properties for auc-
tions. We argued that the auction should not have to know
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the details of the bidders information-gathering processes
(preference-formation independence), bidders should not ha-
ve incentive to gather information about other bidders (de-
liberation-proof ), and that the auction should support some
level of honesty among the bidders (non-misleading). How-
ever, we showed that it is impossible to design an (interest-
ing) auction that has these three properties.1 The contri-
bution of this paper is that we show by that relaxing one
of the properties, preference-formation independence, and
allowing the auction to use some minimal amount of infor-
mation about the bidders, it is possible to avoid strategic-
deliberation and misleading behavior.

The rest of the paper is organized as follows. In the next
section we describe our deliberative-bidder model, and dis-
cuss the problems faced in designing auctions for such bid-
ders. In Section 3 we describe an optimal-search procedure
and discuss how it can be incorporated into an auction. We
then show that this auction provides the appropriate incen-
tives for deliberative bidders. In particular it reduces the
strategic burden placed on these bidders as they decide how
to use their (limited) deliberation resources. Finally, Sec-
tion 5 reports on experimental results which illustrate the
feasibility of running such a procedure, as well as the effects
it has on reducing the total cost of information gathering.

2. DELIBERATIVE BIDDING AGENTS
In this section we provide the background and motivation

for the rest of the paper. We start by presenting our model of
a deliberative agent. We discuss the implications of having
deliberative agents participate in auctions and, in particular,
we highlight the complex strategic behavior that may arise
when bidders are deliberative. We then discuss some of the
challenges in designing auctions for such agents.

In the rest of this paper we assume that the reader has
a basic understanding of elementary game theory and auc-
tion theory. While we do explain key concepts as they are
needed, a more thorough treatment on this topic can be
found in microeconomic texts or books specializing on auc-
tions [12, 6]. We pause now to comment on the terminology
used in this paper. We use the terms “bidder” and “agent”
interchangeably. That is, every agent is a bidding agent. We
also use the terms “deliberative” and “information-gather-
ing” interchangeably.

2.1 Deliberative agents
In this paper we assume that bidders are deliberative. A

deliberative bidder is one who must compute or gather in-
formation in order to determine how much it values the
item(s) being auctioned, has restrictions on its computing
or information-gathering capabilities, and who carefully con-
siders how to use its available resources given its restrictions.

We assume that a deliberative agent has a set of delibera-
tion resources, which we will simply refer to as the agent’s re-
sources. We denote the resources of agent i by Ri. An agent
is able to apply its resources to any preference-determination
problem it wishes. If there are m possible problems, then
we let (r1, . . . , rm) ∈ Rm

i denote the situation where the
agent has devoted rj resources to problem j. In particular,
the agent is allowed to deliberate on its own preference-

1Auctions where the outcome is completely independent of
the bidding strategies of the agents trivially satisfy the three
properties.

formation problems, as well as the problems of any other
agent.

We model deliberation-resource limitations through cost
functions. The cost function of agent i is costi : Rm

i → R
+.

The only restriction placed on the cost functions are that
they must be additive and non-decreasing.

A deliberative agent i is endowed with a multi-set of al-
gorithms Ai = {Aj

i} where A
j
i is the algorithm agent i can

use on problem j. We use the term algorithm in its broad-
est sense; algorithms are step-by-step procedures for solving
some problem. In particular, we include information gath-
ering processes in our set of algorithms. The algorithms of
a deliberative agent have the anytime property; they can be
stopped at any point and are guaranteed to return a solu-
tion, but if additional resources are allocated to the problem
then a better solution (or at least no worse a solution) will
be returned.

A deliberative agent carefully decides how to allocate its
resources on algorithms given its cost function. To help with
this process, deliberative agents are equipped with a set of
performance profiles, PPi = {P j

i }, one performance profile
for each algorithm. A performance profile has two com-
ponents. First, it describes how allocating resources to a
problem changes the output of the algorithm. In particular,
it describes, for any resource allocation to a problem, what
possible solutions the algorithm may return, conditional on
any and all features of the algorithm and problem instance
which are deemed to be of importance to the agent. This
is coupled with a procedural component, which, given the
descriptive part of the performance profile, returns a delib-
eration policy that describes how the agent should optimally
allocate deliberation resources. A performance profile can
be as simple as a probability distribution over possible val-
uations coupled with a rule that states whether the agent
should deliberate or not, or it may use a more sophisticated
procedure that allows agents to condition their deliberation
policies on current results [8].

To summarize, a deliberative agent is defined by

〈Ri, costi(·),Ai,PPi〉

where Ri is the set of deliberation resources of agent i,
costi : Rm

i → R is a cost function which limits the amount
of resources the agent can use, Ai is the multi-set of algo-
rithms available to the agent, and PPi is the associated set
of performance profiles.

2.2 Auctions and Deliberative Bidders
A deliberative bidder needs to decide how and whether

to gather information on valuations and then how to use
the information it has in order to bid. Figure 1 illustrates
this process. Motivating the bidders is the desire to maxi-
mize their utility. In particular, the utility of a deliberative
bidding agent depends on its valuation, whether or not it
has won the item that was up for auction, and the price
that it pays if it was the winner. That is, if an agent i had
used resources r = (r1, . . . , rm), had determined valuation
vi(ri) had won the item, and had to pay price p, then its
(expected) utility would be

ui = vi(ri) − p − costi(r).

If the agent had not won the auction then its utility is

ui = −costi(r).
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Figure 1: An auction with two deliberative bidders.

Each bidder must gather information in order to

determine how much it values the item that is be-

ing auctioned. A bidder may also have incentive

to gather information on other participants in the

auction.

Note that the bidder may use its deliberation resources on
problems which do not directly affect its own valuation.
However, this will still influence its utility since it incurs
a cost for the total amount of resource usage.

A strategy for a deliberative bidder is a policy which spec-
ifies what actions (deliberative and bidding) to execute at
every stage in the auction. We define a history at stage t,
H(t) ∈ H(t), as the set which includes all actions (both de-
liberative and bidding) that the bidder itself has taken up
to stage t, the results of the deliberation actions, as well
as all actions other bidders may have taken (these may not
have been observed by the agent). A (deliberation) strategy
is a mapping from the set of histories to the set of actions
(deliberative or bidding) for each stage in the game. That
is, Si = (σt

i)
∞
t=0 and

σ
t
i : H(t) 7→ Ai

where Ai is the set of actions available to bidder i.
To clarify this definition we present a simple example. In

a direct auction, bidders submit their bid directly to the auc-
tioneer at some deadline T . The strategies of a deliberative
bidder have the following form; Si = (σt

i)
∞
t=0 where

σ
t
i(Hi(t)) =

�
d

j
i if t < T or t > T

v̂ if t = T and v̂ ∈ R

where v̂ is the bid submitted to the auctioneer, and d
j
i is a

deliberative action.
In this new, enlarged, strategy space we look for equilib-

ria, which we call deliberation equilibria. When we studied
the deliberation equilibria in standard auctions, we noted
that the equilibrium strategies of the bidders could be very
complex. In particular, deliberative bidders have incentive
to deliberate on the valuation problems of other bidders,
and to base their own deliberation actions on the results [7].
We call this behavior strategic deliberation.

We believe that strategic deliberation is a undesirable
phenomenon. When bidders strategically deliberate they
use their own costly information-gathering resources on val-
uation problems that do not directly relate to their own
preferences, thus wasting these resources. Additionally, the
strategic burden placed on the bidders is potentially over-
whelming. They must take into consideration the bidding

actions of competitors, the deliberation actions of competi-
tors, as well as the results of their competitors deliberation
actions, in order to determine how to best deliberate and
bid for themselves.

Recently, we studied the problem of designing auctions ex-
plicitly for deliberative bidders [9]. To this end we proposed
three desirable properties for such auctions. First, we argued
that a well-designed auction should reduce the strategic bur-
den of the bidders. In particular, a well-designed auction
should not provide any incentive for bidders to strategically
deliberate. That is, auctions should be deliberation-proof.
Second, we proposed that an auction should encourage bid-
ders to take actions which are consistent with their actual
valuations. That is, bidders should not try to willfully mis-
lead others concerning their valuations. We called this prop-
erty non-misleading. Finally, we argued that an auction
should not be involved in the information-gathering or de-
liberative process of the bidders. In particular, the auction
should not depend on the actual form of the cost functions,
anytime algorithms or performance profiles of the bidders.
We called this property preference-formation independence.

While each of these properties is desirable in isolation,
unfortunately it is impossible to design an (interesting) auc-
tion with all three [9]. In the rest of this paper we relax
the preference-formation independent property and allow
the auction to use some information about the information-
gathering processes of the bidders. We show that by relaxing
this one property it is possible to have an auction where the
other two properties are achieved.

3. AN OPTIMAL-SEARCH AUCTION
The preference-formation independence property is very

strong since it means that the auction is not able to use
any information about the information-gathering processes
of the bidders. In this section we slightly relax this prop-
erty and allow the auction designer to use some informa-
tion about the cost functions and performance profiles of
the bidders. In Section 4 we show that this is enough to get
a deliberation-proof and non-misleading auction.

The key insight is that if the auction designer has infor-
mation about the bidders’ cost functions and performance
profiles, then it can use this information to sort the bidders.
The auction can then process the bidders in order, getting
each one in turn to gather information and bid until some
criterion has been met. By using an optimal search pro-
cedure from the operations research literature [19], coupled
with carefully designed reservation prices, it is possible to
create an auction where the most promising bidders (i.e. the
ones most likely to have a high valuation and thus win the
auction) are asked to participate early in the process, and,
secondly, where bidders are provided with enough informa-
tion that they no longer have incentive to gather information
about others.

This is not the first time that someone has proposed us-
ing a search procedure in an auction. In particular, Bur-
guet [2] and Cremer, Spiegel and Zheng [4] have studied this
idea and have proposed both auctions and revelation mech-
anisms. While the auction in this paper is based on the
Cremer-Spiegel-Zheng auction, our bidder model, motiva-
tion, and the properties we prove differ substantially. Both
Burguet and Cremer et al. assume that the bidders can only
gather information on their own valuations, as opposed to
our assumption that bidders are free to gather information
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on any problem they wish. Second, their goal is to design
an auction which maximizes the revenue of the seller and so
are interested in extracting the expected surplus from the
bidders by imposing appropriate admission fees. Instead, we
focus on the strategic behavior of the bidders and show that
the auction has desirable properties from their perspective.

We now describe the assumptions that have been made
in this paper. First, we assume that there are n delibera-
tive bidders, and that the performance profiles and the cost
functions of the bidders are known to the auction designer
and to each other. Second, we assume that the cost functions
and the performance profiles of the bidders are independent.
Both these assumptions are required for the results.

To simplify the explanation of the auction, as well as the
notation, we will make certain assumptions about the per-
formance profiles of the agents. In particular, we assume
that while a bidder i does not know its valuation a pri-
ori, it does know that it comes from some interval [0, vi]
with probability distribution Pi which is equivalent to the
descriptive component of the bidder’s performance profile.
We argue that this assumption is not unduly restrictive.
First, deliberative agents with performance profiles like this
still have incentive to strategically deliberate in standard
auctions. Second, the proposed auction will still work in
settings where bidders have more sophisticated performance
profiles. The only repercussion is that sorting the bidders,
as will be described next, becomes more complex.

In the rest of this section we describe the optimal-search
auction. We first give an overview of the optimal search
procedure used by the auctioneer, and then describe how
the auctioneer uses it when setting up an auction. In the
next section (Section 4) we prove that this has the properties
we desire.

3.1 Optimal Search
In the operations research literature a search problem is

often formulated in the following way. Assume that there are
n boxes (bidders) to open (ask to deliberate), and each box
(bidder) i has some random value vi which is drawn from
distribution (performance profile) Pi(v) with density fi. If
the searcher opens a box (queries a bidder) i then it incurs
a cost of costi. The payoff to the searcher is the maximum
value found up to the point when it stops. The question is,
then, in what order should the boxes (bidders) be searched
(asked to deliberate) and when should the process stop?

Weitzman proved that this problem can be solved opti-
mally using a very simple procedure [19]. First, each box
(or bidder) is assigned a cutoff value Ki where

Ki = � K
i

0

Kifi(v)dv + � v
i

K
i

vfi(v)dv − costi.

If the searcher had already opened a box with reward Ki

then it would be ambivalent between opening box i or keep-
ing reward Ki. If the best reward found so far is less than
Ki then the searcher is best off opening box i.

Once the cutoff values have been computed, the optimal
search procedure is completely characterized by the follow-
ing rules:

1. (Selection Rule) If a box is to be opened, it should
be that closed box with highest reservation price.

2. (Stopping Rule) Terminate search whenever the max-
imum sampled reward exceeds the reservation price of

every closed box.

The cutoff values and the search procedure have some
interesting properties which make them particularly useful
for our application. The cutoff values are not the expected
valuations of the bidders and, in fact, the optimal search
procedure may well search a bidder with a low expected
value before a bidder with a higher expected value. As
Weitzman noted “Other things being equal, it is optimal
to sample first from distributions that are more spread out
or riskier in hopes of striking it rich early and ending the
costly search” [19]. Interestingly, one of the main incentives
driving bidders to strategically deliberate is very similar.
Bidders are better off paying some small amount to learn
whether or not a competitor has a high valuation for an
item (and thus would be likely to win the auction) and only
then deciding whether it is worth while to gather informa-
tion on its own valuation problem [7]. Some other appealing
properties of the cutoff values and the search procedure are
that as the cost of learning a valuation increases, the cutoff
value decreases, and as the search progresses the valuations
needed to stop the search decrease.

We note that the cutoff value calculation is equivalent to
finding a fixed-point, and may be a computational challenge
for the searcher. However, in many settings, finding the
fixed point is relatively straightforward. For example, if vi

is drawn from the uniform distribution over [0, 1], and the
cost of learning vi is 0.25, then the cutoff value is

Ki = � K
i

0

Kidv + � 1

K
i

vdv − 0.25

= K
2
1/2 + 0.25.

Solving for Ki, we get Ki ≈ 0.293.

3.2 The Auction
The optimal-search auction progresses through a series of

stages. First, using its knowledge of the performance profiles
and cost functions of each bidder, it computes the cutoff val-
ues. It labels the bidders in decreasing order of cutoff values
so that K1 > K2 > . . . Kn. It then asks each bidder in turn
to gather information on its valuation problem and reveal
the result. If, after asking the first t bidders to deliberate
and reveal their results, the highest valuation is greater than
Kt+1 then the auction is halted, the highest bidder wins the
item, and the auction has followed the optimal search proce-
dure. However, it is not possible to simply get each bidder to
truthfully reveal their valuations when asked. Instead, the
auctioneer uses reserve prices and a sequence of second-price
auctions to get the bidders to truthfully reveal whether or
not their deliberations have resulted in valuations which are
larger than a specific cutoff value.

In stage 1, the auctioneer tells bidder 1 that it should
gather information on its valuation problem. The auctioneer
then makes a take-it-or-leave offer of price p1

1 to the agent.
If the offer is accepted then the auction stops, bidder 1 gets
the item and pays p1

1. If the offer is rejected then the auction
continues to the next stage. If the auction reaches stage t

then bidder t is asked to deliberate on its valuation problem.
Once it has done so then bidders 1 to t participate in a
second-price auction with bidder and stage specific reserve
prices. If bidder i submits a bid which is greater than its
reserve price pt

i then the auction stops. If only one bidder
submitted a bid which was greater than its reserve price then
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it is given the item and it pays its reserve price. If there
are multiple bidders who submitted bids that were higher
than their reserve prices then the highest bidder i wins the
item and pays p = max[pt

i, b−i] where b−i = max{bj |bj >

pt
j and j 6= i}. If the auction reaches the final state, n, then

all bidders have been asked to gather information on their
valuations. All bidders then participate in a second-price
auction with no reserve prices.

The auctioneer must be careful when it comes to setting
the reserve prices. If it is not done properly then bidders
may have incentive to lie about their valuation after they
have learned them. If the reserve prices are too low then a
bidder may want to submit a bid which is higher than its
true valuation in order to stop the auction early so as to
avoid competition from others. If the reserve prices are set
too high then a bidder may submit a bid which is lower than
its true valuation in the hopes that as the auction progresses
the reserve prices will drop. Cremer et al showed that it is
possible to set the reserve prices so that in (Bayes-Nash)
equilibrium the bidders bid truthfully [4]. This is done by
working backwards through the stages of the auction.

If the auction reaches the last stage, then all bidders know
their valuation. Since they participate in a second-price auc-
tion, each bidder is best off bidding truthfully. In the second
last stage the first n − 1 bidders know their valuations. As-
sume all of these bidders but i bid truthfully. Our goal is
to set the reserve price of bidder i, pn−1

i so that bidder i

will only submit a bid greater than pn−1

i if its valuation is
greater than or equal to Kn. If vi = Kn then the only
way the bidder can win the auction is if all bidders who
know their valuations submitted a bid less than Kn. That
is v−i < Kn. If bidder i bid truthfully, the auction would
stop, it would win, and it would pay its reserve price. Its
expected payoff is

(Kn − p
n−1

i )ΠjPj(Kn) (1)

where 1 ≤ j < n, j 6= i. If bidder i lied about its valuation
at stage n − 1 then the auction would continue to the final
stage where all bidders are informed and all participate in
a second-price auction. Bidder i will only win if all bidders,
including bidder n, have valuations which are less than vi =
Kn. Since, by assumption, all other bidders are telling the
truth about their valuations, agent i knows that the first
n − 1 bidders (minus itself) must have valuations which are
less than Kn. Thus, its payoff if it waits for the last round
is

Π1≤j≤n−1Pj(Kn) � Kn

0

(Kn − v
n
−i)d

Π1≤j≤nPj(v
n
−i)

Π1≤j<n−1Pj(KN)
(2)

where j 6= i and vn
−i is the highest valuation of the bidders

from 1 to n, not including bidder i. Bidder i is ambivalent
between declaring its true valuation in round n−1 and wait-
ing for the second-price auction in the next round whenever
(1)=(2). If the reserve price pn−1

i is set such that (1)=(2)
then bidder i will truthfully reveal its valuation, given that
all other bidders are also doing the same.

The appropriate reserve prices for earlier rounds are de-
termined in a similar fashion. If in stage t bidder i has valu-
ation vi = Kt+1, and assuming that all bidders j, 1 ≤ j ≤ t,
j 6= i reveal their valuations truthfully, then, if bidder j bids
truthfully, the auction will stop and its payoff will be

(Kt+1 − p
t
i)ΠjPj(Kt+1) (3)

where 1 ≤ j < t, j 6= i. If the bidder waits until the next
stage and then reveals its true valuation, its expected payoff
is

(Kt+1 − p
t+1

i )ΠjPi(Kt+2)+ (4)

ΠjPj(Kt+1) � K
t+1

K
t+2

(Kt+1 − v
t+1

−i )d
ΠjPj(v

t+1

−i )

ΠjPj(Kt+1)

where 1 ≤ j < t + 1 and j 6= i, and where bidder i will pay
pt+1

i if vt+1

−i < Kt+2 and vt+1

−i if vt+1

−i > Kt+2. If pt
i is set

such that (3)=(4) then bidder i is best off bidding truthfully
in stage t, assuming that all other possible bidders also bid
truthfully.

4. PROPERTIES
The optimal-search auction described in the previous sec-

tion has some properties which make it appealing. First,
there exists a Bayes-Nash equilibrium where the bidders
truthfully reveal their valuations at the right time. Sec-
ondly, and of particular interest, it is structured so that
bidders have no incentive to strategically deliberate. That
is, the optimal-search auction is deliberation-proof and non-
misleading.

Proposition 1 The optimal-search auction is non-mislead-
ing. There exists a Bayes-Nash equilibrium where bidders
truthfully reveal their valuations when asked by the auction-
eer.

Proof: (Sketch) The full proof is quite technical and fol-
lows the proof described in Cremer et al [4]. Thus, we only
provide an overview of the proof. The main idea is that
the reserve prices used by the auctioneer have been care-
fully chosen so that a Bayes-Nash equilibrium, where the
bidders truthfully reveal the results of their deliberation,
exists. If the auction does not stop before all bidders have
been asked to deliberate on their own valuation problems,
then a second-price auction is run. At this point, all the
bidders know their valuations and so are best off bidding
truthfully. At stage t < n, using the equilibrium hypothe-
sis that all other bidders who have learned their valuations
truthfully reveal them, the reserve prices for bidder i were
carefully designed so that it is in it’s best interest to truth-
fully reveal the valuation it obtained via deliberation. This
is because in stage t bidder i is participating in a second-
price auction with t − 1 other bidders and so it’s bid does
not change the price it will pay if it wins in stage t. Addi-
tionally, the reserve prices are such that if vi ≥ Kt+1 then
bidder i is best off revealing this and stopping the auction
in stage t, while if vi < Kt+1 then the bidder is best off let-
ting the auction continue. In either situation, truth-telling
is bidder i’s best response, given its beliefs about the poten-
tial valuations of all other bidders, conditional on the fact
that the auction has reached stage t and the hypothesis that
all other bidders truthfully reveal their valuation once they
have learned it.

�

Proposition 2 The optimal-search auction is deliberation-
proof. Deliberative bidders have no incentive to use their
deliberation resources on the valuation problems of others.

Before we present the proof of this proposition, we provide
some insight into why bidders strategically deliberate in auc-
tions. Strategic deliberation is caused when there is some
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form of asymmetry between the bidders in terms of the cost
functions or the performance profiles. Strategic deliberation
often occurs when one bidder gathers information on a com-
petitor in order to check whether the competitor has a high
valuation or not. Based on this information, the deliberat-
ing bidder will then decide whether or not it is worthwhile
to deliberate on its own valuation problem. Interestingly,
the optimal search procedure uses a similar motivation for
sorting agents. In particular, it queries agents in such an
order so that agents that other bidders may want to gather
information on (i.e those with potentially high valuations
and low cost) are asked to deliberate and reveal their re-
sults early in the process, thus removing the need for other
agents to gather information on them.

Proof: (Sketch) If the auction stops before a bidder is
asked to deliberate, then the bidder has no incentive to de-
liberate on any problem and thus will not strategically de-
liberate. If a bidder already knows its valuation then it has
no incentive to learn the valuations of other bidders in the
optimal-search auction, since it will participate in second-
price auctions. Therefore, the only situation of interest is
when the auction asks a bidder to gather information and it
has not yet done so on its own valuation problem.

Another useful observation is that if costi < costj then
bidder i has no incentive to deliberate on the valuation prob-
lem of bidder j. That is, if it is more expensive to deliber-
ate on another bidder’s valuation problem compared to ones
own, then one will not deliberate on the other’s problem.
Case 1: Assume that Ki > Kj , and assume that the auc-
tion has reached stage i. Since the performance profiles of
all bidders are common knowledge, bidder i can determine
E[vi] and E[vj ]. If E[vi] ≤ E[vj ] then it must be the case
that Ki < Kj since costi > costj . This is a contradiction,
and so it must be the case that E[vj ] < E[vi].

If E[vi] > Kj , then in expectation the auction will stop
before it reaches bidder j and thus the valuation of bidder
j is irrelevant. Therefore, bidder i has no incentive to in-
cur a cost from learning it. Assume that E[vi] < Kj . Let
t = max{t|Kt < E[vi]}. That is, in expectation, stage t

is the earliest stage in which bidder i could influence the
outcome of the auction. If Kt > E[vj ] then we are in a sim-
ilar situation as before and so for the same reason bidder i

has no incentive to deliberate on the valuation problem of
bidder j. If Kt < E[vj ] < E[vi] then it is possible that vj

will effect what price bidder i may pay, but in expectation
it will not effect the allocation decision of the auction. Since
strategic-deliberation is driven by allocation uncertainty as
opposed to price uncertainty, bidder i has no incentive to
deliberate on player j.
Case 2: Now assume that Kj > Ki. If the auction never
reaches stage i then bidder i has no incentive to deliberate
on any valuation, and thus certainly not on the problem of
bidder j. Assume that the auction does reach stage i. This
can only occur if vj < Ki. Since, the auction is implement-
ing an optimal search process, we know that it must be the
case that

vj − �
1<l<i

costl < E[vi] − costi − �
1<l<i

costl.

Therefore, by simple algebra,

vj < E[vi] − costi

Clearly bidder i now has no incentive to deliberate on bidder
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Figure 2: Fraction of the optimal allocation the

search auction achieves. In this example all agents

have their cost functions fixed to 1.0.

j’s problem. In expectation bidder i has a higher valuation
than bidder j and thus will be allocated the item before bid-
der j would. Secondly, even if bidder j influenced the price
that bidder i had to pay, learning the actual valuation of
bidder j will not change the deliberation strategy of bidder
i.

�

5. EXPERIMENTAL RESULTS
We investigated how the optimal-search auction worked in

practice. In particular, we were interested in the economic
efficiency of this approach, and whether it significantly re-
duced the amount of deliberation among the agents. To
this end, we conducted two sets of simulations. The first set
of simulations compared the allocation made by the search
auction to the optimal allocation (made by a second-price
auction). The second set of simulations compared the total
cost of deliberation of all agents in the search auction with
that of a second-price auction.

We set the parameters of the two sets of experiments the
same way. We divided the bidders into six different classes,
and then ran second-price auctions and optimal-search auc-
tions in each class as we varied the number of bidders.

Each bidder had some valuation vi which was drawn inde-
pendently from the uniform distribution over [0, V ], where V

was either 5, 10 or 20. For each of these valuation intervals,
we set the cost functions in one of two ways. We first set
the cost function of all agents in each class to be cost = 1.0.
This meant that the cutoff values used in the optimal-search
auction were the same for all bidders who’s value had been
drawn from the same interval. This put the optimal-search
auction at a disadvantage since it had to run with minimal
information available to it. We varied the cost functions
for the bidders in other experiments. In particular, for any
bidder who had a valuation drawn from the interval [0, V ],
we randomly drew a cost constant costi from the uniform
distribution over [0, V/2]. This meant that with high prob-
ability each bidder had a different cutoff value allowing the
optimal-search auction to order the bidders to its advantage.
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Figure 3: Fraction of the optimal allocation the

search auction achieves. In this example, cost func-

tions are drawn uniformly and independently from

an interval related to their valuations.

For each of the six parameter configurations we ran a se-
ries of second-price auctions and optimal-search auctions.
We compared the efficiency of the optimal-search auction
with that of the efficient second-price auction in order to de-
termine what the efficiency loss was. We also compared the
total cost of deliberation done by all bidders in the second-
price auction with that done in the optimal-search auction in
order to determine whether there was a substantial overall
savings with the optimal-search auction. In each experi-
ment we varied the number of bidders from 2 to 1000, and
repeated each experiment 100 times. We present the average
of our results.

In our first set of experiments we measured the efficiency
of the search auction with that of the second-price auction.
The second-price auction is guaranteed to allocate the item
to the agent who has the highest valuation, while the search-
auction allocates the item to the agent who has the highest
valuation amongst the agents who have been asked to delib-
erate before the auction is stopped. It is possible that the
search-auction is stopped before the agent with the actual
highest valuation is asked to deliberate. Figures 2 and 3
show our findings.

In Figure 2, the search auction is at a disadvantage since
all the cutoff values for the agents in each experiment are
the same. However, we still observe that the search auc-
tion is within at least 65% of optimal (the allocation of the
second-price auction) for all parameter settings. The alloca-
tion does depend on the interval from which the valuations
are being drawn, with values from [0, 5] leading to a lower
allocation than the others. If the auction had more than 100
bidders, then the allocation did not seem to be affected by
the number of bidders (this was expected). In Figure 3 the
search auction was able to make better allocations when it
was able to distinguish between the agents based on their
cutoff values. Once we had at least 200 bidders, the alloca-
tion made by the search auction was always within 90% of
optimal.

In our second set of experiments we studied whether or
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Figure 4: Cost incurred by all agents in the search

auction compared to cost incurred in a second price

auction. As the number of agents increase, the frac-

tion becomes vanishingly small. Cost functions were

fixed so that they were all equal to 1.0. This means

that all agents (in each experiment) had the same

cutoff value.

not the search auction reduced the total amount of delib-
eration done by all agents significantly, compared to what
would happen in a second-price auction. In a second-price
auction, given our setup, each agent would have incentive to
gather information on their own valuation problem, while in
the search auction only a subset of the agents will likely be
asked to gather information (and thus incur a cost). Fig-
ures 4 and 5 show our results. Even if the search auction
has little information by which to sort the agents (Figure 4)
the overall savings in deliberation cost from a system-wide
perspective is substantial. This is even more marked in the
experiments where agents had different cutoff values, allow-
ing the search auction to query the most promising agents
first (Figure 5).

To conclude, our experiments show that the search auc-
tion does quite well when it comes to allocating the item. It
also greatly reduces the amount of deliberation done by all
agents in the auction.

6. CONCLUSION
A common assumption in auction research is that bidders

have private information about their willingness to pay for
the item being auctioned and that they use this information
strategically when formulating their bids. In reality, bid-
ders often have to undergo a costly information-gathering
process in order to determine their valuations for the item
being auctioned. Recent attempts at modelling this phe-
nomenon has brought to light complex strategic behavior
that had previously been overlooked. In particular, bidders
may either have incentive to actively gather information on
others or may have incentive to “fool” other bidders about
their results. Earlier work proved that if the auction de-
signer had no information about the bidders’ information-
gathering processes then this strategic behavior on the part
of the agents was impossible to avoid.
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Figure 5: Cost incurred by all agents in the search

auction compared to cost incurred in a second price

auction. As the number of agents increase, the frac-

tion becomes vanishingly small. Cost functions were

drawn uniformly and independently from intervals

related to their valuations.

In this paper we showed that by providing the auction de-
signer with some minimal amount of information about the
information-gathering processes of the bidders, it is possible
to design an auction such that the bidders only gather infor-
mation on their own valuation problems, and, when asked,
report the results truthfully to the auctioneer. The insight is
that by carefully ordering the agents using an optimal search
procedure, and then asking them sequentially to gather in-
formation and reveal their results, it is possible to remove
the uncertainty that drives the complex strategic behavior
of deliberative agents in standard auctions. We additionally
showed, via simulation results, that the savings in terms of
overall information-gathering costs is significant.

There are several directions in which this work can be
taken. This paper focussed solely on single-item auctions,
and so generalizing the approach to multi-item auctions is
an obvious next step. Second, the search auction relied on
the assumption that the performance profiles and cost func-
tions of the agents are known to everyone. While it seems
likely that the auction also provides the correct incentives so
that bidders will truthfully reveal their performance profiles
and cost functions, this still needs further analysis. Finally,
it is our belief that optimal search procedures from the op-
erations research literature may find use in other settings,
for example in situations where the total amount of commu-
nication has to be minimized.
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