
Tiresias: Enabling Predictive Autonomous Storage and Indexing
Michael Abebe, Horatiu Lazu, Khuzaima Daudjee

Cheriton School of Computer Science, University of Waterloo
{mtabebe,hslazu,kdaudjee}@uwaterloo.ca

ABSTRACT
To efficiently store and query a DBMS, administrators must select

storage and indexing configurations. For example, one must decide
whether data should be stored in rows or columns, in-memory or on
disk, and which columns to index. These choices can be challenging
tomake for workloads that are mixed requiring hybrid transactional
and analytical processing (HTAP) support. There is growing inter-
est in system designs that can adapt how data is stored and indexed
to execute these workloads efficiently. We present Tiresias, a pre-
dictor that learns the cost of data accesses and predicts their latency
and likelihood under different storage scenarios. Tiresias makes
these predictions by collecting observed latencies and access his-
tories to build predictive models in an online manner, enabling
autonomous storage and index adaptation. Experimental evalua-
tion shows the benefits of predictive adaptation and the trade-offs
for different predictive techniques.

PVLDB Reference Format:
Michael Abebe, Horatiu Lazu, Khuzaima Daudjee. Tiresias: Enabling
Predictive Autonomous Storage and Indexing. PVLDB, 15(11): 3126 - 3136,
2022.
doi:10.14778/3551793.3551857

PVLDB Artifact Availability:
The source code and other artifacts have been made available at https:
//github.com/mtabebe/Adaptive-Storage-Tiresias-and-Proteus.

1 INTRODUCTION
Organizations rely on large amounts of data to make data-driven

decisions [10, 48, 49, 54]. To store and query this data efficiently, ad-
ministrators must make physical design decisions such as whether
data should be stored in rows or columns, in-memory or on disk,
and which columns to index.
These storage and indexing choices are difficult to make when

executing mixed or hybrid transactional and analytical (HTAP)
workloads because data is accessed concurrently by both trans-
actional (OLTP) and analytical (OLAP) operations [10, 29, 46, 62].
For example, storing data using a row layout provides low latency
OLTP operations but results in significantly degraded performance
for OLAP queries. This outcome is reversed when using a column
layout of data [7, 10].
Consider the new order table from the CH-BenCHmark [14].

OLAP queries scan the table to find popularly ordered items, while
OLTP transactions insert new orders and update the delivery status

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551857

of recent orders. Over time, the row representing a placed order
goes from likely to be updated (insertion and subsequent update in
delivery status) to scan-heavy. Using appropriate tools, the system
administrator may discern this general pattern, but they would
not know when the shifts in access patterns will occur. Hence, if a
system learns these different access costs and predicts the workload
patterns, then it could predictively adapt its layout and reduce access
latencies. For example, the system could initially store data in a
row layout and predictively change it to a columnar layout when
it expects updates to that data are unlikely. Similarly, the system
could predictively load data items from disk prior to executing scan
queries on them. Such predictive changes reduce access latency as
the data is in an access-optimized layout.
As another example, consider database cracking that incremen-

tally adapts indexes to the workload by reorganizing data based
on accesses. Cracking amortizes the upfront costs of indexing the
entire database to indexing data as it is accessed at the expense
of increased query latency. If the database system could predict
which data would be accessed and when, then by predictively index-
ing that data, the system could achieve the best of both traditional
indexing and cracking through low upfront costs and query latency.

As the above examples illustrate, a database management system
(DBMS) needs to be predictive to benefit from adaptive storage
changes. In particular, the system should predict (i) when a data
item will be accessed, and (ii) the latency (cost) of a given data item
access under a specific storage layout. While achieving the goal of
being predictive is challenging, the resulting performance benefits
from system storage adaptations are highly desirable.
Analytical and transaction processing workloads often exhibit

both temporal and spatial locality in data accesses [3, 37, 50, 52, 56,
57]. These trends are typically cyclic and hence predictable. For
example, a trace of requests to Wikipedia (Figure 2a) [59] shows
that there are periodic daily and weekly trends, as well as short-term
effects such as load spikes. Data accesses exhibit a time-varying
skew that follows the sun: workload demands shift following day-
light hours when most people are awake. Such time-varying skew
is typical in transactional workloads, while users often schedule
analytical query workloads to run at regular intervals to generate
hourly reports or refresh dashboards every minute [52]. In con-
trast to temporal locality, spatial locality in a workload arises from
accesses to regions of data varying over time. For example in the
SkyServer workload [3, 56], users periodically focus on different
areas of the sky (Figure 6a). Consequently, a system must model
and learn workload patterns to predict future data accesses.

Predicting the latency or cost of data access under different stor-
age layouts poses a challenge. When considering factors such as
sort order, data size, selectivity, or columns indexed, the systemmay
have limited data-specific history of prior observed latencies under
a particular storage layout. Moreover, to understand the effects of
storage layouts on performance, the system must attribute latency

3126

https://doi.org/10.14778/3551793.3551857
https://github.com/mtabebe/Adaptive-Storage-Tiresias-and-Proteus
https://github.com/mtabebe/Adaptive-Storage-Tiresias-and-Proteus
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551857
https://www.acm.org/publications/policies/artifact-review-and-badging-current

to specific operations, and not the entire transaction.
In this paper, we present Tiresias, a predictor designed to make

decisions to predictively adapt storage in DBMSs. We demonstrate
Tiresias’ benefits for three systems: (i) adapting storage layouts
for HTAP workloads in Proteus [7], a distributed HTAP DBMS,
(ii) enable predictive cracking in an OLAP DBMS [24], and (iii)
enabling automatic indexing in PostgreSQL. We conduct a detailed
experimental study to evaluate end-to-end performance and show
the benefits of predictive storage adaptation while understanding
the trade-offs in using Tiresias.

2 RELATEDWORK
Next, we discuss how Tiresias relates to prior work that predicts

access arrivals, access costs, and uses predictive DBMS techniques.

2.1 Predicting Access Arrivals
Prophet [58] and QB5000 [37] predict access frequencies using an

ensemble learning approach, decomposing predictions into periodic
and trend components. These systems learn the periodic component
and do not require user configuration. QB5000 combines a linear
regression trend predictor with a recurrent neural network (RNN)
periodic predictor. Prophet learns the periodic component using
Fourier series and the trend using a linear trend with change points.
Prophet also incorporates user-defined holiday list to account for
irregular recurring trends. Tiresias’ hybrid-ensemble access arrival
predictor combines a linear predictor with an RNN (Section 5.1.2)
and holiday list to adapt storage in a distributed HTAP DBMS,
predictively crack data and modify indexes.

In the context of elastically adding or removing database nodes
based on predicted future query load, prior work models shifts
in query workloads using Fourier transforms to detect peaks and
interval analysis to detect periods [27]. P-Store [57] uses SPAR to
predict load; however, as we discuss in Section 5, SPAR requires
prior knowledge of the workload periodicity.
Some systems use Markov models to predict the set of queries

that will be executed in the near future based on the set of recently
executed queries [21, 28]. However, these approaches do not predict
the number of times a query will execute in a time period.

2.2 Predicting Operation Costs
There are many proposed techniques for predicting the cost of

an operation within a database system as part of cost models in
query planners. The traditional approach of a cost model relies
on a user-defined notion of the relative costs of different opera-
tions within the system [11]. Offline learning-based approaches
execute operations with different parameters to collect training
data, which are used to infer the costs of database operations [33].
Prior work has considered both regression-based techniques and
similarity-based clustering to predict operation time [20, 53, 55].
By contrast, the online learning approach continuously learns by
updating its models based on observed costs as the system executes
transactions [36]. MB2 [38] extends these ideas by decomposing
database operations, e.g., flushing a log record and query operators,
into independent units to predict their run time.

Black box techniques aim to learn the costs of operations or the
cardinality of their outputs without explicit knowledge of the dif-
ferent components of operations that compose their costs [40–42].

Table 1: Tiresias’ API for prediction and training.
Tiresias API

predictLatency(costFunction, costArguments)→ latency
// Short form for a given cost function: F (a1, ..., an)
recordLatency(costFunction, costArguments, latency)
predictAccessCount(partition, accessType, timeWindow)→ count
// Short form for partition/accessType T , timeWindow τ : δ (T , τ)
recordAccessCount(partition, accessType, timeWindow, count)
train()

Deep reinforcement learning-based approaches have been explored
in this domain [22, 35, 43, 45], and consume the plan tree structure
as input, including join predicate information, while relying on the
hidden layers to capture and learn the relevant information. The
complexity of the model vastly increases training time, precluding
its use in an online environment [43]. Recently, zero-shot cost mod-
els [25] employ transferrable graph representations of queries to
predict latency for queries that execute over data sets not included
in offline training sets.

2.3 Predictive Adaptation in DBMSs
DBMSs utilize predictive components and models to alter their

design based on the workload. The commonality in these systems is
that they perform a cost-driven “what-if” analysis to quantify the ef-
fect of the proposed action on system performance [12]. Automatic
knob-tuning systems select knobs to tune based on an expected
reward (tail latency) using machine learning algorithms [18, 39, 60].
Auto-indexing tools [8, 12, 16, 32, 44] identify the set of indexes
that should be used and automatically generate, deploy, or tune
them. Similarly, tools select the set of views to materialize based
on the workload [23]. In these scenarios, dependencies among the
decisions and delayed effects of changes make it difficult to attribute
performance effects to any one change. However, these systems do
not predict the upcoming workload. Tiresias provides an interface
that allows different DBMS components to leverage both cost and
access arrival predictions to improve system performance.

3 TIRESIAS OVERVIEW AND DEPLOYMENT

Tiresias presents an API (Table 1) to predict data access latencies
using cost functions (Section 4), predict upcoming workload using
access arrival estimators (Section 5), record collected observations
and periodically train the models. Using these predictions, systems
can use Tiresias to make cost-driven decisions to adapt their storage
and indexing based on predictions of the workload (Section 6).

3.1 Deployment
We used Tiresias’ flexible and general API to deploy predictive

adaptation of storage and indexing in three systems. We describe
Tiresias’ integration with these systems next.

3.1.1 Adaptive Storage for HTAP We integrated Tiresias into Pro-
teus [7], a distributed HTAP DBMS. Proteus stores and distributes
relational data among data sites in multiple – row or column –
storage formats across multiple – memory or disk – storage tiers.
Proteus also supports storage layout optimizations, such as main-
taining data in sorted order or a compressed form [4–6, 30, 31, 63].
Proteus selects a master (or primary) node (or site) for each data

3127

itemwhere update transactions execute and a storage layout for that
node. Proteus replicates data selectively, and it decides which sites
store data item replicas and the associated layout for each replica.
Proteus makes these decisions dynamically at the granularity of a
data partition.
To integrate Tiresias into Proteus, we: (i) decomposed trans-

actional latency predictions into storage-specific operators that
Proteus calls on Tiresias to predict (e.g., latency of a scan over row
format data), (ii) call Tiresias to record operator latency, and data
access history, (iii) use Tiresias to predict when data accesses will
arrive and with what frequency, and (iv) use Tiresias to compute
the expected benefit of a storage layout change for future and up-
coming transactions, performing the adaptation if Tiresias deems
it beneficial to do so.

3.1.2 Predictive Cracking We incorporate Tiresias into an OLAP
DBMS that performs cracking [24]. By integrating Tiresias’ capa-
bilities, we enable the DBMS to perform cracking predictively. If
Tiresias predicts that an area of data will be accessed in the fu-
ture, it reorganizes (cracks) that area prior to the access occurring.
To integrate Tiresias into the OLAP DBMS, we: (i) record query
arrivals and latency along with statistics to indicate whether the
data accessed was sorted, (ii) call Tiresias to predict which areas
of data will be accessed in an upcoming window, and (iii) execute
predictive data cracking if the system has free cycles.

3.1.3 Automatic Indexing Finally, we integrated Tiresias into Post-
greSQL to automatically add and remove indexes. To enable this
automatic index addition and removal, we integrate Tiresias into
the PostgreSQL client to (i) record query arrivals and latency along
with whether a secondary index is used on the table, (ii) call Tire-
sias to predict the query access type and latency of the query, with
and without secondary indexes, and (iii) add or remove secondary
indexes based on Tiresias’ predictions, using the SQL interface.

4 PREDICTING DATA ACCESS LATENCY
Tiresias uses cost functions to predict the latency of transactions

and storage adaptations by decomposing each transaction into
storage operators that are chained together to execute the trans-
action. Tiresias estimates the transaction’s latency by summing
each operator’s predicted latency. To do so, Tiresias learns a cost
function F for each storage operator parameterized by arguments
(a1,a2, ...,an) determined by the storage layout and workload sta-
tistics. For example, to predict the latency of a transaction that
updates a partition in a row layout in Proteus, Tiresias combines
the following predictions: (i) sending a network request to the data
site (ii) acquiring a lock (iii) performing the update on the row,
and (iv) committing. Each of these predictions is parameterized; for
example, the latency of performing the update is parameterized by:
(i) the number of cells accessed, and (ii) the total average size of
each cell updated. Decomposing latency into different storage oper-
ators, as opposed to end-to-end black-box models, allows Tiresias’
models to quickly converge on the order of minutes (Section 7.2).
Tiresias’ fast convergence occurs because it observes similar input
for individual operators as training data, despite differing overall
transaction properties.
Using storage specific cost functions and parameterizing them

accordingly allows Tiresias to predict the latency of transactions

under different storage layouts and index selections. Consider the
previous example of an update transaction in Proteus for which
Tiresias wishes to compute the latency under a columnar layout. In
this case, Tiresias replaces the row-format predictor of performing
an update with the column-format predictor of performing that
update. Similarly, if data is vertically partitioned, then cost function
parameters are altered as (i) the size of stored partition data de-
creases, which decreases update or read latency, and (ii) contention
on the partition’s lock decreases.

4.1 Predictors
Tiresias learns the cost function F using three different learning

algorithms: (i) linear regression, (ii) non-linear regression and (iii)
a neural network model (Section 4.1). As we show in Section 7.2,
these algorithms have significantly different latencies for both in-
ference (making a prediction) and training (building the model),
as well as accuracy differences. Tiresias uses the linear regression
algorithm, which has the lowest inference latency when predict-
ing in latency-sensitive situations such as generating an execution
plan. In contrast, the non-linear regression and neural network
algorithms are more accurate than the linear regression algorithm
but take longer to train and converge.

Each algorithm takesn arguments, as in F (a1, ...,an), and returns
a scalar prediction y. Tiresias also records the true observed value
for a given estimated cost, o, which is the latency of the specific
operation (Section 4.2). Periodically (by default every 15 seconds),
with each observation o, a function’s corresponding arguments
(a1, ...,an) and prediction y are updated by Tiresias via training.

4.1.1 Linear Regression The linear regression algorithm makes the
prediction F (a1, ...,an) = y by learning weightsw0,w1, ...,wn and
predicting F (a1, ...,an) = w0+ (a1 ·w1)+ ...+ (an ·wn). Tiresias uses
stochastic gradient descent to update the weights (w0,w1, ...,wn)
with a mean squared error loss function (o − y)2.

4.1.2 Non-Linear Regression Tiresias uses Dlib’s [34] kernel recur-
sive least squares algorithm (KRLS) [19] as its non-linear regressor.
The KRLS algorithm works by learning a linear regressor (using re-
cursive least squares) over a higher-dimensional feature space that
is induced from the input arguments (a1, ...,an), observations o,
and a kernel function. By default, we use the common and popular
radial basis function kernel.

4.1.3 Neural Network Regressor To support a neural network re-
gressor, Tiresias uses Dlib’s [34] multilayer perceptron that uses
backpropagation to update the internal weights of the network.
Dlib uses a sigmoid activation function at each node so the net-
work produces an output between 0 and 1, which Tiresias scales
to between 0 and a predefined maximum latency (30 seconds). By
default, Tiresias’ neural networks have two hidden layers, allowing
the model to learn arbitrary functions. For a cost function with n
arguments, the input layer has n + 1 nodes, the output layer with 1
node, and two hidden layers each having n+2

2 nodes, which follows
the principle of averaging the number of input and output nodes.

4.2 Recording Observations and Training
Systems use Tiresias’ record API to collect the observed latencies

of database operators for use in training of the cost functions. To

3128

collect these observed latencies, Tiresias’ clients record operator
start and end times, and the input arguments associated with each
invocation of a storage operator. In our update transaction example,
the update operator records: the start time of its execution, the
end time of its execution, the number of cells written, the size of
the data columns read and written. This information is added to a
per-thread observation data structure that stores a list of observed
latencies and their arguments for each storage layout and opera-
tor pair. These observations are reported to Tiresias by swapping
each thread’s observations with an empty set and merging the
observations together. Tiresias uses these merged and recorded
observations as data for online training of its cost functions. Online
training allows Tiresias to continually adjust its estimates of data
access latencies based on the observations and to grow its models’
understanding of the parameter space based on the workload. By
contrast, offline model training requires training data consisting
of observed costs for all combinations of storage layouts for each
operator, which is difficult and prohibitively costly to collect.

5 ESTIMATING DATA ACCESS ARRIVALS
Recall that workloads follow patterns (Section 1), and predicting

these patterns provides opportunities for adapting data storage and
indexing so that they are optimized for the workload. This task
involves predicting the number of data partition accesses by type
(e.g., scan versus update) in a given upcoming time window.

Predicting when data will be accessed and the volume of accesses
entails: (i) predicting trends at various temporal granularities, such
as daily, weekly or yearly patterns, (ii) handling growth and spikes
in requests, which can occur on specific dates such as the fiscal
year-end, and (iii) adjusting to changes in workloads over time that
arise if the submitted queries or transactions change due to user
needs or preferences [37, 58]. Thus, Tiresias uses predictive models
with both a periodic component to capture the long-term periodic
trend and a local trend to capture short term transient effects such
as spikes in the number of requests.

5.1 Predictors
Formally, Tiresias predicts δ (T ,τ) that represents the number

of requests of type T that will arrive in time window τ . Tiresias
supports two different predictors to estimate δ (T ,τ): SPAR and a
hybrid-ensemble. Both predictors combine a periodic trend predic-
tion, that is, how access patterns change over a recurring period (e.g.,
accesses follow an hourly cycle), and a short term effect component
that considers the short term trend in accesses (e.g., accesses are
becoming more common over an hour). The period is user-defined
for SPAR while the hybrid-ensemble learns the period.
For both predictors, τ is set by default to five-minute intervals

over a day, which trades-off storage space required to aggregate
historywith the granularity of predictions. For notational simplicity,
if τ is less than the current time, i.e., in the past, we define δ (T ,τ) as
the actual number of accesses to T in the time window represented
by τ . We describe how Tiresias efficiently records this access history
for training in Section 5.2.

5.1.1 SPAR Tiresias uses SPAR [13] to combine long-term periodic
trends with short term effects. To learn the periodic trend, SPAR re-
quires a user-defined period Ψ, and a number of periods to examine

Ψn . SPAR considers the number of requests to T in previous time
intervals (represented by δ (T ,τ − iΨ) for 1 ≤ i ≤ Ψn). Tiresias
weights these previous numbers of requests by learned coeffecients
bi as shown in Equation 1.

Ψn∑
i=1

(bi · δ (T ,τ − iΨ)) (1)

Tiresias also uses SPAR to consider how short term access counts
shift within the period Ψ compared to the access counts in previous
periods. SPAR averages this access count, γ (T ,τ), in Equation 2.

γ (T ,τ) = δ (T ,τ) −
1
Ψn

Ψn∑
i=1

δ (T ,τ − iΨ) (2)

To compute the short term shift within the period, Tiresias uses
SPAR to weight γ (T ,τ − j) using learned coefficients c j for each of
the Ψk intervals within the period Ψ. Consequently, Tiresias com-
putes the short term shift in access counts as shown in Equation 3.

Ψk∑
j=1

(c j · γ (T ,τ − j)) (3)

Tiresias combines the periodic prediction (Equation 1) with the
short term trends (Equation 3) via a sum to predict δ (T ,τ).

5.1.2 Hybrid-Ensemble Tiresias’ hybrid-ensemble (HE) predictor
combines a periodic predictor using a recurrent neural network
(RNN) to capture the periodic trend, and a short term predictor using
linear regression. Importantly, the HE predictor does not require
used-defined periods as the RNN learns the periodic trend.

Tiresias’ linear regression predictor δL (T ,τ) predicts the number
of accesses toT at time τ based on past access counts over a sliding
window. As the regression is linear, it captures only the short term
access trend. That is, it captures whether accesses are increasing or
decreasing over time, and if so, by how much.
The RNN predictor δR (T ,τ) captures periodic trends without

requiring prior knowledge of the period. RNNs are a class of net-
works where nodes in the network have cycles [61], and Tiresias
uses the long short-term memory (LSTM) architecture [26] for its
RNNs. LSTMs allow the RNN to remember values over arbitrary
time intervals, and learn the period. Tiresias uses LibTorch’s [47]
implementation of LSTMs with five internal layers.
Tiresias also accepts a user-defined custom holiday list that al-

lows an administrator to define periods where additional access
counts should be added or removed following a Gaussian function
[58]. The holiday list allows Tiresias to account for events that
repeat but not in a periodic cycle, such as Black Friday, which is
not on the same date every year. For each holiday, the user defines
the time over which the holiday occurs (range between hs and he),
and parameters for the Gaussian function (peak value α , width σ 2,
and centre between hs and he) that capture the access counts for
that time as δH (T ,τ). If τ is within the defined time of the holiday
(i.e., hs ≤ τ ≤ he) then Tiresias computes δH (T ,τ).

Tiresias combines the three components of the HE to produce
a final prediction δ (T ,τ) from the average of the linear trend and
periodic behaviour, and any holiday adjustments.

3129

5.2 Recording Access History and Training
To predict the number of accesses to a data partition by type in

a time window requires recording access history counts to train
predictive models. The number of accesses to a partition by type
within a one-minute window (by default) is recorded by each Tire-
sias client. As the access counts are kept on a per-partition basis,
these counters have low levels of contention. Tiresias polls these
clients to collect and record this information and aggregates the ac-
cesses within five-minute windows (by default). Using these newly
collected access patterns, Tiresias updates its access estimators via
training. In the case of SPAR, the collected observations are stored
until they will no longer be needed for inference, that is, Ψn periods
have passed. These access counts are stored in a circular buffer,
and new access counts overwrite prior access histories. For the
HE, the collected observations no longer need to be stored once
the estimator has been updated; however, Tiresias keeps a sampled
reservoir of access histories when updating the estimator so that
the model has access to long-term history.

6 ADAPTIVE STORAGE AND INDEXING
DECISIONS

Tiresias drives storage and indexing adaptation decisions by com-
puting the expected benefit of a change. Given a specific choice of
storage layouts or indexes S , the benefit of changing this layout
is computed from (i) the upfront cost U (S) to execute the storage
change based on the operations needed to perform the change, and
(ii) the expected cost effect E (S) on requests predicted to arrive
and on requests currently executing (C (S)). To compute E (S) and
C (S), Tiresias computes the difference between predicted trans-
action latency under the current and proposed layouts, weighted
by the likelihood of the transaction executing. That is, given a
transaction T , Tiresias estimates the latency of the request under
the current layout Lcurrent (S,T) and the latency of the request
under the adapted layout Ladapt (S,T). Tiresias estimates Ladapt
by using the data access cost predictors (Section 4), adjusting the
input arguments to the cost functions as necessary and using the
predictor specific to the layout under consideration.
Tiresias weighs the estimated effect of the storage layout or

indexing change on T by the likelihood of T ’s request arriving
(Pr (T)), and the time to T ’s arrival (∆(T)). We derive Pr (T) and
∆(T) from δ (T ,τ), which is the number of requests of type T that
will arrive in time window τ (Section 5). Given δ (T ,τ), we compute
∆(T) at time t as τ − t for the minimum τ > t such that δ (T ,τ) > 1,
i.e., the first time in the future that we estimate at least one request
will arrive. Given this τ , we estimate the probability Pr (T) of such
an arrival as the complement of a poisson estimate of the probability
that no requests arrive at time τ . With these predictions, Tiresias
combines the estimated effect of the storage layout or indexing
change S on T as E (S,T), defined in Equation 4.

E (S,T) =
(
Lcurrent (S,T) − Ladapt (S,T)

)
·

Pr (T)

∆(T) + 1 (4)

Observe that E (S,T) is positive if Lcurrent (S,T) > Ladapt (S,T),
which indicates that Tiresias expects the storage change to reduce
the latency of executing the request. However, the magnitude of
E (S,T) is determined by: (i) the relative change in execution latency,
(ii) how likely the request is to arrive, and (iii) the estimated time

to request arrival.
Tiresias computes E (S) and C (S), by summing E (S,T) for each

request that is ongoing (i.e., ∆(T) = 0 and Pr (T) = 1), or predicted
to arrive. Observe that E (S,T) ≈ 0 if Lcurrent (S,T) ≈ Ladapt (S,T),
Pr (T) ≈ 0 or ∆(T) is sufficiently large. Thus, Tiresias restricts the
set of requests that accesses data affected by the storage change or
is likely to arrive in an upcoming window.
Finally, Tiresias combines E (S), C (S), and U (S) into one equa-

tion that defines the net benefit of the storage change, as N (S) =
λ(E (S) +C (S)) −U (S). Observe that λ > 0 controls the importance
of the expected benefit of the storage change compared to the up-
front costs to perform the storage change. Therefore, if N (S) is
greater than 0, the storage change is considered beneficial.

7 EXPERIMENTAL EVALUATION
This section presents our experimental evaluation that demon-

strates the effectiveness of Tiresias’ predictive components and
how prediction improves end-to-end system performance.

7.1 Methodology
Our experiments are conducted using machines with 12 cores,

32 GB of RAM and a 1 TB hard disk. A 10 Gbps network connects
all machines. Unless mentioned otherwise, results are averages of
at least 5 independent 20-minute OLTPBench [17] runs with 95%
confidence intervals shown as error bars around the means.

7.1.1 Workloads We conduct experiments using two HTAP work-
loads: the CH-benCHmark [14], and transactional YCSB [15]
benchmarks. The CH-benCHmark consists of the TPC-C OLTP
workload [1] and the TPC-H OLAP workload [2]. The transactional
YCSB workload consists of 10 multi-key read-modify writes for
OLTP transactions and an OLAP query that scans 500,000 rows
with a predicate and aggregates the results. We use two real-world
traces of access counts aggregated by minute:Wikipedia [59] and
Azure BLOBs [51]. The Azure trace derives from a function-as-a-
service workload and consists of many different client applications
accessing data, which results in higher variability in access patterns
compared to the more homogeneous Wikipedia trace. We also use
the real-world Sloan Digital Sky Server (SkyServer) [3, 56] trace
of OLAP selection predicates from queries that access areas of the
sky to identify objects.

7.1.2 Enabling Proteus We compare Proteus’ performance using
6 data sites with and without Tiresias to allow us to quantify the
benefit of Tiresias’ predictions. In Section 7.5, we study Tieresias’
impact on overall system performance. We compare Proteus against
two alternative distributed HTAP database system architectures
Janus [9] and TiDB [29] as well as a row-oriented distributed
database (row store or RS) targeted to optimize OLTP workload
execution and a column-oriented distributed database (column
store orCS) designed to optimize OLAP workload processing. TiDB
and Janus fully replicate data between their OLTP-optimized and
OLAP-optimized stores.

7.1.3 Enabling Predictive Cracking We use Tiresias to enable pre-
dictions in an OLAP DBMS [24] that cracks data and compare
the performance of the system before and after it is enabled with
Tiresias’ predictive capabilities.

3130

(a) RMSE over time

(b) Infer Lat. (c) Train Lat. (d) OLTP TPut. (e) OLAP Lat.

Figure 1: Performance metrics for cost predictors.

7.1.4 Enabling Automatic Indexing To evaluate Tiresias’ ability to
automatically and adaptively add or remove secondary indexes for
a changing workload, we compare PostgreSQL with Tiresias to
two static PostgreSQL configurations: with and without secondary
indexes, neither of which can adapt to workload changes.

7.2 Cost Model Performance
Figure 1 depicts the performance of Tiresias’ three different cost

function estimators, the linear regressor, neural network, and non-
linear regressor, in Proteus. Figure 1a shows the root mean square
error (RMSE) of each predictor normalized to each observation and
averaged over each of the different cost functions throughout the
experiment. Observe that by the end of the experiment, the linear
regressor has the largest RMSE and hence is the least accurate of
the three models, while the non-linear regressor has the lowest
RMSE and thus the highest accuracy of the models.

In Figure 1a, all predictors converge to their average RMSEwithin
10 minutes. The non-linear regressor takes the longest to converge,
while the linear regressor converges within one minute. These
differences in model convergence rates are an important reason
why Tiresias uses multiple models when predicting costs. Tiresias
makes prudent decisions by considering predictions from multiple
models, even if not all of the models have converged.

Although all three models have different degrees of accuracy, all
three models have RMSEs that allow Tiresias to distinguish between
good and poor storage change decisions. If the cost predictions for
two different decisions are similar then the actual cost is likely
similar, but if one cost prediction is significantly higher than the
other then it is likely to be a relatively poor decision.

Compared to the linear regressor, increased model accuracy for
the neural network and non-linear regressor comes with a trade-
off: increased latency to perform inference and training (Figures 1b
and 1c). The linear regressor performs inference more than 10×
faster than the non-linear regressor as it combines coefficients in

a sum instead of invoking the kernel function. Linear regressor
inference is 5× faster than neural network inference, which incurs
two layers ofmatrixmultiplication and sigmoid activation functions.
Moreover, the linear regressor performs a round of training more
than 1500× and 2500× faster than the neural network and non-
linear regressor, respectively. While incurring a slight decrease in
model accuracy, these significant differences in latency justify using
only the linear regressor when making predictions in a latency-
sensitive situation such as selecting an execution plan. However,
the more accurate neural networks and non-linear regressors are
employed when generating storage layout and indexing change
plans, which occur less frequently and thus outside most requests’
critical path. The cost functions are also space efficient due to the
small number of input parameters. The neural network has a larger
model size (4 KB) from keeping a matrix of weights as opposed to
the linear (64 bytes) and non-linear (112 bytes) regressors that keep
a vector of weights.

To assess the effects of Tiresias’ cost function estimators on Pro-
teus performance, we measured the OLTP throughput and OLAP
latency for the YCSB workload. In these experiments, each decision
requires invoking only one type of cost function estimator when
compared to Proteus that uses all three of Tiresias’ cost function es-
timators (Figures 1d and 1e). The linear regression predictor has the
best performance of the three models in terms of OLTP throughput
and OLAP latency. This result demonstrates the importance of infer-
ence time on overall system performance as the inference latency
directly contributes to end-to-end request latency. Moreover, both
the neural network and non-linear regression predictors require
significantly more training data than the linear regressor to produce
accurate cost estimates. Although the linear regressor produces less
accurate estimates by the end of the experiment than the neural
network and non-linear regressor, the linear regressor is initially
more accurate. This initial accuracy allows Proteus to quickly begin
adapting storage to the workload to deliver high performance. Com-
bining all three cost function estimators together in Tiresias yields
the best performance, improving throughput by 1.33× and reducing
latency by 40% over not using Tiresias’ predictive capabilities.

7.3 Access Arrival Estimator Performance
To assess the performance of Tiresias’ access arrival estimators,

we used a real-world workload trace of Wikipedia accesses [59]
and Azure [51]. For both SPAR and our HE technique, we train on
the same amount of data (two weeks for Wikipedia, one week for
Azure) before predicting the number of requests that will occur
each minute for the next hour. We then provide the models with
the actual observed number of requests that occurred over the hour
before predicting the next hour. Figure 2a shows SPAR’s predicted
number of requests compared to the observed number of requests
(shown as dots). HE’s predictions are similar.

For both workloads, SPAR (Figures 2a and 2c) and HE’s (Fig-
ure 2d) predictions match the observed number of requests. The
Wikipedia workload features more regularity in the workload trend,
and hence the RMSE (Figure 3a) is lower than for the more variable
Azure workload (Figure 3b). In both workloads, SPAR is more accu-
rate than HE but requires prior knowledge of the workload — the
periodic pattern follows a daily cycle. By contrast, the HE method
learns the period from the data using the RNN, which captures

3131

(a) Wikipedia: SPAR Inferences (b) Wikipedia: RNN Fitted Pattern

(c) Azure: SPAR Inferences (d) Azure: Hybrid-Ensemble Inferences

Figure 2: Access Arrival Predictions using Tiresias’ access arrival estimators: SPAR and Hybrid-Ensemble.

(a) Wiki. Acc. (b) Azure Acc. (c) Infer Lat. (d) Train Lat.

Figure 3: Performance metrics for arrival estimators.

Wikipedia’s periodic trend, as shown in Figure 2b over both the day
and week without any user hints. If SPAR’s period is misconfigured
then it makes poor predictions resulting in RMSE 3× higher than
for HE. Tiresias’ estimators in both workloads provide significant
improvements in accuracy compared to using the average of the
arrival count in the training period (Figure 3: No Tiresias (Avg)).

A key difference between SPAR and HE in the Azure workload is
that SPAR is more variable in its predictions (Figure 2c) compared
to HE (Figure 2d). This arises due to SPAR averaging specific prior
observations based on the period, resulting in inherently noisy and
variable predictions compared to HE’s smoother predictions.

SPAR has lower latency then HE for both inference (Figure 3c)
and training (Figure 3d). However, HE is competitive in inference
latency, which is critical for making predictions. By contrast, train-
ing happens periodically and asynchronously, and the latency of a
round of training (sub-second) is orders of magnitude smaller than
the time it takes to gather the observations (minutes). The model
sizes for the arrival estimators are space efficient with respect to
the stored data. The SPAR predictor (3 KB) has a smaller memory
footprint than the HE predictor (90 KB) as SPAR keeps a linear
number of weights for predictions compared to HE’s RNN which
has multiple layers and stores a matrix of weights for each layer.

7.4 End-to-End Performance: Adaptivity
To understand the effect and contribution of Tiresias in enabling

adaptive capabilities, we measure Proteus’ OLTP throughput and
OLAP latency over time to understand its behaviour as it learns

both the workload access pattern and cost model (Figure 4). In the
experiment in Figures 4a to 4c, the centre of skew in the OLTP
workload shifts every 5 minutes following an hourly cycle. In Fig-
ures 4d to 4f, we shift the workload mix every 5 minutes among
balanced, OLTP heavy and OLAP heavy workloads.

First, shown in Figures 4a and 4d, we enable Proteus with Tiresias
and an HE access arrival estimate model pre-trained using 12 hours
of historical access patterns from the workload. Next, shown in
Figures 4b and 4e, we disable Tiresias thereby removing Proteus’
ability to predict access arrivals and merely leaving it to deal with
the workload shifts. Finally, in Figures 4c and 4f, we configure
Tiresias using SPAR but with a ten-minute period, rather than the
5 minute period that aligns with the workload shift.

In Figure 4a, slight shifts in performance are visible both before
and after every 5 minute duration due to the workload shifts oc-
curring at these time points. Tiresias induces Proteus to execute
storage layout changes predictively in anticipation of the work-
load shift due to high confidence in the workload access pattern
changes. Small performance shifts arise due to (i) storage layout
changes consuming resources, and (ii) predictive storage layout
changes that amortize costs to provide beneficial layouts for future
accesses. Observe that Tiresias allows Proteus to rapidly improve
OLTP throughput and OLAP latency. OLTP throughput increases
by 5.4× over the workload execution while OLAP latency decreases
by 7.9×. Moreover, it takes just a short amount of time (3 minutes)
to reach within 15% of its peak OLTP throughput and roughly 10
minutes to reach within 15% of its minimum OLAP latency. These
differences are due to the skew in OLTP accesses compared to the
uniform OLAP accesses; the system executes more layout changes
for data primarily accessed by OLAP transactions.
In contrast to the accurate access arrival estimator (Figure 4a),

both Figures 4b and 4c show performance drops when the workload
shifts. This drop results in a 35% decrease in OLTP throughput and
a 1.47× increase in OLAP latency. By contrast, in Figure 4a, OLTP
throughput degrades by just 15% and OLAP latency increases by
just 1.21×.

Observe that Proteus without Tiresias (Figure 4b) responds to the
workload shifts at the 5 and 15-minute marks faster than Tiresias

3132

(a) Tiresias (b) No Tiresias (c) Misconfigured Tiresias

(d) Tiresias (e) No Tiresias (f) Misconfigured Tiresias

Figure 4: Proteus’ OLTP throughput and OLAP latency over time with shifting hotspots (4a-4c) and mixes (4d-4f).

(a) OLTP TPut. (b) OLAP Lat. (c) Exec. Time

Figure 5: CH-BenCHmark Results

with an intentionally misconfigured workload period (Figure 4c).
With a misconfigured period, Tiresias delays responding to the
workload shift with storage layout changes because of the disagree-
ment in (intentionally) incorrect predicted access patterns and the
actual access patterns. Over time, Tiresias adjusts the system’s
storage layout and performance improves. The adverse effects of
misconfiguration of the workload period using SPAR highlight the
benefit of Tiresias’ HE predictor that learns the workload period.

The shifting workload mix experiments (Figures 4d– 4f) follow a
similar trend: with Tiresias (Figure 4d), Proteus responds quickly
to changes in the workload, increasing OLTP throughput and de-
creasing OLAP throughput compared to Proteus without Tiresias
(Figure 4e). Tiresias enables Proteus to make predictive storage
changes in anticipation of the mix shift, such as removing colum-
nar replicas of data when the workload shifts from balanced to
OLTP heavy. Overall, using Tiresias improves OLTP throughput
by 16% and reduces OLAP latency by 30% compared to Proteus
without Tiresias. These experiments show the benefit of predict-
ing access arrival times and predictive storage changes on overall
system performance while amortizing layout change costs.

7.5 End-to-End Performance: CH-BenCHmark
We evaluate Proteus and Tiresias using the CH-benCHmark,

an HTAP workload composed of 22 TPC-H OLAP queries and
5 TPC-C OLTP transactions. With Tiresias, Proteus’ throughput

is comparable to the top-performing OLTP system, within 5% of
RS OLTP throughput (Figure 5a), and within 8% of the CS OLAP
latency (Figure 5b). Neither RS nor CS can achieve this combined
high performance for both OLTP throughput and OLAP latency.
The static hybrid systems (Janus and TiDB) are inferior to Proteus
with Tiresias as they fully replicate all data and place more data on
disk, which increases data access costs, lowers OLTP throughput
and raises OLAP query latency. Consequently, Proteus with Tiresias
completes the CH workload faster than all competitors (Figure 5c),
demonstrating that Tiresias enables adaptive storage that is well-
suited for hybrid workloads. For the OLAP workload, Proteus with
Tiresias has similar query latency to CS while taking slightly longer
to execute some queries (e.g. Query 7) that feature joins across
many tables, complex predicates and aggregations. Adaptive storage
allows Proteus with Tiresias to remain competitive with CS on the
overall OLAP workload while delivering superior performance of
more than 2.2× OLTP throughput on the hybrid workload.
Examining Tiresias’ decisions reveals that it learns and makes

storage layout decisions without prior knowledge of the workload,
enabling transformation of new orders from row to column layouts
over time, thereby showing the benefit of predictive adaptive stor-
age. By contrast, static systems keep this table in a single layout (RS
and CS) or both (replicated) layouts (Janus and TiDB). Without Tire-
sias, Proteus takes nearly 1.4× as long to complete the workload,
with performance comparable to Janus. Without Tiresias, Proteus
can only react to the access pattern and thus is slower to transform
data layouts from row to column, thereby increasing OLAP latency.
Keeping data replicated for longer consumes memory, forcing more
data to be evicted to disk, which decreases OLTP throughput.

7.6 Predictive Data Cracking
In Figure 6, we demonstrate the generalizability and applicability

of Tiresias’ techniques by leveraging them in an OLAP DBMS to
predictively crack data. Figure 6b depicts the latency for each query
in the SkyServer workload (Figure 6a), while Figure 6c shows tail
latency. Tiresias greatly reduces average query latency by 38× and
the 95th percentile tail latency by nearly 300×. Tiresias boosts
performance because predictive cracking increasingly stores and

3133

(a) SkyServer Data Access Pattern (b) SkyServer Latency over Time (c) SkyServer Tail Latency

Figure 6: SkyServer data access pattern and OLAP latency for SkyServer data cracking, with and without Tiresias.

(a) Workload Completion Time (b) OLTP Throughput Over Time (c) OLAP Latency Over Time

Figure 7: PostgreSQL performance with and without indexing, and Tiresias adapting indexes.

accesses data in sorted order, reducing the search range necessary
to execute the queries. We found that 88% of queries benefited
from Tiresias’ predictions by executing over predictively cracked
data. These results demonstrate that Tiresias provides a flexible and
re-usable API that can be utilized generally.

7.7 Automatic Indexing in PostgreSQL

Tomeasure the benefit of Tiresias in enabling automatic indexing
in PostgreSQL, we modify the YCSB workload so that the OLAP
query scans all rows using a predicate with 1% selectivity on a
secondary column and aggregates the results. In our evaluation, we
use an OLTP heavy mix and an OLAP heavy mix, and shift between
these workloads every 5 minutes, or every 5000 transactions in the
case of the workload completion time. As in Section 7.4, Tiresias
has an access arrival estimate model pre-trained using 12 hours of
historical access patterns from the workload.
Figure 7 shows the results of our experiment with Tiresias and

indexing in PostgreSQL. In Figure 7a, we show the workload com-
pletion time for the overall workload (two shifts between OLTP
heavy and OLAP heavy), as well as the workload completion time
for one OLTP heavy and one OLAP heavy component of the work-
load. With Tiresias, the workload overall completes nearly 15%
faster than with an index and 70% faster than without an index.

To understand why Tiresias completes the workload faster than
its static competitors, Figures 7b and 7c display OLTP throughput
and OLAP latency over time. Tiresias’ results aside, observe that for
both workload mixes, OLTP throughput is highest for PostgreSQL
without an index while OLAP latency is lowest for PostgreSQL with
an index. This result is expected: the secondary index allows an
index-based scan that significantly reduces OLAP latency. However,
maintenance of the secondary index in the presence of updates is
costly, decreasing OLTP throughput. Consequently, PostgreSQL
with an index completes the OLAP heavy part of the workload faster
than PostgreSQL without an index but takes longer to complete the

OLTP heavy part of the workload (Figure 7a). Remarkably, Tiresias
completes the OLTP part of the workload nearly as quickly as
PostgreSQL without an index and the OLAP part of the workload
in a similar time to PostgreSQL with an index. Tiresias delivers this
performance boost to complete the workload the fastest because it
matches the static decision based on the ongoing workload: adding
indexes during the OLAP heavy part of the workload and removing
them in the OLTP heavy part of the workload.

Roughly 1 min. into the workload (Figure 7b), Tiresias’ through-
put drops, matching the performance of PostgreSQL with an index.
This drop occurs because Tiresias is exploring its decision space and
collecting observations of PostgreSQL’s performance without an in-
dex. As Tiresias builds its models online, it has no prior knowledge
of the performance effect that indexing has on OLTP throughput
or OLAP latency (Figure 7c). Similarly, when the workload shifts
at the 5-min. mark, Tiresias does not add an index before it has
collected performance observations on this mix. By the second and
third workload shifts (at 10 and 15 minutes respectively), Tiresias
predictively removes and adds indexes based on its cost model and
access arrival estimates, demonstrating its efficacy.

8 CONCLUSION
We presented Tiresias that uses prediction capabilities to enable

storage layout and index adaptations to deliver high performance
for mixed workloads. Tiresias’ predictions of data access costs and
patterns enable cost-driven storage adaptation decisions. We study
the trade-offs among three different cost predictors and two access
arrival estimators and their effect on performance. We demonstrate
the benefits of predictive adaptation on end-to-end system perfor-
mance within the Proteus distributed HTAP system, OLAP database
cracking and indexing. We conclude that data systems should lever-
age prediction to autonomously improve performance.

ACKNOWLEDGMENTS
This project was supported by funding from NSERC, WHJIL, CFI,
and ORF.

3134

REFERENCES
[1] 2010. The Transaction Processing Council. TPC-C Benchmark (Revision 5.11).
[2] 2018. The Transaction Processing Council. TPC-H Benchmark (Revision 2.18).
[3] 2022. The Sloan Digital Sky Survey (SkyServer).
[4] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data. 671–682.

[5] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-stores
vs. row-stores: how different are they really?. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, New York, NY,
USA, 967–980.

[6] Daniel J Abadi, Daniel S Myers, David J DeWitt, and Samuel R Madden. 2007.
Materialization strategies in a column-oriented DBMS. In 2007 IEEE 23rd Interna-
tional Conference on Data Engineering. IEEE, 466–475.

[7] Michael Abebe, Horatiu Lazu, and KhuzaimaDaudjee. 2022. Proteus: Autonomous
Adaptive Storage for Mixed Workloads. In SIGMOD.

[8] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek
Narasayya, and Manoj Syamala. 2005. Database tuning advisor for microsoft sql
server 2005. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. 930–932.

[9] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2017.
Janus: A hybrid scalable multi-representation cloud datastore. IEEE Transactions
on Knowledge and Data Engineering 30, 4 (2017), 689–702.

[10] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proceedings of
the 2016 International Conference on Management of Data. ACM, New York, NY,
USA, 583–598.

[11] Surajit Chaudhuri. 1998. An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. 34–43.

[12] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin "what-if" index
analysis utility. ACM SIGMOD Record 27, 2 (1998), 367–378.

[13] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. 2008. Energy-Aware Server Provisioning and Load Dispatching for
Connection-Intensive Internet Services.. In NSDI, Vol. 8. 337–350.

[14] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
et al. 2011. The mixed workload CH-benCHmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems. 1–6.

[15] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 2010 ACM symposium on Cloud Computing (SoCC). ACM, 143–154.

[16] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R
Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.
2019. Automatically indexingmillions of databases inmicrosoft azure sql database.
In Proceedings of the 2019 International Conference on Management of Data. 666–
679.

[17] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. Oltp-bench: An extensible testbed for benchmarking relational
databases. PVLDB 7, 4 (2013), 277–288.

[18] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. 2009. Tuning database
configuration parameters with ituned. Proceedings of the VLDB Endowment 2, 1
(2009), 1246–1257.

[19] Yaakov Engel, Shie Mannor, and Ron Meir. 2004. The kernel recursive least-
squares algorithm. IEEE Transactions on signal processing 52, 8 (2004), 2275–2285.

[20] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando
Fox, Michael Jordan, and David Patterson. 2009. Predicting multiple metrics
for queries: Better decisions enabled by machine learning. In 2009 IEEE 25th
International Conference on Data Engineering. IEEE, 592–603.

[21] Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee.
2020. Chronocache: Predictive and adaptive mid-tier query result caching. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 2391–2406.

[22] Runsheng Benson Guo and Khuzaima Daudjee. 2020. Research challenges in
deep reinforcement learning-based join query optimization. In Proceedings of the
Third International Workshop on Exploiting Artificial Intelligence Techniques for
Data Management. 1–6.

[23] Himanshu Gupta. 1997. Selection of views to materialize in a data warehouse. In
International Conference on Database Theory. Springer, 98–112.

[24] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland HC Yap. 2012. Sto-
chastic database cracking: towards robust adaptive indexing in main-memory
column-stores. Proceedings of the VLDB Endowment 5, 6 (2012), 502–513.

[25] Benjamin Hilprecht and Carsten Binnig. 2021. One model to rule them all:
towards zero-shot learning for databases. arXiv preprint arXiv:2105.00642 (2021).

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[27] Marc Holze, Ali Haschimi, and Norbert Ritter. 2010. Towards workload-aware
self-management: Predicting significant workload shifts. In 2010 IEEE 26th Inter-
national Conference on Data EngineeringWorkshops (ICDEW 2010). IEEE, 111–116.

[28] Marc Holze and Norbert Ritter. 2007. Towards workload shift detection and
prediction for autonomic databases. In Proceedings of the ACMfirst Ph. D. workshop
in CIKM. 109–116.

[29] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[30] Stratos Idreos, Martin L Kersten, and Stefan Manegold. 2009. Self-organizing
tuple reconstruction in column-stores. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. ACM, New York, NY, USA,
297–308.

[31] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. 2007. Database Cracking..
In CIDR, Vol. 7. 68–78.

[32] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-memory
Column-stores. Proc. VLDB Endow. 4, 9 (June 2011), 586–597. https://doi.org/10.
14778/2002938.2002944

[33] Stratos Idreos, Kostas Zoumpatianos, BrianHentschel, Michael S Kester, and Demi
Guo. 2018. The data calculator: Data structure design and cost synthesis from
first principles and learned cost models. In Proceedings of the 2018 International
Conference on Management of Data. 535–550.

[34] Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine
Learning Research 10 (2009), 1755–1758.

[35] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[36] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active learning
for ML enhanced database systems. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 175–191.

[37] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J Gordon. 2018. Query-based workload forecasting for self-driving
database management systems. In Proceedings of the 2018 International Conference
on Management of Data. ACM, New York, NY, USA, 631–645.

[38] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behavior
Modeling for Self-Driving Database Management Systems. In Proceedings of the
2021 International Conference on Management of Data. 1248–1261.

[39] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang
Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and
Somali Chaterji. 2017. Rafiki: A middleware for parameter tuning of nosql
datastores for dynamic metagenomics workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference. 28–40.

[40] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making learned query optimization practical.
In Proceedings of the 2021 International Conference on Management of Data. 1275–
1288.

[41] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[42] Ryan Marcus and Olga Papaemmanouil. 2018. Towards a hands-free query
optimizer through deep learning. arXiv preprint arXiv:1809.10212 (2018).

[43] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-structured deep neural net-
work models for query performance prediction. arXiv preprint arXiv:1902.00132
(2019).

[44] Matthaios Olma,Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanassoulis,
and Anastasia Ailamaki. 2017. Slalom: Coasting through raw data via adaptive
partitioning and indexing. Proceedings of the VLDB Endowment 10, 10 (2017),
1106–1117.

[45] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
2018. Learning state representations for query optimization with deep reinforce-
ment learning. In Proceedings of the Second Workshop on Data Management for
End-To-End Machine Learning. 1–4.

[46] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transac-
tional/analytical processing: A survey. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. ACM, New York, NY, USA, 1771–1775.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[48] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2014. Hybrid
transaction/analytical processing will foster opportunities for dramatic business
innovation. Gartner (2014).

3135

https://doi.org/10.14778/2002938.2002944
https://doi.org/10.14778/2002938.2002944
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[49] M Pezzini, D Feinberg, N Rayner, and R Edjlali. 2016. Real-time Insights and
Decision Making using Hybrid Streaming, In-Memory Computing Analytics and
Transaction Processing. Gartner (2016).

[50] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Kno-
ertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang,
et al. 2020. Seagull: an infrastructure for load prediction and optimized resource
allocation. Proceedings of the VLDB Endowment 14, 2 (2020), 154–162.

[51] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the 2021 ACM symposium on Cloud Computing (SoCC). ACM,
122âĂŞ137.

[52] Zechao Shang, Xi Liang, Dixin Tang, CongDing, Aaron J Elmore, Sanjay Krishnan,
and Michael J Franklin. 2020. CrocodileDB: Efficient Database Execution through
Intelligent Deferment.. In CIDR.

[53] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost models for big data query processing: Learning, retrofitting, and our findings.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 99–113.

[54] Vishal Sikka, Franz Färber, Anil Goel, and Wolfgang Lehner. 2013. SAP HANA:
The evolution from a modern main-memory data platform to an enterprise
application platform. Proceedings of the VLDB Endowment 6, 11 (2013), 1184–
1185.

[55] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO-
DB2’s learning optimizer. In VLDB, Vol. 1. 19–28.

[56] Alexander S Szalay, Jim Gray, Ani R Thakar, Peter Z Kunszt, Tanu Malik, Jordan
Raddick, Christopher Stoughton, and Jan vandenBerg. 2002. The SDSS skyserver:
public access to the sloan digital sky server data. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data. 570–581.

[57] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-store:
An elastic database system with predictive provisioning. In Proceedings of the
2018 International Conference on Management of Data. 205–219.

[58] Sean J Taylor and Benjamin Letham. 2018. Forecasting at scale. The American
Statistician 72, 1 (2018), 37–45.

[59] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Elsevier Computer Networks 53,
11 (July 2009), 1830–1845. http://www.globule.org/publi/WWADH_comnet2009.
html.

[60] Dana Van Aken et al. 2017. Automatic Database Management System Tuning
Through Large-scale Machine Learning. In SIGMOD.

[61] Ronald J Williams and David Zipser. 1989. A learning algorithm for continually
running fully recurrent neural networks. Neural computation 1, 2 (1989), 270–280.

[62] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service.
Proceedings of the VLDB Endowment 13, 12 (2020), 3313–3325.

[63] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
scalar RAM-CPU cache compression. In 22nd International Conference on Data
Engineering (ICDE’06). IEEE, 59–59.

3136

http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html

