Efficient Hierarchical Quorums in Unstructured
Peer-to-Peer Networks

Kevin Henry, Colleen Swanson, Qi Xie, and Khuzaima Daudjee

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
{k2henry, c2swanso,q7xie,kdaudjee}@uwaterloo.ca

Abstract. Managing updates in a peer-to-peer (P2P) network can be
a challenging task, especially in the unstructured setting. If one peer
reads or updates a data item, then it is desirable to read the most recent
version or to have the update visible to all other peers. In practice, this
should be accomplished by coordinating and writing to only a small
number of peers. We propose two approaches, inspired by hierarchical
quorums, to solve this problem in unstructured P2P networks. Our first
proposal provides uniform load balancing, while the second sacrifices
full load balancing for larger average quorum intersection, and hence
greater tolerance to network churn. We demonstrate that applying a
random logical tree structure to peers on a per-data item basis allows
us to achieve near optimal quorum size, thus minimizing the number
of peers that must be coordinated to perform a read or write operation.
Unlike previous approaches, our random hierarchical quorums are always
guaranteed to overlap at at least one peer when all peers are reachable
and, as demonstrated through performance studies, prove to be more
resilient to changing network conditions to maximize quorum intersection
than previous approaches with a similar quorum size. Furthermore, our
two quorum approaches are interchangeable within the same network,
providing adaptivity by allowing one to be swapped for the other as
network conditions change.

1 Introduction

Peer-to-peer (P2P) networks have become increasingly attractive over the last
few years; systems such as Gnutella [I] and Kazaa/FastTrack [2] are used exten-
sively for file-sharing over the Internet. The underlying idea of having a com-
pletely decentralized, dynamic configuration of heterogeneous peers promises
several benefits over more traditional approaches, which are limited by the need
for costly, high-maintenance central servers that often act as a bottleneck to the
scalability of the system. P2P systems, on the other hand, can distribute work-
loads among all peers according to resource capabilities, thereby allowing the
network size to grow. Moreover, with many nodes in the network, P2P systems
can achieve high availability and redundancy at a lower cost.

R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 183{200] 2009.
© Springer-Verlag Berlin Heidelberg 2009

184 K. Henry et al.

An open question is how to efficiently use P2P networks in the distributed
database setting. Several issues must be considered, including appropriate data
placement and replication strategies, how best to achieve coordination among
peers, and in particular, how to handle updates. It is this last issue that is
the main focus of this paper; we seek to ensure consistency of updates in a
completely decentralized, unstructured P2P setting. We devise a hierarchical
quorum system for managing updates that i) requires no coordination among
the nodes beyond the usual query messages and responses, ii) requires writes at
only a small percentage of data copies (as low as 10% when replication levels are
high), iii) guarantees that all requests will see an up-to-date version of the data
in the absence of node failure, and iv) achieves a high probability of accessing
up-to-date data even when the network suffers from a high degree of instability
caused either by network churn (peers entering and leaving the network at a
normal rate) or peer failure (peers leaving the network without new peers joining
to maintain network connectivity).

Our work has been inspired by that of Del Vecchio and Son [3], who consider
the problem of applying a traditional quorum consensus method to an unstruc-
tured P2P distributed database system. Our methods differ significantly from
theirs, however, as they only give probabilistic estimates as to the likelihood of
seeing up-to-date copies in a fully-functioning network. In addition, we achieve
small quorums without sacrificing consistency, whereas Del Vecchio’s scheme re-
lies on a trade-off between quorum size and the probability of accessing stale
data. Other than [3], little research has been done on quorum-based P2P up-
date management, and none of the other schemes address the unstructured P2P
setting. Instead, most relevant work relies heavily on structured P2P systems,
such as those with distributed hash tables (DHTSs). It is an interesting question
whether or not there is a practical method of handling updates without the use
of an overlay network such as a DHT, and it this problem that we explore in
this paper.

We motivate our approach with a brief discussion of quorums and present Del
Vecchio’s flexible quorum system in Sect. [2] before giving a detailed description
of our quorum selection algorithms in Sect. [3l We then analyze the performance
of our system over a simulated Gnutella network in Sect. @ and give a detailed
comparison of our results with Del Vecchio’s in Sect. [ll After presenting other
relevant work in Sect. [, we give concluding remarks and comment on future
research directions in Sect.

2 Quorums

Quorums are a well-known method of coordinating read and write operations on
multiple copies of a data item. Each copy of the data item is assigned a certain
number of votes, and to perform a read or write operation, a corresponding read
or write quorum must be formed by assembling a given number of these votes,
specified as the read/write quorum level (r and w, respectively). The underlying
principle of a correct quorum system is that any two quorums intersect; in this

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 185

way, an up-to-date version of the data copy will always be present in any quorum.
We remark that the smaller the quorum size (i.e. the fewer required votes), the
more efficient the quorum system; we always seek to minimize the amount of
communication necessary to perform a read or write operation.

The traditional, or majority, quorum consensus method relies on the rules
r+w > n and 2w > n, where n is the number of copies of the given data
item. These rules guarantee the desired quorum intersection property, thereby
ensuring data consistency. An obvious question is how we can effectively relax
these consistency guarantees—for example, if we can tolerate reading stale data
from time to time, perhaps we can make the read quorum more efficient by
reducing the number of votes, while still keeping the probability of reading an
up-to-date copy at an acceptable level for the given application.

Del Vecchio and Son [3] investigate this issue in the P2P setting using a
probabilistic, flexible version of the traditional quorum consensus method. That
is, they investigate the probability of accessing stale data when write quorum
levels do not require a majority of the data copies, and experiment with different
quorum levels in a simulated Gnutella network. Their results are promising, in
that, if the data is replicated at a relatively large percentage of the peers (20% or
greater), the probability of accessing stale data is low even with quorum levels as
low as 20% and the presence of network churn. We refer to the quorum system
of Del Vecchio and Son as the flexible quorum approach, since their basic idea
is to allow peers to vary quorum levels; a more detailed look at the probabilistic
guarantees their scheme provides is given in Sect.

Given the unpredictable nature of P2P networks, some sacrifice of consistency
is necessary: we will always be faced with the possibility of peer failure and
network churn, so we cannot guarantee that even one up-to-date copy of a file is
present at a given time. Whereas Del Vecchio chooses to sacrifice consistency in
order to lower quorum size, we focus on achieving small quorums while relaxing
consistency only in the presence of network churn or peer failure.

In this paper, we propose two hierarchical quorum consensus algorithms for
managing updates in unstructured P2P systems. We propose a scheme that
builds on a hierarchical scheme [4], which imposes a logical multi-level tree struc-
ture on the location of data copies and recursively applies the traditional quorum
consensus method to each level. That is, data copies are viewed as leaves of an
n-level tree, and for each level i (i = 1,2,...,n), a read quorum r; and a write
quorum w; of nodes are assembled recursively that satisfy the following two prop-
erties: r; +w; > {£; and 2w; > {;, where {; is the number of nodes at level i of the
tree. In particular, by recursive we mean that at each level i, we are assembling
a quorum from the children of the nodes in the quorum at level 7 — 1. A rela-
tively straightforward proof by induction shows the correctness of this quorum
method; we shall not reproduce this result here. It is further shown in [4] that
the optimal quorum size can be achieved using ternary, or degree three, trees,
giving quorum sizes of n%%3 copies as opposed to f"'QHW copies as in traditional
quorum consensus. We describe our hierarchical P2P quorum system in the next
section.

186 K. Henry et al.

3 Hierarchical P2P Quorums

The benefits of the hierarchical quorum approach come at the cost of requiring
a fixed tree structure. For this reason hierarchical quorums cannot be directly
implemented in an unstructured P2P network. In this section two variants of the
hierarchical quorum approach are developed that allow peers to randomly, but
deterministically, select their position in a tree without any communication or
coordination between themselves. Our approach is probabilistic in the sense that
the tree structure is random; however, it has the property of failing gracefully
toward the majority quorum in the worst case. Unlike the flexible quorum ap-
proach described in the previous section, our quorums are guaranteed to overlap
when all peers are reachable.

Our first and simplest approach, the random hierarchical quorum, assigns
peers to locations in the tree randomly and recursively builds quorum by select-
ing a random majority at each level. The second approach, the hybrid hierarchical
quorum, utilizes a combination of random and fixed traversals of the tree in a
manner that increases the expected intersection size, while still selecting most
members of the quorum at random.

3.1 Random Hierarchical Quorums

Let M be an upper bound on the number of peers in the network; we assume
this value is a public parameter. Let T be a complete ternary tree with depth
d defined such that there are 3¢ leaf nodes, where d is the smallest integer such
that 3¢ > M, ie., d = [logs M]. The levels of the tree are labeled 0,...,d,
with the root located at level 0 and the leaves at level d; the leaves of the tree
are indexed 0,...,3% — 1. Peers will be located at level d of the tree. Since
the network is unstructured, peers determine their own location in the tree by
generating a random integer modulo 3¢ for each data item. We recommend using
a hash function, such as the SHA family [5], to compute location as a function
of a peer’s network address and the primary key of a given data item. In this
manner, each tree is uniquely determined by the primary key of the data item,
and each peer’s location within the tree is determined by its network address,
thereby allowing any peer to compute the location of any other peer without any
communication. Given that each peer selects its position in the tree at random,
it is expected that several peers will select overlapping locations, and also that
several locations in the tree will be empty. Thus, instead of treating each leaf as
a single peer, each leaf corresponds to a (possibly empty) set of peers. No peers
are located at non-leaf positions in the tree, but one may conceptually visualize
each non-root position in the tree as the set of all leaves/peers rooted at that
position.

In our protocol, each data item is associated with a tree T" as described above.
Thus, each peer has a collection of tree locations: one for each data item the
peer possesses. We comment that M may be chosen optimistically, as there is
no penalty to over-estimating network size. Underestimating network size does
not affect correctness, but will affect quorum size if the estimate is too low. In

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 187

particular, choosing M, and hence the depth of the tree, to be significantly larger
than the size of the network has only the drawback of increasing the maximum
size of the integer associated with each peer’s location in the tree. On the other
hand, choosing a very small tree depth increases the size of quorums.

Figure [[h shows a sample tree assignment on 9 peers labeled A, ..., H. The
rest of Fig. [[lshows how the quorum generation algorithm, given by RandQuo-
rum, traverses the tree to build quorum; in each part of the figure, the nodes
selected by RandQuorum are bold. A summary of the algorithm, together with
the running example from Fig.[T] is as follows: the peer wishing to establish quo-
rum sends a search query into the network to locate peers containing relevant
data and their corresponding tree positions. (Alternatively, the locations could
be computed by the peer receiving the responses, if location is computed using
a hash of a peer’s network address.)

Once all responses have been received, a quorum is generated by starting
at the root of T' and recursively building quorum at each level. There are two
possible cases: 1) If there are two or more non-empty children (i.e. the number
of the peers rooted at the child is non-zero), then two non-empty children are
selected at random and the process is repeated at each selected child (lines 1-4).
We see this in Fig. [Ib; here, the leftmost and rightmost children on the first level
are chosen. Similarly, we see that the leftmost node of the first level has three
non-empty children, so we choose two of them at random, namely the middle and
rightmost (shown in Fig.[Ik). 2) If there are not at least two non-empty children,
the union of all peers rooted at the current position in the tree is selected and
a majority is returned (lines 6-9). We see this case in the rightmost node of the
first level of Fig.[Ib. Here, as shown in Fig. [Tk, the set of all peers rooted at this
point are collected into a single set and a random majority is returned.

The algorithm terminates when the bottom of the tree has been reached, and
the set of all peers returned by the algorithm forms the quorum. We see this in
Fig. [[d: since neither selected subtree (from Fig. [Ik) has at least 2 non-empty
children, a random majority of the peers rooted at this point are returned. The
union of all peers returned by the algorithm {B, C, G, H} forms the quorum.

Algorithm B.I} RandQuorum
Input: A non-empty ternary tree T
Output: A random hierarchical quorum on T’
if T has two or more non-empty children then
Select two distinct non-empty children 77 and Ts at random
S1 — RandQuorum(7}) {Recursively build quorum on 73}
Sy — RandQuorum(75) {Recursively build quorum on 75}
return S; U S; {Combine quorums generated from 7} and Th}
else
S — LEAVES(T)
return MAJORITY (S)
end if

© XN oW

188 K. Henry et al.

(¢) Second Recursive Step (d) Final Recursive Step

Fig. 1. A sample run of RandQuorum on the set of peers {A,...,I}. The bold path
demonstrates how the tree is traversed at each recursive step, with the bolded boxes
representing those peers returned by the algorithm. The union of the sets {B}, {C},
and {G, H} forms the quorum.

RandQuorum makes use of two sub-routines, namely, LEAVES(T) and
MAJORITY (S). The former returns the set of leaf nodes of T, while the
latter returns a random majority quorum from the elements of S.

Recall that each peer selects its position in the tree independently from all
others. Thus, while it is unlikely that this process results in a completely balanced
tree, it is also unlikely that the result is a significantly unbalanced tree. At level
k of the tree there are 3F nodes, each the root of a subtree with 3% leaves. If
n peers randomly join the tree, then the probability that a subtree at level k
is empty is (1 — 37%)". For example, if the network contains 1000 peers, then
a tree of depth 7 will be chosen. This tree has capacity for 2187 peers, and
thus will always contain empty nodes at level 7. The probability that level 6
contains empty subtrees is approximately 25%, whereas the probability that
level 5 contains empty subtrees is approximately 1%. Because the probability of
empty subtrees becomes exponentially unlikely as one moves closer to the root, it
is reasonable to assume that such randomly constructed trees will always be fully
populated at a reasonable depth relative to the number of peers in the network.
For this reason, our quorums are comparable in size to optimal hierarchical
quorums, despite the fact that our trees are generated randomly.

Figure 2h shows the average size of quorums generated by our approach in
comparison with the theoretical best performance of hierarchical quorums. For
reference, a line representing the size of the quorum obtained from the majority
quorum consensus algorithm is also included. These results were generated by
taking the average size of a quorum returned by RandQuorum on 1000 different
randomly constructed trees for each network size.

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 189

In the absolute worst case, each peer may choose the exact same location
in the tree. In this case, RandQuorum is unable to move lower in the tree
and simply returns a majority of the entire set of peers. Thus, the worst case
performance is equivalent to the majority quorum consensus approach. Clearly,
the event that each peer selects the same location in the tree is exceptionally
rare, as discussed earlier in this section.

As peers enter and leave the network, the structure of the tree changes. Despite
this, because each peer generates its position in the tree independently, the
distribution of peers across the leaves of the tree will remain uniform over time.
Thus, incoming peers do not need to assume a vacancy left by a peer that has just
exited. This approach also has the benefit of being robust against failures, such
as network outages or partitions, in the sense that there is no correlation between
a peer’s physical location in the network and logical location in the tree. After a
large scale failure, the remaining peers will still be uniformly distributed among
the leaves of the tree, and near-optimal quorum sizes will still be expected. We
investigate the problem of strengthening the random hierarchical quorum against
peer failure in the next section.

3.2 An Improvement: Hybrid Hierarchical Quorums

The random hierarchical quorum approach developed in the previous section
guarantees that any two quorums generated from the same tree overlap at at least
one point. In a fixed network, this would be sufficient to guarantee correctness;
however, in a P2P network this is not sufficient. Between the generation of any
two quorums, multiple peers may enter or leave the system. Furthermore, it
cannot be guaranteed that every peer in the network can reach every other
peer. Thus, if the average intersection size of two quorums is small, then even a
relatively small number of peers becoming unreachable could cause two quorums
to not overlap with unacceptably high probability. For this reason, it is desirable
to maximize the intersection of any two quorums.

One method of maximizing quorum intersection is to always choose the same
set of peers to be in a given quorum. This could be accomplished in the random
tree approach by always selecting the same majority of nodes at each level of
the tree. This approach always generates the same quorum for a given data
item, with the same average quorum size as a random traversal, but it also
means that only a fixed, small percentage of peers will ever be chosen to receive
reads or writes for a given data item. Thus, a high resilience to peers becoming
unreachable comes at the cost of focusing the load on small set of peers, rather
than distributing the workload randomly among the available replicas. As peers
are distributed randomly at the leaves of the tree, however, fixing the traversal
to always select the left and middle children, for example, will still result in a
different random quorum for each data item, as each data item is associated
with a unique tree.

To compromise between maximizing quorum intersection and balancing load,
we combine the load balancing of a random traversal with the large intersection
of a fixed traversal in the following manner: at the root, we traverse the leftmost

190 K. Henry et al.

subtree using a fixed majority at each level, and traverse one of the remaining
two subtrees selecting a random majority at each level. This is summarized in
the algorithms HybridQuorum and FixedQuorum.

FixedQuorum is identical to RandQuorum except that the algorithm pro-
ceeds recursively on the left and middle subtrees when both are non-empty,
rather than on two random non-empty subtrees.

Algorithm HybridQuorum
Input: A non-empty ternary tree T'
Output: A hybrid hierarchical quorum on T’

1. if left subtree and at least one remaining subtree are non-empty then
Ty — LEFT(T)
Ty < a random non-empty non-left subtree
51« FixedQuorum(7}) {Build a fixed quorum from T3}
Sy +— RandQuorum(73) {Build a random quorum from 75}
return S; U Sy {Combine quorums generated from 7} and Ts}
7. else
8. S+ LEAVES(T)
9. return MAJORITY(S)
10. end if

S Gk W

Figure[Zb demonstrates the effectiveness of this approach. One can see that the
intersection size is increased significantly compared to the randomly generated
quorum, while still leaving plenty of room for load to be distributed among different
peers in the tree. These results were generated by running either Rand Quorum
or HybridQuorum twice on the same tree and counting the number of common
peers in each. This process was averaged over 1000 different trees.

One benefit of using the tree structure to select the fixed set of peers is that
the intersection property is guaranteed between any two hierarchical based quo-
rums, even if one is built using a random traversal, and the other a partially-fixed
traversal. In a setting where peers are relatively stable, the random hierarchical
quorum may be used, with the benefit of randomly distributing load among repli-
cas of a data item. If network conditions change and a large number of failures or
exiting peers are detected, peers can seamlessly switch to the hybrid hierarchical
quorum, and all quorums generated from this point will be expected to intersect
at a larger number of peers. Quorums generated prior to the switch will still be
valid, although not as resilient to failure or changing network conditions.

Although the hybrid hierarchical quorum shifts extra load onto some fixed set
of peers, it is important to recall that trees are built on a per-data item basis.
Whether or not a given peer is a member of the fixed set for one data item
does not have any bearing on whether or not it is a member of the fixed set
for a different data item. The set of fixed peers for a given data item is chosen
uniformly at random, and thus, although the load balance is skewed for any
single data item, the load balance across all data items remains random.

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 191

600 | - 120
-=- Majority —+ |ntersection (Random)
500 7+ Random Tree ' @ 100 71 < Intersection (Hybrid)
@ -+ Theoretical Best | @ i
M o400 4 ! @ go -# Quorum Size (Total)
w o
&
Esoo - 2 60
S b}
g 200 — - - E 40 ~=il) —
B ‘M “ 2!
.___.___._—o—o—-a——o—-—‘_‘—’-'_'
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Network Size Network Size
(a) Average Quorum Size (b) Average Quorum Intersection Size

Fig. 2. (a) Comparison of average random tree quorum size to the majority quorum
and optimal hierarchical quorums. Widest 99% confidence interval: £0.60. (b) Com-
parison of average quorum intersection size for a random traversal and hybrid traversal
of the tree. Generated by randomly assigning peers to 1000 different trees and aver-
aging the intersection size of two quorums from each. Widest 99% confidence interval:
+0.64.

4 Performance Evaluation

In order to evaluate the performance of our random and hybrid hierarchical quo-
rum approaches, we performed several experiments using the Gnutella protocol
[1] simulated under NeuroGrid [6]. We note that the Gnutella protocol is a rather
basic P2P system that relies on flooding the network with messages in order to
locate documents; as such, the number of times a message is forwarded is limited
by a time-to-live (TTL) parameter. The Gnutella protocol is well documented,
widely used, and is completely unstructured in its basic form. Unlike some un-
structured P2P protocols, such as FastTrack, Gnutella benefits from being an
open specification. These properties make Gnutella an ideal candidate for testing
the effectiveness of our random hierarchical quorum approaches. An additional
benefit of performing our experiments using Gnutella is the ability to directly
compare our results to Del Vecchio and Son [3].

4.1 Experimental Environment

Although NeuroGrid is a stand-alone P2P protocol, the NeuroGrid simulator
provides functionality for simulating several P2P protocols, including Gnutella.
A Gnutella network is modeled as a set of peers, each possessing one or more doc-
uments, and each document is associated with one or more keywords. Random
networks are generated with respect to a connectivity parameter, specifying the
number of connections a peer establishes with others when it joins the network.
At network creation time, each peer chooses k distinct peers (with a default
value of k = 2) and establishes a connection with each. Thus, each node has,
on average, approximately 2k connections to other peers in the system. When
implementing our algorithms, we noticed that the simulator disregards the con-
nectivity specified in the configuration file and instead uses a hard-coded value

192 K. Henry et al.

of 2 connections per node. For our simulations, we manually changed the con-
nectivity of the network to £ = 3. Our reasons for this choice are justified in
Sect.

The main functionality provided by NeuroGrid is the ability to specify a
distribution of documents across peers, perform a keyword search for a given
document, henceforth referred to as a query, and generate result statistics, such
as the number of peers with a match and number of messages sent between peers.
By default, queries originate from a random peer and are for a single keyword.
We set each node to contain a single document, with each document having a
single keyword associated with it, and vary the number of keywords to model the
replication rate of data items within the network. For example, 1 keyword implies
this keyword is associated with every document (100% replication), whereas
5 keywords means each peer is assigned a given keyword with probability é,
thus achieving 20% replication for each keyword. Because keywords are assigned
randomly, we use a modified keyword distribution algorithm to guarantee exact
replication rates.

For completeness, we also describe NeuroGrid’s behavior with respect to the
TTL of a message. The default TTL in NeuroGrid is 7, and the Gnutella spec-
ifications [7] state that the TTL is the “number of times the message will be
forwarded by Gnutella servants before it is removed from the network.” Each
peer decrements the TTL by 1; if the TTL is non-zero and the message has not
been seen before, the peer forwards the message to its neighbors. In NeuroGrid,
the originator of the message decrements the TTL before forwarding it. Thus,
a message with an initial TTL of 7 will only travel a maximum of 6 hops in
NeuroGrid; we leave this functionality unchanged, as we find in Sect. that 6
hops are sufficient for the network sizes we consider.

Unless otherwise specified, the results in this section are generated for a net-
work size of 1000 peers, with replication rates of 1%, 5%, 20%, and 100%, gen-
erated as described earlier. When averaging our results, we sample 10 values for
a given network, and then create a new network. This process is repeated 100
times for a total of 1000 random samples. The connectivity (number of connec-
tions each node establishes with others) is set to 3 and the default TTL is set
to 7. For each data point a 99% confidence interval has been computed and a
description of the largest interval accompanies each plot.

4.2 Network Reachability

In order to verify that our choice of network parameters (connectivity and TTL)
is appropriate for a network of this size, we investigated the reachability of
peers in the network as successively larger numbers of peers fail or leave the
network. Reachability is determined by distributing a single keyword to all peers,
terminating all connections for a fixed percentage of peers, and then counting
the number of matches for this keyword when queried by a random non-failed
peer. Our test included trials for connectivities of 2 and 3, respectively.

Our experiments showed that an initial connectivity of 3, or approximately 6
total connections per peer, is sufficient to retain access to virtually all peers in

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 193

the network so long as the failure rate is less than 30%. As the number of failed
peers increases, the network becomes partitioned and the average reachability
declines quickly. If the connectivity is 2, then full reachability is unlikely, and the
number of reachable peers drops to less than 50% once 20% of peers have failed.
It should be noted that in our simulation, peers did not attempt to establish new
connections when a neighbor failed. Applying such a technique could maintain
consistent connectivity in the presence of failure, so long as a large number of
peers do not fail simultaneously, thereby partitioning the network before con-
nectivity can be restored. By choosing to model peers that do not seek out new
connections when neighbors fail, we are modeling the worst case performance
under failure.

4.3 Cost of Communicating with Quorum

We can now determine the average cost for communicating with a quorum once
it has been established. The communication cost for establishing the quorum
takes exactly one query, the cost of which depends on the number of peers
and the number of connections between them. The average cost of a query in
the networks we consider is roughly constant; we therefore omit the messages
involved in establishing quorum from our results.

Figure Bh was generated by recording the TTL of the query message for each
peer possessing a document with the target keyword that received the query.
From this, we calculate the number of hops necessary to reach each peer in the
quorum. In Gnutella, communication with each peer occurs along the path from
which it was located, so this gives the total cost of sending individual messages
to each peer in the quorum as a function of hops. Optimizations may be possible
if a single message may be used to communicate with all peers along a given
path. In our simulation we observed that the number of messages required to
communicate with the quorum is approximately 4 times the size of the quorum
itself.

4.4 Stale Access under Churn

As mentioned in Sect. B2l a key goal is to compromise between maximizing
quorum intersection and balancing load among replicas. This is motivated by
the fact that in a P2P environment, peers are expected to continually leave and
join the system. As in [3], we model this with network churn. The churn rate
of a network can be defined as the number of peers that are expected to leave
and join the system between queries for a given data item. We assume that the
network size is constant, i.e., peers enter and leave at the same rate, and also that
the replication rate of a data item stays constant. This is modeled by selecting
a fixed percentage of peers at random and setting their data to be stale; that is,
we assume that all peers rejoining the system have stale data.

Intuitively, the average intersection size of two quorums provides a good in-
dicator of how resistant to churn a given quorum system is. Thus, we expect a

194 K. Henry et al.

600 . @
-+ 1% Replication 3 1 -+{—+ 1% Hybrid
o 500 11=-5% Replicat : —a— 5% Hybrid
5 -+ 20% Replication @ 0.8 1| ——20% Hybrid
400 71 100% Replication| T ||—100% Hybrid
8 300 DO .+ 1% Random
(] ° - = 5% Random
% 200 | 204 -
200 - —— £%% 74 20% Random
= / B l-=- 100% Random | _
100 = go —
:erk"—._‘ £
. . > : . a 0

0 ; . i
0O 200 400 600 800 1000 1200 1400 20 40 60 80 100
Network Size Churn Rate

(a) Messages required to build quorum (b) Stale data access under node churn

o

Fig. 3. (a) The average cost of communicating with all peers in a quorum. Confidence
intervals grow with the size of the quorum, ranging from +0.2 to +4.5 messages. (b)
A comparison of the probability of stale data access under node churn for hybrid hier-
archical quorums and random hierarchical quorums. Widest 99% confidence interval:
+0.04.

hybrid hierarchical quorum to perform much better on average than a random
hierarchical quorum. Figure Bb demonstrates the performance of the hybrid hi-
erarchical quorum for several levels of data replication. At 100% replication, we
can tolerate 90% node churn without any significant probability of a quorum
containing only stale data. This result may seem counterintuitive, but our sim-
ulation shows that hybrid hierarchical quorums intersect at over 40 peers on
average, and thus, the probability that some of these peers remain after 90%
churn is quite high. Indeed, the probability that a random set of 40 peers and a
random set of 100 peers (i.e., the non-churned peers) do not intersect is approx-
imately 1.4%. Stale access for lower replication rates is far more probable, as
expected, although most replication rates can still handle a reasonable amount
of churn.

As we would expect, random hierarchical quorums provide much less resilience
against network churn. Figure Bb also shows a direct comparison of hybrid hi-
erarchical quorums and random hierarchical quorums. Even at 40% churn, stale
access begins to become a problem at 100% replication. Recall that the hybrid
hierarchical increases the expected quorum intersection, but at the cost of re-
quiring a small subset of the peers to always be part of the quorum. Figure
Bb suggests that if the level of churn is low, then random hierarchical quorums
are sufficient and in this case, load can be distributed uniformly among repli-
cas. Conversely, if the level of churn is high, then the problem of stale data
access can be mitigated by biasing the load slightly towards some peers through
the use of hybrid hierarchical quorums. Our two quorum approaches have the
property that any hybrid quorum and random quorum on the same tree will
intersect. Thus, peers can default to the fully load-balanced random hybrid
quorums, but switch to hybrid quorums if a large amount of network churn is
detected.

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 195

(]
0 T S b e
@ 1 -~ 1% Replication D 1 —=—1% Hybrid
g = 5% Replication e = 5% Hybrid
0.8 +-20% Replication | ﬁ 0.8 | —+20% Hybrid
& 100 Replication. = ——100% Hybrid
908 0 08 7. . 1% Flexible
(=] b~ .
04 o - = 5% Flexible
g : 2 94 7. & 20% Flexible |
B = ;
@ 0.2 % 02 | 100% Flexible |
- o
e]
o 0 E 0 "= i
0 20 40 60 80 100 0 20 40 0 80 100
Percentage of Failed Peers Churn Rate
(a) Stale Data Access Under Failure (b) Stale Data Access Under Churn

Fig.4. (a) The probability of accessing stale data after a fixed percentage of peers
have left the network. Widest 99% confidence interval: £0.04. (b) A comparison of the
probability of stale data access under node churn for hybrid hierarchical quorums and
flexible quorums. Widest 99% confidence interval: 4-0.04.

4.5 Stale Access under Failure

The tests for stale access under network churn are based on the assumption that
peers enter and leave the network at the same rate, thus keeping the average
connectivity of the network constant. In reality, network failures may cause a
large number of peers to simultaneously become unreachable. The main differ-
ence between the results in this section and the previous section is that as the
failure rate increases, the average connectivity of the network decreases. Once
a significant portion of peers have failed, the network may become partitioned
and full reachability is no longer expected.

Figure [dh shows the probability of stale access as an increasing number of
peers fail for the hybrid hierarchical quorum. As expected, the probability of
stale access becomes noticeable for lower failure rates than the corresponding
churn rate. At 40% failure, the reachability of the network quickly begins to
drop and the probability of stale access rises accordingly. In practice, we expect
that large scale failure is detectable by individual peers, and that read/write
operations are suspended if less than 50% of the expected peers are reachable.
Del Vecchio and Son assume that the replication rate for a given data item is
public knowledge. If this is the case, then quorum generation can be aborted if
the number of responses to a query is significantly lower than expected.

5 Comparison with Flexible Quorums

To our knowledge, the only other attempt to apply quorums to unstructured
P2P networks is the flexible quorum approach of Del Vecchio and Son [3]. As
previously discussed, we have chosen to evaluate our approach in many of the
same situations so that we can directly compare the performance of the two
approaches, although some considerations must be made. In the flexible quorum

196 K. Henry et al.

approach, the size of the quorum is a free parameter of the system and may be
selected to provide the desired level of stale access. Because each flexible quorum
consists of a fixed percentage of all replicas, this requires that the replication
rate and total number of peers are known by each peer (or at least, that a rea-
sonable estimate is known). In our hierarchical-based quorums, the size of the
quorum is not a free parameter, but instead is a function of the replication rate;
our approach constructs a quorum out of the entire set of peers that respond to
a query. As seen in Fig.@dh, for 1000 peers with 100% replication, the probability
of our biased tree quorums not intersecting at 50% failure is near 0. A flexible
quorum with a quorum level of 60% would never succeed in establishing quorum
at this failure rate, as fewer than 60% of the peers remain in the network. Addi-
tionally, the assumption that the replication rate is known allows peers to detect
large failures, such as network partition, based on the number of responses to a
query. In the presence of a large number of failures, read/write operations could
be suspended until connectivity is restored.

A benefit of our hierarchical-based quorums over flexible quorums is that we
can guarantee that two quorums always overlap if all peers are reachable. In
order to guarantee intersection, a flexible quorum must contain at least 50%
of the replicas. For 1000 peers with 100% replication, our tree quorums require
approximately 10% of peers. It should be noted that, with high probability,
flexible quorums do provide a low probability of stale access for quorum sizes
smaller than 50%, but there is no guarantee. This behavior is shown in Fig. @b,
which directly compares our hybrid hierarchical quorum to flexible quorums in
the presence of network churn.

Since quorum size is not a free parameter in our quorums, in order to compare
our approach to flexible quorums, we first computed the expected quorum size
of a hybrid hierarchical quorum for the given replication rate. To generate the
probability of stale access for flexible quorums, we used quorums of the same
average size as our tree quorums. For 1000 peers, the quorum sizes selected
were 9.6%, 17.5%, 30%, and 60% for replication rates of 100%, 20%, 5%, and
1%, respectively. For all replication rates above 1%, biased tree based quorums
provide a much lower probability of stale access. At the 1% replication level,
there are too few peers to see any benefit from using a tree-based approach over
the simple majority quorum. Comparing Fig.[Bb and Fig.db, we see that random
tree quorums are similar in performance to flexible quorums in general.

Another comparison point is the time necessary to build quorum, i.e., the
query-response time, as a function of quorum size. Del Vecchio and Son observe
that smaller quorums can be assembled faster than larger quorums, as it takes
less time to hear a response from 10% of replicas than 90% of replicas. In com-
parison, our tree quorums require the full response set from the query before
proceeding. In practice, taking the first set of responses to a query creates a
bias towards peers located closer to the query originator. If two peers on op-
posite sides of a large network each assemble their closest 100 neighbors, then
the probability of these two quorums overlapping in a large network is much
less than if two nearby peers assemble quorums. To eliminate this bias towards

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 197

nearer neighbors, it is necessary to wait for the entire set of responses from the
query before choosing a random quorum. We note that it is unclear whether
Del Vecchio’s experiments take this local bias into account; in particular, the
experimental section does not specify whether random peers are used for each
query, or if the same peer is used for repeated queries. In generating the above
flexible quorum results, we used a new peer chosen at random for each query.

We remark that in a real-word scenario peers are limited to a local view of
the network and so must use estimates of current network size and document
replication rates, which can be obtained via gossip protocols [§], in order to
decide on an appropriate time to build quorum. In addition, given that both
our hierarchical-based quorums and Del Vecchio’s flexible quorums are built by
first querying the network, followed by contacting a certain percentage of peers,
we expect the number of messages required by each to be approximately equal,
particularly if local bias is eliminated. For these reasons, we feel that comparing
the two approaches based on quorum size is reasonable.

6 Discussion

Our hierarchical systems are quite flexible in that quorums generated from the
random and hybrid algorithms are interchangeable; peers can switch dynami-
cally from one system to the other. Both the random and hybrid hierarchical
quorums use the same randomly constructed logical tree structure, which carries
the benefit of distributing peers in a ternary tree such that their logical location
in the tree is unrelated to their physical location in the network. This means that
correlation between peers failing in the physical network does not translate into
localized failure within the tree. As the network structure changes, the expected
distribution of peers within the logical tree remains constant.

The key difference between the random and hybrid hierarchical quorums is
in the traversal of the tree. The random approach chooses a random majority,
resulting in a completely random quorum, which has the effect of distributing
reads/writes equally across all replicas of a data item. The hybrid approach
traverses one subtree with a fixed majority and another with a random majority
at each level, and thus shifts some of the load to a fixed set of peers for that
data item. The effect of this shift is an increase in the expected size of the
quorum intersection, and hence a higher tolerance to network churn and failure.
Despite the non-uniform load balance, the fact that a different random tree is
used for each data item allows the hybrid hierarchical quorum to still retain load
balancing across all data items in the network.

We emphasize that there is a tradeoff between increasing the expected inter-
section size of two quorums and load balancing when we use the hybrid hierar-
chical approach. In our current method, although we fix the traversal over part
of the tree, thereby increasing the expected intersection size of two quorums, we
still leave a large proportion of the peers in sections of the tree that are traversed
randomly. We remark that by changing the degree to which the traversal is fixed,
various average quorum intersection sizes can be achieved. Since fixing a subset

198 K. Henry et al.

of the peers has the affect of reducing the load balancing provided by our ran-
dom tree assignment, it may be worth investigating the optimal intersection size
for common sets of network parameters. For example, if network churn could be
estimated ahead of time, a traversal strategy could be chosen that minimizes the
fixed portion of peers, while still providing adequate stale access probabilities.

A drawback of our approach is that the entire network must be queried each
time a quorum is constructed. However, the cost of sending messages is negligible
compared to the cost of propagating and applying updates and our quorum
approach minimizes the size of quorums, thus minimizing the number of peers
an update must be sent to and thereby reducing the total cost of propagating
and applying updates. A peer could choose to cache the results of a query, or
more specifically the tree associated with a given data item. In most practical
settings, however, it is unlikely that a peer could make use of a cached result
before the instability of the network renders it invalid.

An interesting direction for future work is to consider the presence of Byzan-
tine peers in the network. Such peers can misrepresent the freshness of their
data or selectively choose not to forward messages in the network. Our hybrid
hierarchical quorum could be used to guard against a small number of Byzantine
peers, as the probability of stale access is low even if a large number of peers have
failed or possess stale data. Because hybrid quorums are expected to intersect at
a large number of peers, we could use a naive k-of-n voting protocol to combat
Byzantine peers. In such an approach, a quorum is only accepted as valid if at
least k of the n members agree on a specific version of the data.

7 Related Work

Much work has been done regarding the use of quorums in distributed database
systems; a comprehensive survey and comparison of many quorum systems, in-
cluding majority quorum consensus and weighted voting quorums [9], hierarchi-
cal quorum consensus [4], grid schemes [TO/TT12], and tree quorum protocols
[13] may be found in [I4]. Wool [I5] discusses general issues related to the use-
fulness of quorums for managing data replication and Naor and Wool [11], in
addition to presenting the grid-based Paths quorum system, give a summary of
the general quorum tradeoff between load balance and availability. We note that
our choice of hierarchical quorum systems relies on its use of a logical structure
in which responsibility is distributed symmetrically; as all copies of a data item
are located at the leaves of the tree, there is no real hierarchy among the data
copies themselves. This is in contrast to tree quorum protocols, for example, in
which each node of the tree is assumed to have a copy of the data item and
nodes higher in the tree are more important. Moreover, while grid protocols, in
which nodes are organized into various grid patterns, appear promising at first
glance, these protocols tend to suffer from poor availability in the presence of
write operations.

Papers dealing with variations of the hierarchical quorum approach to the dis-
tributed database setting include [I6], which analyzes multilevel, or hierarchical
schemes, concentrating on the problem of determining the most suitable variant

Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks 199

for a given application, and [I7], which examines a layered multilevel quorum
scheme that recursively assembles quorums by alternating between a read-one
write-all (ROWA) and majority quorum consensus strategy.

Apart from the flexible quorum approach, research has focused on the appli-
cation of quorum systems to structured P2P networks. Baldoni et al. [18] investi-
gate variants of the hierarchical quorum scheme in Chord [19], a DHT-based P2P
system. Their approach relies heavily on the infrastructure of the DHT itself,
and so is not applicable to the unstructured setting we consider. In particular,
we remark that, in order to make their generalization of the hierarchical quo-
rum system more compatible with Chord’s infrastructure, they sacrifice optimal
quorum sizes by using degree four trees rather than degree three. Additionally,
DHTs like Chord map a keyspace onto a set of peers, whereas in our setting a
peer possesses a set of data upon entering the network and is only required to
participate in reads and updates for those data items it already possesses. Other
examples of DHT-based quorum systems include [2002T22I23]; as these methods
are both unrelated to the hierarchical quorum system and heavily dependent on
the infrastructure of the P2P network, we do not discuss them here.

8 Concluding Remarks

We have presented two new approaches to establishing read/write quorums in
an unstructured P2P network: the random hierarchical quorum and the hybrid
hierarchical quorum. These quorum systems are interchangeable (i.e., a random
quorum will always intersect a hybrid quorum), which allows for a seamless
transition from one to the other. We have investigated the performance of our
random and hybrid hierarchical quorums and demonstrated that our hybrid
hierarchical quorum is highly resilient against network churn, allowing one to
retrieve fresh data even at churn rates of 90% or when up to half of the network
has failed. Our observations show superior performance over previous quorum
approaches in unstructured P2P networks. Furthermore, under realistic network
sizes, we achieve a lower probability of stale data access for quorums of similar
size.

References

1. Kirk, P.: RFC-Gnutella 0.6, http://rfc-gnutella.sourceforge.net/index.html

2. Liang, J., Kumar, R., Ross, K.W.: The fasttrack overlay: a measurement study.
Comput. Netw. 50(6), 842-858 (2006)

3. Del Vecchio, D., Son, S.H.: Flexible update management in peer-to-peer database
systems. In: IDEAS 2005: Proceedings of the 9th International Database Engi-
neering & Application Symposium, Washington, DC, USA, pp. 435-444. IEEE
Computer Society Press, Los Alamitos (2005)

4. Kumar, A.: Hierarchical quorum consensus: A new algorithm for managing repli-
cated data. IEEE Trans. Comput. 40(9), 996-1004 (1991)

5. National Institute of Standards and Technology. FIPS 180-2, secure hash standard,
federal information processing standard (FIPS), publication 180-2. Technical re-
port, Department of Commerce (August 2002)

http://rfc-gnutella.sourceforge.net/index.html

200

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

K. Henry et al.

Joseph, S.: Neurogrid simulation setup,
http://www.neurogrid.net/php/simulation.php

Kirk, P.: Gnutella protocol development: Standard message architecture,
http://rfc-gnutella.sourceforge.net/developer/
testing/message-Architecture.html

. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K.P., Demers, A.J.: Active and

passive techniques for group size estimation in large-scale and dynamic distributed
systems. J. Syst. Softw. 80(10), 1639-1658 (2007)

. Gifford, D.K.: Weighted voting for replicated data. In: SOSP 1979: Proceedings of

the seventh ACM symposium on Operating systems principles, pp. 150-162. ACM,
New York (1979)

Cheung, S.Y., Ammar, M.H., Ahamad, M.: The grid protocol: A high perfor-
mance scheme for maintaining replicated data. IEEE Trans. on Knowl. and Data
Eng. 4(6), 582-592 (1992)

Naor, M., Wool, A.: The load, capacity, and availability of quorum systems. STAM
J. Comput. 27(2), 423-447 (1998)

Kumar, A., Rabinovich, M., Sinha, R.K.: A performance study of general grid
structures for replicated data. In: Proceedings the 13th International Conference
on Distributed Computing Systems, May 1993, pp. 178-185 (1993)

Agrawal, D., El Abbadi, A.: The tree quorum protocol: an efficient approach for
managing replicated data. In: Proceedings of the Sixteenth International Confer-
ence on Very Large Databases, pp. 243-254. Morgan Kaufmann Publishers Inc.,
San Francisco (1990)

Jiménez-Peris, R., Patino-Martinez, M., Alonso, G., Kemme, B.: Are quorums an
alternative for data replication? ACM Trans. Database Syst. 28(3), 257-294 (2003)
Wool, A.: Quorum systems in replicated databases: science or fiction. Bull. IEEE
Technical Committee on Data Engineering 21, 3-11 (1998)

Freisleben, B., Koch, H.-H., Theel, O.: Designing multi-level quorum schemes for
highly replicated data. In: Proc. of the 1991 Pacific Rim International Sympo-
sium on Fault Tolerant Systems, pp. 154-159. IEEE Computer Society Press, Los
Alamitos (1990)

Freisleben, B., Koch, H.-H., Theel, O.: The electoral district strategy for repli-
cated data in distributed systems. In: Proc. of the 5th Intern. Conference of Fault-
Tolerant Computing Systems, pp. 100-111 (1991)

Baldoni, R., Jiménez-Peris, R., Patino-Martinez, M., Querzoni, L., Virgillito, A.:
Dynamic quorums for DHT-based enterprise infrastructures. J. Parallel Distrib.
Comput. 68(9), 1235-1249 (2008)

Brunskill, E.: Building peer-to-peer systems with chord, a distributed lookup ser-
vice. In: HOTOS 2001: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, Washington, DC, USA, p. 81. IEEE Computer Society, Los
Alamitos (2001)

Zhang, Z.: The power of DHT as a logical space. In: IEEE International Workshop
on Future Trends of Distributed Computing Systems, pp. 325-331 (2004)

Lin, S., Lian, Q., Zang, Z.: A practical distributed mutual exclusion protocol in
dynamic peer-to-peer systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004.
LNCS, vol. 3279, pp. 11-21. Springer, Heidelberg (2005)

Naor, M., Wieder, U.: Scalable and dynamic quorum systems. Distrib. Com-
put. 17(4), 311-322 (2005)

Silaghi, B., Keleher, P., Bhattacharjee, B.: Multi-dimensional quorum sets for read-
few write-many replica control protocols. In: Fourth International Workshop on
Global and Peer-to-Peer Computing (2004)

http://www.neurogrid.net/php/simulation.php
http://rfc-gnutella.sourceforge.net/developer/testing/message-Architecture.html
http://rfc-gnutella.sourceforge.net/developer/testing/message-Architecture.html

	Efficient Hierarchical Quorums in Unstructured Peer-to-Peer Networks
	Introduction
	Quorums
	Hierarchical P2P Quorums
	Random Hierarchical Quorums
	An Improvement: Hybrid Hierarchical Quorums

	Performance Evaluation
	Experimental Environment
	Network Reachability
	Cost of Communicating with Quorum
	Stale Access under Churn
	Stale Access under Failure

	Comparison with Flexible Quorums
	Discussion
	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

