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Efficient FFT-Accelerated Approach to Invariant
Optical–LIDAR Registration
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Abstract—This paper presents a fast Fourier transform
(FFT)-accelerated approach designed to handle many of the dif-
ficulties associated with the registration of optical and light de-
tection and ranging (LIDAR) images. The proposed algorithm
utilizes an exhaustive region correspondence search technique to
determine the correspondence between regions of interest from the
optical image with the LIDAR image over all translations for var-
ious rotations. The computational cost associated with exhaustive
search is greatly reduced by exploiting the FFT. The substantial
differences in intensity mappings between optical and LIDAR im-
ages are addressed through local feature mapping transformation
optimization. Geometric distortions in the underlying images are
dealt with through a geometric transformation estimation process
that handles various transformations such as translation, rotation,
scaling, shear, and perspective transformations. To account for
mismatches caused by factors such as severe contrast differences,
the proposed algorithm attempts to prune such outliers using
the random sample consensus technique to improve registration
accuracy. The proposed algorithm has been tested using various
optical and LIDAR images and evaluated based on its registration
accuracy. The results indicate that the proposed algorithm is
suitable for the multimodal invariant registration of optical and
LIDAR images.

Index Terms—Fast Fourier transform (FFT), image registra-
tion, intersensor, light detection and ranging (LIDAR), optical,
remote sensing, sum of squared differences (SSD).

I. INTRODUCTION

IMAGE registration refers to techniques used to bring im-
ages taken at different perspectives, times, and/or sensor

technologies into alignment with each other. Such techniques
are important in the field of remote sensing for tasks such as
map rectification and change analysis. Conventional registra-
tion techniques used in remote sensing tools require that the
user manually select a set of control points (CPs) on the remote
sensing images under evaluation. The selected CPs are sub-
sequently used to perform transform estimation to determine
the geometric transformation needed to bring the images into
alignment. Given the laborious nature of manually selecting
CPs for individual remote sensing images, image registration
techniques that automate the process of aligning remote sensing
images are desired.
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A particularly difficult scenario for multimodal registration
of remote sensing images is the registration of light detection
and ranging (LIDAR) and passive optical images. Passive op-
tical images refer to remote sensing images that are acquired
in the visible and near-infrared spectral bands using passive
sensing systems. Optical images may be panchromatic (e.g.,
IKONOS PAN) or multispectral (e.g., LANDSAT MSS, and
IKONOS MS). The focus of this research is on panchromatic
images. As such, it should be noted that panchromatic passive
optical images will be simply referred to as optical images in the
rest of the paper. LIDAR, on the other hand, constructs an image
in an active manner. In a LIDAR system, electromagnetic pulses
in the infrared, visible, or ultraviolet ranges are emitted from
a transmitter. The time delay between the transmission of the
signal and the detection of the reflected signal at the receiver is
then measured to determine the altitude to an object or surface.
LIDAR systems hold a number of advantages over radio detec-
tion and ranging (RADAR) systems. First, LIDAR uses much
shorter wavelengths than RADAR and so can image features
that are smaller than that possible with RADAR. Furthermore,
LIDAR radiation is generally not modulated and thus possesses
high phase coherency. As such, LIDAR systems can provide
imaging of objects and surfaces at a very high resolution
compared to RADAR systems. One very useful application
for LIDAR is to measure the range of distant objects and sur-
faces. The focus of this research is on aerial LIDAR elevation
maps. Practical applications for aligned LIDAR and optical
images include building detection and reconstruction [2]–[4]
and canopy modeling [5]. A number of important issues make
LIDAR–optical image registration a particularly difficult task.

1) Symmetric CP detection: In traditional registration tech-
niques as well as newer automatic local-similarity-based
techniques, a set of symmetric CPs must be selected
or detected in both images for an image pair for the
registration to function. This is often found by finding
points of interest within each image and then match-
ing them using a similarity metric. However, given the
substantially different characteristics captured by LIDAR
and optical sensing technologies, it is very difficult to find
the same points of interest within each image.

2) Intensity mapping: To visualize the remote sensing data
acquired by a sensor, the data are remapped such that
an image representation of the data can be constructed.
Due to the substantial differences in LIDAR and opti-
cal remote sensing techniques, the data acquired from
these modalities have very different intensity mappings.
This makes it very difficult to perform direct similarity
comparisons between LIDAR and optical images as they
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have very different intensity mappings. It is important
to note that the intensity channel information of LIDAR
systems, if available, can be used to improve registration
accuracy as the contrast differences between that data and
optical data would be noticeably reduced. However, since
that information may not be available in different situa-
tions, a method that can handle more difficult scenarios
in the absence of this information is desired.

3) Structural characteristics: As with intensity mapping,
the substantial differences in LIDAR and optical remote
sensing techniques means that the structural characteris-
tics acquired by optical imaging may not be present in
the LIDAR image. This makes it difficult to perform sim-
ilarity comparisons between LIDAR and optical images
based solely on structural characteristics such as edges
and shape.

The proposed algorithm aims to address all of the above issues.
The main contribution of this paper is an efficient nonrigid

automatic registration system designed for registering optical
and LIDAR images. The algorithm addresses the difficulties
associated with the registration of optical and LIDAR im-
ages. The proposed algorithm utilizes an exhaustive region
correspondence search process to find the globally optimal
correspondence between regions from the optical image and
the LIDAR image, searching over all translations for various
rotations. This alleviates the problem of finding symmetric CPs
in both images. The cost of an exhaustive search is substantially
reduced by exploiting the fast Fourier transform (FFT) [1]. The
differences in intensity mapping between optical and LIDAR
images are addressed through an integrated local intensity map-
ping transformation optimization process. Finally, 4the random
sample consensus (RANSAC) is used to prune incorrect CP
pairs to improve registration robustness.

In this paper, previous work in automatic image registration
is presented in Section II. The underlying theory behind the
proposed algorithm is discussed in Section III. An outline of
the proposed algorithm is presented in Section IV. The methods
and data used to test the effectiveness of the algorithm are out-
lined in Section V. The registration accuracy of the algorithm is
presented and discussed in Section VI. Finally, conclusions are
drawn based on the results in Section VII.

II. BACKGROUND

Research in automated image registration has resulted in a
variety of useful techniques. These techniques can be catego-
rized as follows.

1) Intensity-based techniques [6]–[13]: Intensity-based
techniques use the similarity between pixel intensities
to assess the alignment between two images. Similarity
evaluation techniques used in these techniques include
mutual information [6] and maximum likelihood [9].

2) Frequency-based techniques [14]–[16]: Frequency-
based techniques use characteristics such as phase to
determine the alignment between two images. A popular
frequency-based technique is phase correlation, which
has been extended to handle geometric distortions such
as rotation and scaling [15].

3) Low-level feature-based techniques [17]–[22]: Such
low-level feature-based techniques use the similarity
between low-level features such as edges and corners
extracted from the images to determine the alignment
between the images. These feature-based techniques are
most useful in situations where distinctive structural de-
tails are present within both of the images.

4) High-level feature-based techniques [23], [24]: High-
level feature-based techniques use the similarity between
high-level features such as regions, buildings, and roads
extracted from the images to determine the alignment
between the images. High-level feature-based techniques
are most useful in situations where distinctive but well-
known shapes can be found within both of the images,
as such high-level features are usually evaluated based on
metrics such as area.

To the best of our knowledge, there has been no successful
technique for performing automatic nonrigid registration of
optical and LIDAR images in an efficient and robust manner.
Furthermore, testing shows that current registration techniques
are not suited for this particular application. The main issue
with previous registration techniques, including those related
to remote sensing images, is that they do not take into account
the nature of optical and LIDAR images. A large number of
registration schemes perform similarity comparisons on pixel
intensities in a direct manner. However, given the differences in
intensity mappings between LIDAR and optical images, finding
matches using these techniques is not possible as the inten-
sity mappings would differ greatly between the two images.
Other techniques designed for multimodal registration tried to
address this issue by using structure-based feature spaces such
as edges. However, LIDAR and optical images often capture
different structural characteristics that makes these techniques
ineffective for this situation, particularly local similarity-based
techniques that require matching points of interest to be de-
tected in both the LIDAR and optical images. This issue will
be illustrated in the experimental results when a structure-based
method is used. The goal of this paper is to address each of the
aforementioned issues to develop an algorithm that performs
nonrigid optical–LIDAR registration in an efficient and robust
manner.

III. THEORY

The proposed algorithm is a multistage algorithm that utilizes
various concepts to address the issues that arise when register-
ing optical images with LIDAR images. It is important to ex-
plain the underlying theory behind these concepts to understand
how they can be used to address the issues outlined in Section I.
The following sections outline the proposed approaches to
conquer each of the issues mentioned above: CP detection,
efficient region correspondence, feature mapping incongruency,
and robust geometric transform determination. The optical and
LIDAR images are assumed to be at the same spatial resolution.
If the optical image and the LIDAR image are at different
spatial resolutions, then the images are resampled such that
they are at the same scale as each other. For testing purposes,
the image with the finer resolution is downsampled to that of
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the coarser resolution to reduce computational cost. This is
sufficient in most cases, particularly since CPs are determined
with subpixel accuracies.

A. CP Candidate Detection

In many nonrigid image registration algorithms, it is nec-
essary to first determine an initial set of CP candidates from
both of the images under evaluation. In automatic image reg-
istration, initial CP selection is commonly performed using
feature detectors that attempt to determine significant points of
interest within the images [25]–[28]. Although this has been
shown to be effective in a number of intrasensor and intersensor
scenarios, the same cannot be said for optical and LIDAR image
pairs. Due to the way LIDAR and optical remote sensing tech-
niques capture information, it is often the case that structural
characteristics captured using optical sensing techniques are
not present in the LIDAR image. Therefore, the use of feature
detectors to find symmetric points of interest in both the optical
and LIDAR images is very difficult. One simple approach to
addressing this issue would be to simply assign CPs to images
at fixed intervals. However, this approach does not account for
the fact that certain regions within an image may contain little
information for the purpose of similarity matching. As such,
this may result in a large number of false matches between
empty regions.

The proposed algorithm takes a different approach to the
aforementioned problem. Instead of extracting points of interest
from both images in the hopes of matching corresponding
points, the proposed algorithm extracts points of interest from
only one of the two images. For each point of interest, the
other image is exhaustively searched to find its best-matching
location. This approach alleviates the need to find symmetric
points of interest in both the LIDAR and optical images.

In the proposed algorithm, local normalization is performed
on the optical image to compensate for nonuniformity in image
illumination and contrast

f̄(x, y) =
f(x, y) − μl(x, y)

σl(x, y)
(1)

where μl and σl are the local mean and local standard devi-
ation, respectively. One of the caveats with performing local
normalization on an image is that it may amplify the presence of
noise, leading to false points of interest. Luckily, the effect such
false points of interest may have on registration accuracy in the
proposed algorithm is small for several reasons. First, unlike
many local similarity-based registration algorithms, the pro-
posed algorithm utilizes an exhaustive region correspondence
search strategy that does not require that matching points of
interest exist in both images. Hence, a false point of interest
in the optical image due to noise would still yield a globally
optimal region correspondence in the LIDAR image over all
translations for various rotations, therefore substantially reduc-
ing the effect of noise on registration accuracy. Furthermore, the
proposed algorithm performs outlier rejection to prune outlier
CP candidate pairs. Therefore, if a false point of interest does
in fact lead to a false CP pair, there is a high likelihood that it
will be removed from the final set of CP pairs. After the local

Fig. 1. Extracted CP candidates (as indicated by crosses).

normalization, the modified Harris corner detector presented in
[28] is performed. Finally, only the strongest n points of interest
are used as CP candidates, where n is the number of points of
interest desired. The strength of a point of interest is determined
based on the Harris corner strength. The choice of n is also an
important factor to consider and is a tradeoff between compu-
tational cost and the robustness of the algorithm. Although the
appropriate choice of n can vary depending on the underlying
image characteristics, the use of 100 points of interest has been
found to be typically sufficient for many situations. Once the
points of interest have been selected, the position of each point
is readjusted for subpixel accuracy by fitting a 2-D quadratic to
the corner strength in its local neighborhood and then finding
the maximum of the quadratic. An example of extracted CP
candidates from an optical image is shown in Fig. 1.

B. Exhaustive Region Correspondence Search

After CP candidates have been determined in the optical
image, a set of regions of interest is extracted from the optical
image based on the location of the CP candidates. In the
proposed algorithm, a circular region of neighboring pixels
is extracted around each CP candidate point (acting as the
center point of the region) in the optical image as a region
of interest. The radius of the region of interest is important
and needs to be chosen based on the image resolution and
underlying image characteristics. Once the regions of interest
have been determined, an exhaustive region correspondence
search is performed between the LIDAR image and each region
of interest. This approach is very different than conventional
approaches that attempt to perform region correspondence at
fixed points of interest. There are a number of advantages to
this approach. First, unlike techniques that attempt to match
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discrete points of interest from an image pair, an exhaustive
search ensures that a globally optimal match is found over all
translations for various rotations between each region and the
corresponding LIDAR image. Second, as stated earlier, this
search strategy does not require symmetric points of interest
to be detected in both the optical and LIDAR images. Since
multiple regions of interest are evaluated, the proposed algo-
rithm is also more robust than many of the existing global
registration techniques because the final transformation model
between the optical and LIDAR images is determined based on
the collective consensus of CP pairs. It is important to point
out that the correspondence between small regions of interest
can be sufficiently modeled based on translation and rotation.
However, the final global transformation between the optical
and LIDAR images is estimated based on a more complex
model such as a perspective model or high-order polynomial
model.

The proposed algorithm utilizes the sum of squared differ-
ences (SSD) cost metric to determine the optimal correspon-
dence between a region of interest and the LIDAR image.
Therefore, it is important to discuss how the region correspon-
dence can be evaluated using the SSD cost function. Given a
LIDAR image f and an optical image g, the similarity between
the two images within a region of interest in the optical image
can be determined using the cost function C as expressed by

C =
∑

x

(f(x) − g(x))2 R(x) (2)

where x is the coordinate of an image pixel, and R(x) is
the masking function over g(x), where R(x) = 1 within the
region of interest and R(x) = 0 otherwise. Based on this cost
function, the similarity between a region of interest from g and
an arbitrary region in f can be viewed as the similarity between
image g and image f translated by vector v. Therefore, the cost
function in this case can be expressed as

Ci(v) =
∑

x

(f(x − v) − g(x))2 Ri(x) (3)

where Ci(v) is the cost function between image g and image f
shifted by vector v over a region of interest i. The cost function
Ci(v) is minimized to achieve the best spatial correspondence
between f and g. Hence, vi is determined such that

vi = arg min
v

[∑
x

(f(x − v) − g(x))2 Ri(x)

]
. (4)

The resultant optimal translation vi can be seen as a transla-
tion vector that aligns image f with image g given the region
of interest i. As such, the centroid of the region in image f
that corresponds to the region of interest i in image g can be
computed as

xf,i = xg,i − vi (5)

where xg,i is the centroid of the region of interest i in image g,
and xf,i is the centroid of the corresponding region in image
f . These two centroids can then be used as a CP candidate

pair. For example, suppose there exists a region of interest i
centered around a point of interest at (xg, yg) = (100, 100).
After performing the exhaustive region correspondence search,
it was determined that the lowest cost is found when vi =
(40, 40). Therefore, the centroid of the region in the LIDAR
image that corresponds to region of interest i can be computed
as (xf , yf ) = (xg − 40, yg − 40) = (60, 60). In the case where
georeferencing information is known, the computational perfor-
mance of such an exhaustive search process can be improved by
narrowing the search space in image f based on the georefer-
encing data. It is important to note that the SSD cost metric is
highly sensitive to outliers and non-Gaussian behavior. As such,
this can lead to mismatches in situations where the underlying
image characteristics exhibit highly varying illumination and
contrast conditions. This issue is partially compensated for in
the outlier rejection process, where mismatches caused by these
characteristics are pruned from the set of matched CP pairs to
eliminate its effect on overall registration accuracy.

C. Local Intensity Mapping Transformation Optimization

One of the major issues with using the above exhaustive
region correspondence technique directly between optical and
LIDAR images is the fact that the intensity mappings of the
images are substantially different. This renders a direct region
correspondence ineffective in this situation as corresponding
regions in the LIDAR image and the optical image are not rep-
resented using the same feature mapping. A common approach
used in various multimodal image registration schemes is to
perform similarity comparisons using structural features such
as edges. However, due the substantial differences in the way
LIDAR and optical imaging techniques acquire information,
the structural characteristics acquired by optical imaging may
not be present in the LIDAR image. Therefore, an approach
based solely on structural features would result in frequent
incorrect region correspondences. The proposed algorithm uti-
lizes a different approach to addressing this problem by deter-
mining an intensity mapping transformation that transforms the
intensity mapping of the optical image into those of the LIDAR
image.

A major point of concern to this approach is the fact that the
differences in intensity mapping between optical and LIDAR
are so substantial that a nonlinear transformation model would
be required to obtain a global intensity mapping transformation
that transforms the intensity mapping of the optical image to
that of the LIDAR image. Determining such a global intensity
mapping transformation would be very difficult and computa-
tionally inefficient. A more efficient and effective approach is to
determine a different local feature mapping transformation for
each region of interest. A substantially simpler model can be
used to approximate the local intensity mapping transformation
when compared to that required for a global intensity mapping
transformation.

The proposed algorithm uses a linear model to approximate
the local feature mapping transformation that maps a region of
interest i from the optical image g to that of the LIDAR image
f . Given the small region of interest around each CP candidate,
a linear model is typically sufficient based on the assumption
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that a small neighborhood of pixels should exhibit near-uniform
properties. Integrating the linear feature mapping transform
model into the existing cost function, f(x) is replaced by
af(x) + b. The new cost function is expressed as

Ci(v, a, b) =
∑

x

(af(x − v) + b − g(x))2 Ri(x). (6)

Given the above cost function, the globally optimal transla-
tion v and the optimal linear transformation parameters a and b
for a particular region of interest i can be found by minimizing
the cost function such that

(vi, ai, bi) = arg min
v,a,b

[∑
x

(af(x − v) + b − g(x))2 Ri(x)

]
.

(7)

D. FFT Acceleration

The cost function in (7) has four degrees of freedom (two
translations and two coefficients). If one uses a direct approach
to evaluate the cost function, it is extremely computationally
expensive to exhaustively evaluate the cost function for all
candidate parameter values in the 4-D parameter space. This
is particularly problematic in the context of the proposed al-
gorithm, as a set of regions of interest need to be evaluated
for optimal region correspondence. An effective approach to
substantially reduce the computational cost of the exhaustive
region correspondence search is to reformulate the underlying
cost optimization problem into a problem that can be evaluated
using the FFT. This concept has been used in various research
that utilize correlation-based cost functions [7], [11], [12].

First, the cost function presented in (6) is expanded as

Ci(v, a, b) = a2
∑

x

f2(x − v)Ri(x)

− 2a
∑

x

f(x − v)g(x)Ri(x)

+ 2ab
∑

x

f(x − v)Ri(x)

+
∑

x

b2Ri(x) − 2b
∑

x

g(x)Ri(x)

+
∑

x

g2(x)Ri(x). (8)

The last three terms of the expanded equation are indepen-
dent of v and can be efficiently computed in a direct manner.
The first three terms can be reformulated as convolutions.
Although convolutions are computationally expensive when
performed in a direct manner, they can be efficiently computed
in the frequency domain since convolutions in the spatial do-
main become multiplications in the frequency domain. There-
fore, the first three terms can be computed for all values of v
by applying the FFT on the convolutions so that they can be
evaluated as multiplications in the frequency domain. The final
cost function can be expressed as

Ci(v, a, b) = a2F−1
{
F (f̄2)F (Ri)

}
(v)

− 2aF−1
{
F (f̄)F (gRi)

}
(v)

+ 2abF−1
{
F (f̄)F (Ri)

}
(v) + K (9)

where f̄ = f(−x), F and F−1 represent the forward and
inverse FFTs, respectively, and K represents the last three terms
of the expanded form in (8). This approach to cost function
evaluation has been shown to yield performance improvements
over direct evaluation [11]. For the case where the LIDAR
image is N × N in size and the size of the regions of interest
is M × M , the computational complexity of direct evalua-
tion is O(N2M2), while the computational complexity of the
proposed approach is O(N2 log N). Since log N � M2 in
practical situations, substantial performance improvements can
be achieved. For example, the computational cost of processing
a 1024× 1024 image with regions of interest of size 25× 25
using the FFT approach is roughly the same as the compu-
tational cost of processing the same image with regions of
size 9 × 9 using the direct approach. Since a typical situation
involves LIDAR images 1024 × 1024 in size and regions of
interest 25 × 25 in size, the performance improvement achieved
over the direct approach is substantial, exceeding a factor
of five.

Once the summations in the expanded equation have been
computed for all values of v, the optimal values of a and b can
then be determined for each value of v by solving a simple 2 × 2
linear system of equations [11]. Degenerative cases may occur
due to the optimal values of a and b that can lead to mismatches.
However, the Harris corner detector is designed to choose CPs
that are distinctive, thereby substantially reducing the number
of such mismatches. For the mismatches that do occur, the
outlier rejection process attempts to compensate for this issue
by classifying these mismatches as outliers and pruning them
from the set of CP pairs.

E. Rotation

The methodology outlined above computes the optimal trans-
lation but does not consider rotations. However, evaluating the
optimal translation and linear intensity remapping coefficients
is fast enough that it is feasible to do so for a sampling of candi-
date rotations. We compute the optimal region correspondence
over a set of discrete rotations at fixed intervals such that

vi = arg min
v

(Ci,θ) (10)

where Ci,θ is the cost for region of interest i of the image g
rotated by angle θ. The increase in computational complexity
is reasonable given the significant complexity reduction of the
exhaustive region correspondence search gained from using
the FFT. Furthermore, the added computational costs are far
outweighed by the increase in robustness to local geometric
distortions.

F. Outlier Rejection and Geometric
Transformation Estimation

After a set of CP candidate pairs have been determined,
the RANSAC algorithm [29] is applied to the set of CP can-
didate pairs to prune potential outliers. RANSAC has proven
to be popular for outlier rejection due to its effectiveness
and efficiency. Performing outlier rejection is very important
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Fig. 2. Final set of candidate CPs (as indicated by crosses). (Left) Optical
image. (Right) LIDAR image.

because common least squares estimation methods such as the
normalized direct linear transformation (DLT) algorithm [30]
are highly sensitive to the presence of outliers. An example
of the final set of CPs from the optical and LIDAR images
is shown in Fig. 2. Using the outlier-free set of CP pairs, the
nonrigid transformation that maps the LIDAR image to the
optical image can be estimated using an estimation technique
such as DLT. The actual geometric transformation model used
for transformation estimation will depend on the geometric
distortions exhibited within the optical and LIDAR images
being used. For testing purposes, the proposed algorithm makes
use of a projective transformation model that is capable of
handling most common geometric distortions such as affine
transformations (translation, rotation, scaling, and shear) as
well as perspective transformations. Since any geometric trans-
formation model may be used in the proposed algorithm,
high-order polynomial transformation models may be used for
situations where the LIDAR and/or optical image exhibit(s)
more complex geometric distortions.

IV. REGISTRATION ALGORITHM

Based on the above theory, the proposed registration algo-
rithm is summarized as follows, for a LIDAR image f and an
optical image g.

1) Detect a set of CP candidates from f using the algorithm
described in Section III-A.

2) Determine a set of CP candidate pairs between f and g by
performing the region correspondence technique with the
local feature mapping transform optimization and FFT
acceleration described in Section III-C. Georeferencing
data, if available, may be used to improve performance
and accuracy of the algorithm.

3) Use the RANSAC algorithm on the set of CP candidates
to prune outliers from the set of CP candidate pairs.

4) Use a model estimation algorithm to estimate a transfor-
mation using the final set of CPs.

5) Use the transformation to transform g into an aligned
image g′.

V. TESTING METHODS

The proposed algorithm was implemented in MATLAB and
was tested using a set of images from Intermap Technologies
Inc. and the U.S. Geological Survey (USGS). Each test set
consists of a LIDAR image and an optical image that have been
scaled to 8 bits per pixel. A description of each test case is
described below.

1) TEST1: A pair composed of a LIDAR image and an
orthorectified air photo of Highlands Ranch, CO, NW
quad, at 1-m resolution. This test set was provided by
Intermap Technologies Inc.

2) TEST2: A pair composed of a LIDAR image and an
orthorectified air photo of Highlands Ranch, CO, NE
quad, at 1-m resolution. This test set was provided by
Intermap Technologies Inc.

3) TEST3: A pair composed of a LIDAR image and an
orthorectified air photo of a section from New Orleans,
LA, latitude/longitude: 29.0◦59′/ − 90◦01′. This test set
was provided by USGS.

4) TEST4: A pair composed of a LIDAR image and an
orthorectified air-photo of a section from New Orleans,
LA, latitude/longitude: 29.0◦57′/ − 90◦02′. This test set
was provided by USGS.

Each LIDAR image in a test case is registered with the optical
image in the same test case. For all test cases, the number of
initial CP candidates was set to a maximum of 100 candidates
in the optical image and the range of candidate rotations is set
to ±{0◦, 2.5◦, 5◦}. To demonstrate the effectiveness of the pro-
posed algorithm when no additional information is available,
each image pair is registered without the aid of georeferen-
cing data.

Aside from the primary goal of registering optical–LIDAR
image pairs, it would be of interest to briefly investigate the
effectiveness of the proposed method for registering other types
of intersensor image data. As such, the following test case
from the USGS Global Visualization Viewer project was also
evaluated (using the same parameters as the optical–LIDAR test
cases):

• TEST5: Set of two 761 × 748 images from the USGS
project, latitude/longitude: 46.0◦/ − 83.8◦, at 240-m res-
olution. In image 1, sensor: Landsat 7 ETM+, band: 3,
and date: 2003/4/12. In image 2, sensor: Landsat 4–5 TM,
band: 5, and date: 2006/06/15.

To establish a “gold standard” for comparison purposes, a
set of 20 CP pairs with good spatial distribution was manually
selected for each test case. To act as a reference comparison,
the CPs were used to estimate reference transformations us-
ing a polynomial fit of second order as well as a perspec-
tive transformation model. Furthermore, a registration method
based on maximization of mutual information as well as the
low-level structure-based registration method proposed in [22]
was also implemented and used for comparison. The normal-
ized measure of mutual information used in the optimization
process is that proposed by Studholme et al. [31], which was
found to be effective for multimodal registration purposes. To
improve the results of the mutual information implementation,
an initial estimate was used to improve registration conver-
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TABLE I
REGISTRATION ACCURACY

Fig. 3. Image registration from the TEST2 test set. (Left) Optical image. (Center) LIDAR image. (Right) Aligned images.

Fig. 4. Image registration from the TEST1 test set after rotation. (Left) Optical image. (Center) LIDAR image. (Right) Aligned images.

gence. The measure of mutual information used is the global
mutual information for the entire image. For all of the tested
algorithms, a perspective transformation model was used. To
judge the registration accuracy of the proposed algorithm, the
root-mean-square error (RMSE) is computed for the test pairs.
The RMSE is computed on a pixel basis.

VI. EXPERIMENTAL RESULTS

The registration accuracy results are shown in Table I. It can
be seen that the proposed algorithm achieved an RMSE that

is comparable by the manual selection of CP pairs, exhibiting
an RMSE of less than five pixels in all cases. It can be
observed that the average RMSE realized using the proposed
algorithm is noticeably lower than that achieved using the
low-level structure-based method proposed in [22] for all test
cases except TEST5, where it is comparable. This is largely
due to the differences in structural information captured in the
optical data and the LIDAR data. Furthermore, it can also be
observed that the average RMSE realized using the proposed
algorithm is noticeably lower than that achieved using the
maximization of the mutual information method for all test

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 8, 2009 at 11:25 from IEEE Xplore.  Restrictions apply.



3924 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 11, NOVEMBER 2008

Fig. 5. Image registration from the TEST3 test set. (Left) Optical image. (Center) LIDAR image. (Right) Aligned images.

Fig. 6. Image registration from the TEST5 test set. (Left) Landsat 4–5 TM image. (Center) Landsat 7 ETM+ image. (Right) Aligned images.

cases except TEST4, where it is comparable. Examples of the
optical–LIDAR registration achieved is shown in Figs. 3–6. By
visual inspection, the registered results are reasonably accurate.
These results demonstrate the effectiveness of the proposed
algorithm for registering optical–LIDAR images.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced an efficient approach
to nonrigid invariant optical–LIDAR registration. Experimen-
tal results demonstrate good intersensor registration accuracy
under various difficult optical–LIDAR image pairs. It is our
belief that this method can be successfully implemented for
optical–LIDAR registration and rectification purposes. Future
work includes investigating higher order intensity transfor-
mation models for improving multimodal image registration
accuracy, as well as testing the performance of the proposed
method with imagery that has not been orthorectified.
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