
CS646: Software Design and Architectures

Design methods: SSA/SD†

Stands for: Structured Systems Analysis / Structured Design.
Primary applicable notations:

DFDs
Structure Charts

Secondary notations:
ERDs
Pseudo-code
Data Dictionary

Overall objective: Derive “white box” structure chart.

† Material from text by Budgen and from “Software Engineering: A Practitioner’s
Approach (4th edition)”, by Roger Pressman.

CS646: Software Design and Architectures

Effective modular design

Module: a grouping of related routines or data.

Diagrammatic convention: ModuleReference
ModuleName

Modularization criteria:

coupling: The degree of interconnection between modules.

cohesion: The strength of relationship between elements of a
particular module; the “single mindedness of purpose” of the
module.

CS646: Software Design and Architectures

Cohesion and coupling are at odds

Improving one tends to worsen the other.

(more single mindedness of purpose)

(more modules)

(more communication)

(a)

(less communication)

(fewer modules)

(less single mindedness of purpose)

(b)

CS646: Software Design and Architectures

Degrees of coupling

Strongest (more desirable) weakest:

1. Content coupling: one module can change the local data or control
of another. Usually not possible with high level languages.

2. Common coupling: a single shared global data structure.

3. Control coupling: indirect execution control of one module by
another (e.g., by passing control information in parameters).

4. Stamp coupling: multiple shared global data structures; fewer
modules share a particular subset of the global data.

5. Data coupling: All communication of data is via parameters.

CS646: Software Design and Architectures

Degrees of cohesion

Weakest (more desirable) strongest:

1. Coincidental cohesion: No apparent relationship.

2. Logical cohesion: Some minimal relationship (e.g., all I/O
routines).

3. Temporal cohesion: Some minimal relationship and all parts
execute at the same time (e.g., all initialization code).

4. Communication cohesion: Some minimal relationship and all parts
execute at the same time on the same data.

5. Sequential cohesion: The elements are in a sequential pipe-and-
filter sequence.

CS646: Software Design and Architectures

Degrees of cohesion (cont’d)

Weakest (more desirable) strongest:

6. Functional cohesion: All elements are related to the performance
of a single function (e.g., all procedure that computer a square
root)..

7. Informational cohesion: A module corresponds to an abstract data
type.

CS646: Software Design and Architectures

SSA/SD Process (from text and Pressman)

The first three steps.

1. Construct an initial DFD for each major component to provide a
top-level description of the problem (the context diagrams).

2. Review and refine DFDs for the major components until a sufficient
degree of cohesion is achieved for processes; one elaborates the
context diagrams into a layered hierarchy of DFDs, supported by a
data dictionary.

3. Determine whether each DFD has transformational or transactional
flow characteristics.

The remaining steps depend on the outcome of step 3.

CS646: Software Design and Architectures

Flow types

Transformational Flow

Data “continuously” moves through a collection of incoming flow
processes, transform center processes, and finally outgoing flow
processes.

Transactional Flow

Data “continuously” moves through a collection of incoming flow
processes, reaches a particular transaction center process, and then
follows one of a number of actions paths. Each action path is again a
collection of processes.

CS646: Software Design and Architectures

SSA/SD Process (cont’d)
Transform mapping detail.

4. Isolate the transform center by specifying incoming and outgoing
flow boundaries.

5. Perform “1st –level” factoring for transformational flow (see next
slide). Factoring results in a program structure in which top-level
modules perform decision making and low-level modules perform,
input, computation and output. (Mid-level modules can perform
both.)

6. Perform “2nd-level” factoring: two or more processes become a
single module; one process becomes two or more modules.

7. Refine the first iteration program structure using design heuristics
for improved software quality.

CS646: Software Design and Architectures

SSA/SD Process (cont’d)

“1st –level” factoring in transformational flow.

...
...incoming

flow
transform

center
outgoing

flow

M1
control

M4
output

M3
process

M2
input

CS646: Software Design and Architectures

SSA/SD Process (cont’d)

Transaction mapping detail.

4. Identify the transaction center, and the flow characteristics along
each of the action paths.

5. Perform “1st –level” factoring for transactional flow (see next slide);
map the DFD to a program structure amenable to transaction
processing.

6. Factor and refine the transaction structure and the structure of each
action path.

7. Refine the first iteration program structure using design heuristics
for improved software quality.

CS646: Software Design and Architectures

SSA/SD Process (cont’d)

“1st –level” factoring in transactional flow.

...incoming
flow

transaction
center

action
path 1

action
path n

...transaction
center

...

...

M1
control

M2
input

M3
dispatch

Mn+3
action n

M4
action 1

…

CS646: Software Design and Architectures

Design heuristics for effective modularity

Reevaluate “first iteration” (employ iterative design).

Minimize high fan-out; strive for fan-in as depth increases.

Scope of effect of a module: any module that contains code that is
executed based on the outcome of a decision within the module.

Scope of control of a module: that module plus all modules that are
subordinate to it in its associated structure chart.

Keep scope of effect within scope of control.

Evaluate module interfaces to reduce complexity and redundancy and
improve consistency.

CS646: Software Design and Architectures

Design heuristics for effective modularity (cont’d)

Define modules with transparent functionality, but avoid modules that
are overly restrictive (e.g., impose size or option restrictions that seem
arbitrary).

Strive for “controlled entry” modules, avoiding “pathological cases”.

Create software components based on design constraints and
portability requirements.

Evaluate module interfaces to reduce complexity and redundancy and
improve consistency.

CS646: Software Design and Architectures

Design postprocessing

After structure charts have been developed and refined, the following
tasks must be completed.

A processing narrative must be developed for each module.

An interface description is provided for each module.

Local and global data structures are refined or designed.

All design restrictions and limitations are noted.

A design review is conducted.

“Optimization” is considered (if required and justified).

CS646: Software Design and Architectures

Case study: the SafeHome software system

SafeHome software enables the homeowner to configure the security system when it is
installed, monitors all sensors connected to the security system, and interacts with the
homeowner through a keypad and function keys contained in the SafeHome control panel
shown below.

During installation, the SafeHome control panel is used to “program” and configure the
system. Each sensor is assigned a number and type, a master password is programmed for
arming and disarming the system, and telephone number(s) are input for dialing when a
sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to
the system. After a delay time that is specified by the homeowner during system
configuration activities, the software dials a telephone number of a monitoring service,
provides information about the location, reporting the nature of the event that has been
detected. The number will be redialed every 20 seconds until telephone connection is
obtained.

All interaction with SafeHome is managed by a user-interaction subsystem that reads
input provided through the keypad and function keys, displays prompting messages and
system status on the LCD display. Keyboard interaction takes the following form …

CS646: Software Design and Architectures

Case study (cont’d): the SafeHome control panel

SAFEHOME

1
off

3
stay

2
away

4
max

6
bypass

5
test

7
instant

9
chime

8
code

*
ready

#0

panic

powerarmed

01
alarm
check
fire

away
stay
instant
bypass
not ready

CS646: Software Design and Architectures

E.g.: Level 0 for SafeHome

SafeHome
software

control
panel

sensors telephone
line

alarm

control panel
displayuser commands

and data

sensor
status

display
information

alarm
type

telephone
number tones

CS646: Software Design and Architectures

Creating a level 1 DFD

SafeHome software enables the homeowner to configure the security system when it is
installed, monitors all sensors connected to the security system, and interacts with the
homeowner through a keypad and function keys contained in the SafeHome control panel
shown below.

During installation, the SafeHome control panel is used to “program” and configure
the system. Each sensor is assigned a number and type, a master password is programmed
for arming and disarming the system, and telephone number(s) are input for dialing when
a sensor event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to
the system. After a delay time that is specified by the homeowner during system
configuration activities, the software dials a telephone number of a monitoring service,
provides information about the location, reporting the nature of the event that has been
detected. The number will be redialed every 20 seconds until telephone connection is
obtained.

All interaction with SafeHome is managed by a user-interaction subsystem that reads
input provided through the keypad and function keys, displays prompting messages and
system status on the LCD display. Keyboard interaction takes the following form …

CS646: Software Design and Architectures

E.g. (cont’d): Level 1 (SafeHome software)

user commands
and data

control
panel

sensors

telephone
line

alarm

control panel
display

display
information

configure
system

interact
with user

process
password

activate/
deactivate

system

display
messages and

status

monitor
sensors

configuration information

password

configure
request

start
stop

configuration
data

a/d msg.

valid id msg.

configuration
data

configuration
data

sensor
information alarm type

telephone
number tones

sensor status

CS646: Software Design and Architectures

E.g. (cont’d): Level 2 (monitor sensors)

sensors

telephone
line

alarm

format
for

display

generate
alarm
signal

assess
against
setup

read
sensors

configuration information

configuration
data

sensor id,
type

alarm type

telephone
number tones

sensor status

dial
phone

sensor
information

telephone
number

alarm
data

sensor id,
type,

location

CS646: Software Design and Architectures

E.g. (cont’d): Level 3 (monitor sensors)

sensors

telephone
line

alarm

format
display

generate
alarm
signal

establish
alarm

conditions

read
sensors

configuration information

alarm type

telephone
number tones

sensor
status

generate
pulses to

line

sensor
information

telephone
number

alarm data

sensor id,
type, location

generate
display

acquire
response

info

select
phone

number

set up
connection
to phone

set

formatted
id, type,
location

tone
ready

telephone
numberlist of

numbers

alarm
condition code,

aensor id,
timing

information

sensor id,
setting

configuration information

assess
against
setup

dial
phone

format
for display

CS646: Software Design and Architectures

E.g. (cont’d) 1st-level factoring (monitor sensors)

monitor sensors
executive

sensor input
controller

alarm conditions
controller

alarm output
controller

CS646: Software Design and Architectures

E.g. (cont’d) 1st-level factoring (monitor sensors)

monitor sensors
executive

sensor input
controller

establish alarm
conditions

alarm output
controller

format display generate alarm
signal

set up connection
to phone net

generate pulses
to line

generate display

CS646: Software Design and Architectures

E.g. (cont’d) 1st-cut program structure (monitor sensors)

monitor sensors
executive

sensor input
controller

establish alarm
conditions

alarm output
controller

format display generate alarm
signal

set up connection
to phone net

generate pulses
to line

generate display

select phone
number

establish alarm
conditions

read sensors

acquire
response info

CS646: Software Design and Architectures

E.g. (cont’d) refined program structure (monitor sensors)

M1
monitor sensors
executive

M2
acquire
response info

M4
establish alarm
conditions

M5
alarm output
controller

M6
produce display

M7
generate alarm
signal

M8
set up connection
to phone net

M9
generate pulses
to line

M3
read sensors

CS646: Software Design and Architectures

E.g. (cont’d): Level 2 (user interaction)

control
panel

control panel
display

display
information

read
system

data

invoke
command
processing

read
password

configuration information

command
type

formatted
configuration

data

a/d msg.

compare
password
with file

produce
invalid

message

build
configuration

file

read user
command

activate/
deactivate

system

display
messages
and status

start/stop

raw
configuration

data

“try again”
message

valid
password

invalid
password

four
digits

user
commands

system
parameters

and data

password

configuration data
configure

configure
system

interact
with user

process
password

CS646: Software Design and Architectures

E.g. (cont’d) 1st-level factoring (user interaction)

user interaction
executive

read user
command

invoke command
processing

password
processing
controller

activate/
deactivate
system

system
configuration
controller

CS646: Software Design and Architectures

E.g. (cont’d) 1st-cut program structure (user interaction)

M10
user interaction
executive

M11
read user
command

M12
invoke command
processing

M18
password proc.
controller

M17
activate/
deactivate system

M13
system config.
controller

M14
read system date

M15
build
configuration file

M16
monitor sensors
executive

M19
read password

M20
compare password
with file

M21
password output
controller

M22
process invalid
message

