
Information Hiding

Daniel M. Berry

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 1

Information Hiding -1

The concept of information hiding (IH) comes
from the seminal paper,

“On the criteria to be used in decomposing
systems into modules”, CACM, Dec., 1972

by David L. Parnas.

The purpose of information hiding is to obtain
a modularization of the code of a system that
isolates changes into single modules.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 2

Information Hiding -2

Information hiding is a way to use abstract
data types and abstract objects, such as
provided by
g Ada packages
g Simula classes
g C++ classes

I assume that you know at least one of these!

If you don’t, then go learn!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 3

ADT&O -1

It is necessary to teach exploitation of
abstract data types and objects (ADT&O).

I have found many people writing FORTRAN
code in Ada syntax or C code in C++ syntax.

On the other hand, it is possible to exploit
ADT&O even in assembly language and
FORTRAN!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 4

ADT&O -2

What’s a nice programming topic like you
doing in a real rough requirements
engineering course like this?

g ADT&O is a good way to organize a domain
model

g ADT&O is a good way to organize a
software design

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 5

ADT&O -3

Remember that you may have to do some
design to discover all requirements.

With ADT&O, the domain model and design
can be built without exposing implementation
details!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 6

ADT&O -4

In my experience, if I program with ADT&O
using information hiding, my modules end up
being the types and objects of the domain
model.

So even if I am thinking implementation, I end
up with a domain model!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 7

ADT&O and IH -1

For those of you who are implementation-
bound in your thinking, ADT&O with
information hiding frees you from thinking
implementation.

ADT&O with IH gives you a way of thinking at
an abstract level without having to worry
about whether you can implement, because
you can!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 8

ADT&O and IH -2

You will see an entirely different way of
thinking about problems, in which you work
with problem-level concepts rather than more
traditional data- or control-flow concepts.

If you’re already thinking this way, bravo!

If not, then learn!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 9

Parnas’s Sample Problem

Requirements:

The KWIC index system accepts an ordered
set [sic] of lines, each line is an ordered set
[sic] of words, and each word is an ordered
set [sic] of characters.

Any line may be “circularly shifted” by
repeatedly removing the first word and
appending it at the end of the line. The KWIC
index system outputs a listing of all the
circular shifts of all lines in alphabetical order.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 10

List of Six Lines

Make - A Program for Maintaining Computer Programs
Reference Manual for the Ada Programming Language
The NYU Ada/Ed System, An Overview
Program Design Language
Software Development Processor User Reference Manual
The Ina Jo Reference Manual

The next slide shows the KWIC (KeyWord In
Context) index of the above lines.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 11

Make - A Program for Maintaining Computer Programs [Fel78]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming Language [ADA81]
The NYU Ada/Ed System, An Overview [NYU81]

The NYU Ada/Ed System, An Overview [NYU81]
Make - A Program for Maintaining Computer Programs [Fel78]

Program Design Language [CFG75]
Software Development Processor User Reference Manual [Yav80]

Make - A Program for Maintaining Computer Programs [Fel78]
Reference Manual for the Ada Programming Language [ADA81]

The Ina Jo Reference Manual [LSSE80]
The Ina Jo Reference Manual [LSSE80]

Program Design Language [CFG75]
Reference Manual for the Ada Programming Language [ADA81]

Make - A Program for Maintaining Computer Programs [Fel78]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming Language [ADA81]
Software Development Processor User Reference Manual [Yav80]

The Ina Jo Reference Manual [LSSE80]
The NYU Ada/Ed System, An Overview [NYU81]

The NYU Ada/Ed System, An Overview [NYU81]
Software Development Processor User Reference Manual [Yav80]

Program Design Language [CFG75]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming Language [ADA81]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming Language [ADA81]
Software Development Processor User Reference Manual [Yav80]

The Ina Jo Reference Manual [LSSE80]
Software Development Processor User Reference Manual [Yav80]

The NYU Ada/Ed System, An Overview [NYU81]
Reference Manual for the Ada Programming Language [ADA81]

The Ina Jo Reference Manual [LSSE80]
The NYU Ada/Ed System, An Overview [NYU81]

Software Development Processor User Reference Manual [Yav80]

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 12

KWIC Index of Above Lines

First 5 lines of Index:

Make - A Program for Maintaining Computer Programs [Fel78]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming language [Ada81]
The NYU Ada/ed System, An Overview [NYU81]

The NYU Ada/ed System, An Overview [NYU81]c
c
c
c
c
c
c

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 13

Two Modularizations

Parnas shows first a conventional
modularization and then one that does a better
job of being modifiable.

Modularization 1: Brand X

Modularization 2: Brand DLP

Guess which one is supposed to be better!

The textual module descriptions are from
Parnas himself.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 14

Modularization 1 -1

outputalphabetizer
circular_

shifter
input

KWICModularization 1

BRAND X:

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 15

Modularization 1 -2

alphed_cs_line_indexcs_line_indexline_index

words
DATA STRUCTURE DIAGRAM

54
18
97

103
2

51

2
2
2
1
1
1

4
3
2
1

5
6
7

1 1

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 16

Modularization 1 -3

Module 1: Input. This module reads the data
lines from the input medium and stores them
in core for processing by the remaining
modules. The characters are packed four to a
word, and an otherwise unused character is
used to indicate the end of a word. An index
is kept to show the start of each line.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 17

Modularization 1 -4

Module 2: Circular Shift. This module is
called after the input module has completed
its work. It prepares an index which gives the
address of the first character of each circular
shift, and the original index of the line in the
array made up by module 1. It leaves its
output in core with words in pairs (original line
number, starting address).

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 18

Modularization 1 -5

Module 3: Alphabetizing. This module takes
as input the arrays produced by modules 1
and 2. It produces an array in the same format
as that produced by module 2. In this case,
however, the circular shifts are listed in
another order (alphabetically).

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 19

Modularization 1 -6

Module 4: Output. Using the arrays
produced by module 3 and module 1, this
module produces a nicely formatted output
listing of all of the circular shifts. In a
sophisticated system the actual start of each
line will be marked, pointers to further
information may be inserted, and the start of
the circular shift may actually not be the first
word in the line, etc.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 20

Modularization 1 -7

Module 5: Master Control. This module
does little more than control the sequencing
among the other four modules. It may also
handle error messages, space allocation, etc.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 21

Modularization 1 -8

Parnas says:

It should be clear that the above does not
constitute a definitive document. Much more
information would have to be supplied before
work could start. The defining documents
would include a number of pictures [as above]
showing core formats, pointer conventions,
calling conventions, etc. All of the interfaces
between the four modules must be specified
before work could begin.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 22

Modularization 1 -9

I add the additional defining documents using
Ada notation:

procedure KWIC is
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
large_no: constant INTEGER:=MAX_INT;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 23

Modularization 1 -10

words:STRING(1..large_no);
line_index:INDEX_TABLE(1..large_no);
cs_line_index:INDEX_TABLE(1..large_no);
alphed_cs_line_index:INDEX_TABLE(1..large_no);

procedure input is separate;
procedure make_circular_shifts is separate;
procedure alphabetize is separate;
procedure output is separate;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 24

Modularization 1 -11

begin
input;
make_circular_shifts;
alphabetize;
output;

end KWIC;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 25

Modularization 1 -12

separate(KWIC)
procedure input is
begin

null;
end;

separate(KWIC)
procedure make_circular_shifts is
begin

null;
end;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 26

Modularization 1 -13

separate(KWIC)
procedure alphabetize is
begin

null;
end;

separate(KWIC)
procedure output is
begin

null;
end;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 27

Modularization 1 -14

More from Parnas:

This is a modularization in the sense meant by
all proponents of modular programming [circa
1972]. The system is divided into a number of
modules with well-defined interfaces; each
one is small enough and simple enough to be
thoroughly understood and well programmed.
Experiments on a small scale indicate that this
is approximately the decomposition which
would be proposed by most programmers for
the task specified.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 28

Modularization 2 -1

Alphabetized_Circular_Shifts

Line_Storage

Modularization 2

BRAND DLP:

dellinedelwordlineswordscharscharsetchar

Circular_Shifts

ithalph

output

input

KWIC

cslinescswordscscharscscharcssetup

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 29

Modularization 2 -2

Module 1: Line Storage. This module
consists of a number of functions or
subroutines which provide the means by
which the user of the module may call on it.
The function call CHAR(r,w,c) will have as
value an integer representing the c th
character in the r th line, w th word. A call
such as SETCHAR(r,w,c,d) will cause the c th
character in the w th word of the r th line to be
the character represented by d (i.e.,
CHAR(r,w,c) = d).

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 30

Modularization 2 -3

WORDS(r) returns as value the number of
words in line r. There are certain restrictions
in the way that these routines may be called; if
these restrictions are violated the routines
“trap” to an error-handling subroutine which
is to be provided by the users of the routine.
Additional routines are available which reveal
to the caller the number of words in any line,
the number of lines currently stored, and the
number of characters in any word....

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 31

Modularization 2 -4

Module 2: Input. This module reads the
original lines from the input media and calls
the line storage module to have them stored
internally.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 32

Modularization 2 -5

Module 3: Circular Shifter. The principal
functions provided by this module are analogs
of functions provided in module 1. The
module creates the impression that we have
created a line holder containing not all of the
lines but all of the circular shifts of the lines.
Thus the function call CSCHAR(l,w,c) provides
the value representing the c th character in the
w th word of the l th circular shift.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 33

Modularization 2 -6

It is specified that (1) if i < j then the shifts of
line i precede the shifts of line j, and (2) for
each line the first shift is the original line, the
second shift is obtained by making a one-word
rotation to the first shift, etc. A function
CSSETUP is provided which must be called
before the other functions have their specified
value....

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 34

Modularization 2 -7

Module 4: Alphabetizer. This module
consists principally of two functions. One,
ALPH, must be called before the other will
have a defined value. The second, ITH, will
serve as an index. ITH(i) will give the index of
the circular shift that comes i th in the
alphabetical ordering.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 35

Modularization 2 -8

Module 5: Output. This module will give the
desired printing of set [sic] of lines or [sic]
circular shifts.

Module 6: Master Control. Similar in
function to the modularization above.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 36

Modularization 2 -9

References 3 and 8 of Parnas’s paper give
formal definitions of Modules 1, 3, and 4 (the
interesting ones!!).

We give Ada module structure to which these
definitions can be attached.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 37

Modularization 2 -10

package LINE_STORAGE is
function char (l,w,c:INTEGER)

return CHARACTER;
procedure setchar (l,w,c:INTEGER;

d:CHARACTER);
function chars (l,w:INTEGER)

return INTEGER;
function words (l:INTEGER)

return INTEGER;
function lines return INTEGER;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 38

Modularization 2 -11

...
-- error handling exceptions

end LINE_STORAGE;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 39

Modularization 2 -12

with LINE_STORAGE;
use LINE_STORAGE;
package CIRCULAR_SHIFTS is

procedure cssetup;
function cschar (l,w,c:INTEGER)

return CHARACTER;
function cschars (l,w:INTEGER)

return INTEGER;
function cswords (l:INTEGER)

return INTEGER;
function cslines return INTEGER;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 40

Modularization 2 -13

-- error handling exceptions
end CIRCULAR_SHIFTS;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 41

Modularization 2 -14

with CIRCULAR_SHIFTS;
use CIRCULAR_SHIFTS;
package ALPHABETIZED_CIRCULAR_SHIFTS is

procedure alph;
function ith(i:INTEGER)

return INTEGER;
-- error handling exceptions

end ALPHABETIZED_CIRCULAR_SHIFTS;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 42

Modularization 2 -15

with ALPHABETIZED_CIRCULAR_SHIFTS;
use ALPHABETIZED_CIRCULAR_SHIFTS;
procedure KWIC is

procedure input is separate;
procedure output is separate;

begin
input;
alph;
output;

end KWIC;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 43

Modularization 2 -16

with LINE_STORAGE; use LINE_STORAGE;
separate(KWIC);
procedure input is

l,w,c:INTEGER;
d:CHARACTER;

begin
-- read in characters one by one into d, breaking into
-- words and lines, setting the line, word, and
-- character indices, l, w, and c, and doing for each,
setchar(l,w,c,d);

end input;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 44

Modularization 2 -17

with ALPHABETIZED_CIRCULAR_SHIFTS,
CIRCULAR_SHIFTS,TEXT_IO;

use ALPHABETIZED_CIRCULAR_SHIFTS,
CIRCULAR_SHIFTS,TEXT_IO;

separate(KWIC);
procedure output is

l:INTEGER;
begin

for i in 1..cslines() loop
l:=ith(i);

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 45

Modularization 2 -18

for w in 1..cswords(l) loop
for c in 1..cschars(l,w) loop

-- in the proper
-- place for the
-- fancy output do
put(cschar(l,w,c));

end loop;
end loop;

end loop;
end output;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 46

Parnas’s Comparison -1

Parnas says about the two modularizations:

General. Both schemes will work. The first is
quite conventional, and the second has been
used successfully in a class project [each
student programmed a different module and
complete programs were built in all possible
combinations]. Both will reduce the
programming to the relatively independent
programming of a number of small,
manageable, programs.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 47

Parnas’s Comparison -2

Note first that the two decompositions may
share all data representations and access
methods. Our discussion is about two
different ways of cutting up what may be the
same object. A system built according to
decomposition 1 could conceivably be
identical after assembly to one built according
to decomposition 2.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 48

Parnas’s Comparison -3

We now use Ada facilities to cause the code of
the two modularizations to be (almost)
identical

I now provide package bodies for the
packages of the Ada rendition of
Modularization 2 using code from the Ada
rendition of Modularization 1!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 49

Parnas’s Comparison -4

package body LINE_STORAGE is
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
large_no: constant INTEGER:=MAX_INT;

the_words:STRING(1..large_no);
line_index:INDEX_TABLE(1..large_no);

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 50

Parnas’s Comparison -5

function char (l,w,c:INTEGER)
return CHARACTER is ...

procedure setchar (l,w,c:INTEGER;
d:CHARACTER) is ...

function chars (l,w:INTEGER)
return INTEGER is ...

function words (l:INTEGER)
return INTEGER is ...

function lines return INTEGER is ...
...

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 51

Parnas’s Comparison -6

☛ pragma IN_LINE(char,setchar);
-- error handling exceptions

end LINE_STORAGE;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 52

Parnas’s Comparison -7

package body CIRCULAR_SHIFTS is
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
large_no: constant INTEGER:=MAX_INT;

cs_line_index:INDEX_TABLE(1..large_no);

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 53

Parnas’s Comparison -8

procedure cssetup is ...
function cschar (l,w,c:INTEGER)

return CHARACTER is ...
function cschars (l,w:INTEGER)

return INTEGER is ...
function cswords (l:INTEGER)

return INTEGER is ...
function cslines return INTEGER is ...

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 54

Parnas’s Comparison -9

☛ pragma IN_LINE(cssetup,cschar);
-- error handling exceptions

end CIRCULAR_SHIFTS;

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 55

Parnas’s Comparison -10

package body ALPHABETIZED_CIRCULAR_SHIFTS is
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
large_no: constant INTEGER:=MAX_INT;

alphed_cs_line_index:INDEX_TABLE(1..large_no);

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 56

Parnas’s Comparison -11

procedure alph is ...
function ith(i:INTEGER)

return INTEGER is ...
☛ pragma IN_LINE(ith);

-- error handling exceptions

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 57

Parnas’s Comparison -12

The procedures that were left out-of-line are
those that were deemed likely to be out-of-line
in Modularization 1.

In the resulting object code, all the data
structures end up in the same block, just as in
Modularization 1.

However, each data structure is visible only to
the procedures of the module from which it
came!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 58

Parnas’s Comparison -13

Parnas says:

The differences between the two alternatives
are in the way they are divided into work
assignments, and the interfaces between
modules. The algorithms used in both cases
might be identical. The systems are
substantially different even if identical in the
runnable representation.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 59

Parnas’s Comparison -14

This is possible because the runnable
representation need only be used for running;
other representations are used for changing,
documenting, understanding, etc. The two
systems will not be identical in those other
representations.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 60

Parnas’s Comparison -15

changeability. There are a number of design
[i.e., implementation] decisions which are
questionable and likely to change under many
circumstances. This is a partial list

1. Input format.
2. The decision to have all lines stored in

core. For large jobs it may prove
inconvenient or impractical to keep all of
the lines in core at any one time.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 61

Parnas’s Comparison -16

3. The decision to pack the characters four to
a word. In cases where we are working
with small amounts of data it may prove
undesirable to pack the characters; time
will be saved by a character per word
layout. In other cases, we may pack, but in
different formats.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 62

Parnas’s Comparison -17

4. The decision to make an index for the
circular shifts rather that [sic] store them
as such. Again, for a small index or a large
core, writing them out may be the
preferable approach. Alternatively, we may
choose to prepare nothing during
CSSETUP. All computations could be done
during the calls on the other functions
such as CSCHAR.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 63

Parnas’s Comparison -18

I add to this:

CSSETUP is provided specifically to allow
many implementations.

g if the implementation needs some set
up, then CSSETUP is non-empty

g If the implementation needs no set up,
then CSSETUP is empty; if in addition,
CSSETUP is inline, then it costs
nothing!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 64

Parnas’s Comparison -19

Getting back to Parnas’s comments:

5. The decision to alphabetize the list once,
rather than either (a) search for each item
when needed, or (b) partially alphabetize as
is done in Hoare’s FIND.... In a number of
circumstances it would be advantageous to
distribute the computation involved in
alphabetization over the time required to
produce the index.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 65

Parnas’s Comparison -20

Let us now examine each change and see
which modules in each modularization need to
be modified to effect the change.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 66

Parnas’s Comparison -21
Change Modularization

1 2ii
Input Input Inputiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Lines all Lines
in coreiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Packing all Linesiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Store CSs CS Alph CS

Outputiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Alph on Alph Alph
the fly Output

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 67

Parnas’s Comparison -22

In Modularization 1, most changes affected all
modules!

In Modularization 2, each change affected only
one module!

Fantastic!!!!!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 68

Kinds of Changes -1

Note though, that we have been talking about
implementation changes only.

Functionality changes are an entirely different
kind of animal.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 69

Kinds of Changes -2

For functionality changes, we must expect to
have new modules and new procedures added
to existing modules.

However, my experience is that a good
modularization, that hides implementation
changes, shields very well against many
functionality changes.

Such changes go much easier with a good
decomposition than without.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 70

How to Decompose Well -1

We consider several methods to decompose
systems into modules whose internals are
easily modified independently.

All of these methods yield nearly the same
decomposition.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 71

How to Decompose Well -2

The methods are

g Parnas’s method
g Nouns as module names
g Myers’s criteria
g Britton & Parnas’s ideas
g Booch’s ideas
g other ideas

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 72

Parnas’s Method

Come up with a first cut decomposition.

Get a list of as many changes as you can think
of; ... blue sky!

If the effect of each change is isolated to one
module, you have a good decomposition.

If not, go back to the drawing board.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 73

Nouns as Module Names

In my experience, the general nouns of the
problem statement make good ADTs and
these ADTs make good modules.

In fact, Abbott, Booch, and Berzins & Luqi
suggest starting with an informal strategy and
its identified nouns.

This method was suggested in the earlier
lecture titled “Survey of Methods and
Notations” as a way to get a domain model!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 74

Myers’s Criteria -1

Myers talks about cohesion and coupling.

Cohesion is the degree to which a module is
doing one and only one thing.

Coupling is the degree to which two modules
communicate.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 75

Myers’s Criteria -2

We want

high cohesion

and

low coupling.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 76

Myers’s Criteria -3

Cohesion:

The procedures

print page footer
goto next page
print page header

are each more cohesive than the procedure

print page footer and the next page header

which does the work of all three in that order.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 77

Myers’s Criteria -4

A single procedure or function is more
cohesive as a module than an abstract data
type.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 78

Myers’s Criteria -5

Coupling:

g no communication at all is less coupling
than parameter passing

g parameter passing is less coupling than
common usage of global variables

g communicating with individual items is
less coupling than communicating with
data structures

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 79

Myers’s Criteria -6

So why are ADTs good modules despite the
fact that an ADT is less cohesive than its
individual operations?

An ADT groups together into one module all
routines that must share access to a
collection of data structures, so that nothing
outside of the module needs to see these data
structures.

And ...

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 80

Myers’s Criteria -7

An ADT causes outsiders to see these data
structures as single indivisible items rather
than as their implementing data structures.

An ADT forces outsiders to pass these data
items as parameters to the operations instead
of being able to directly access the
components of these items as shared global
data structures.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 81

Myers’s Criteria -8

That is, we suffer a slight reduction in
cohesiveness to obtain big reduction in
coupling.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 82

Low

Low

Very High

Very High Coupling
Hidden Inside Module

Coupling

Coupling

Coupling

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 83

Myers’s Criteria -9

There is another way to explain this; put all
data structures and procedures that have to
be modified together, and no more, into the
same module.

Thus, the data structures that implement a
pushdown stack and the operation bodies that
operate on these structures should be in the
same module.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 84

Myers’s Criteria -10

However, ...

For sure, do not put into this module the
functions that implement a stack-oriented,
postfix-polish operator pocket calculator.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 85

Myers’s Criteria -11

Possibly, do not put into this module
procedures such as

procedure ptop(s:in out INTSTACKVAL;
t: out INTEGER) is

begin
t:=top(s);
pop(s);

end;

which can be defined using exported
operations.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 86

Myers’s Criteria -12

Why only possibly?

It may be useful to insist that ptop be
implemented by direct access to the data
structure.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 87

Myers’s Criteria -13

In fact, this is why we trade a slight reduction
in cohesion for a big reduction in coupling.

Yes, the individual operations of the stack
package are more cohesive than the package,
but if you have to change one of those
operation bodies you probably have to change
all of them. So why not lump them all
together?

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 88

Britton & Parnas’s Ideas -1

Britton and Parnas say:

The overall goal of the decomposition into
modules is the reduction of software cost by
allowing modules to be designed,
[implemented], and revised independently....

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 89

Britton & Parnas’s Ideas -2

Each module’s structure should be simple
enough that it can be understood fully; it
should be possible to change the
implementation of [a module] without
knowledge of the implementation of other
modules and without affecting the behavior of
other modules; [and] the ease of making a
change in the design should bear a reasonable
relationship to the likelihood of the change
being needed.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 90

Booch’s Ideas -1

Booch adds to this discussion:

There is a pragmatic edge to these guidelines.
In practice, the cost of recompiling the body of
a module is relatively small; only that unit
need be recompiled and application relinked.
However the cost of recompiling the interface
of a module is relatively high.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 91

Booch’s Ideas -2

Especially with strongly typed languages, one
must recompile the module interface, its body,
all other modules that depend upon this
interface, the modules that depend on these
modules, and so on.

[emphasis is mine]

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 92

Booch’s Ideas -3

Thus, it is important to get the abstraction
defined right.

The closer the abstraction’s interface is to real
life, the less likely it is to change.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 93

Other Ideas -1

Still another criterion:

Build modules to make reuse convenient.

This causes ADTs to be designed to be
logically complete. For example, if in one
application using a stack, you never need to
clear the stack to empty or ask if the stack is
empty, you put these operations in anyway.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 94

Other Ideas -2

Doing so

g increases chances of reuse in other
applications of stacks

g reduces chances that interface will have to
be changed later; after all, the interface is
exactly the abstraction; if the abstraction is
logically complete, so is the interface.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 95

Other Ideas -3

How can you tell if the abstraction is
complete?

One thing for sure, if you need an operation o
to define another, then o is part of the
abstraction. This accounts for the is_empty
function in a Stack module.

For the others, good ol’ experience is the only
way to tell.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 96

Why this Topic? -1

One point came up in discussion with one of
you after hours:

We are admonished to avoid making design
decisions while writing requirements
documents.

We are admonished against doing design
during requirements analysis.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 97

Why this Topic? -2

Parnas’s method for decomposing modules is
clearly intended as a method for decomposing
design.

However, it is a method for doing design while
delaying implementation decisions.

Anything that is hidden can be changed and
thus the issue for which it is a decision is
effectively delayed!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 98

Why this Topic? -3

But given that this is a design technique, why
do I claim that Parnas’s decomposition is a
suitable basis for building requirement
domain models?

In giving a domain model, we are trying to
avoid pinning down the implementation, to
avoid constraining the implementor beyond
what is required to meet requirements.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 99

Why this Topic? -4

However, the purpose of Parnas’s method is
precisely to allow any implementation.

We have proved for the KWIC example that the
modularization allows implementations whose
structure bears no resemblence to that of the
modules.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 100

Why this Topic? -5

I claim that any Parnas decomposition does
not constrain implementations beyond what is
necessary to meet requirements.

Moreover it turns out (and we can usually
force it to be!) that if the elements of the
decomposition correspond to elements of the
problem description, then the decomposition
makes a good domain model.

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 101

Why this Topic? -6

That’s why I teach Parnas’s method in a
requirements engineering course!

 1996 Daniel M. Berry Software Enginering Information Hiding Pg. 102

