
Presented by:
Prithwish Jana
PhD Student,
David R. Cheriton School of Computer Science

: prithwish.jana@uwaterloo.ca

July 13, 2023

CS 846: ATRE by Prof. Daniel Berry

REQUIREMENTS ENGINEERING FOR
ML-BASED SOURCE CODE TRANSLATION

mailto:prithwish.jana@uwaterloo.ca

THE PROBLEM STATEMENT

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 2

THE TASK: JAVA↔PYTHON CODE TRANSLATION

§ Let 𝑺 = source language (e.g., Java) and 𝑻 = target language (e.g., Python)
§ Code Translation Learning Problem

§ To learn a language translator 𝑓𝑺𝑻: 𝑺 → 𝑻, which when provided with a 𝑺-program produces
a 𝑻-program, that is runtime (input-output) equivalent to the former.

§ In this work, focussing on translation between Java & Python

import java.io.*;
public class Main
{

static int unitDigitXRaisedY(int x, int y)
{

int res = 1;
for (int i = 0; i < y; i++) res = (res * x) % 10;
return res;

}
public static void main(String args[])
{

System.out.println(unitDigitXRaisedY(4, 2));
}

}

def unitDigitXRaisedY(x, y):
res = 1
for i in range(y):

res = (res * x) % 10
return res

if __name__ == '__main__':
print (unitDigitXRaisedY(4 ,2))

A Java program

An “equivalent” program in Python

Translation of
a code from

one high-level
language to

another

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 3

MOTIVATION: SIGNIFICANCE OF AUTOMATED CODE TRANSLATION
§ Automatic translation of code from one high-level language to another

§ An important software engineering research area
§ Large legacy codebase getting transformed to a modern language e.g., COBOL to Python

§ Applications in code migration[1] and cross-platform interoperability[2]

If not automated, this will
require domain experts in

both the languages.
And lots of time!

[1] B. G. Mateus, M. Martinez, and C. Kolski, “Learning Migration Models for Supporting Incremental Language Migrations of Software Applications,” Information and Software
Technology, vol. 153, 2023.

[2] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, M. Luján, and H. Mössenböck, “Cross-language Interoperability in a Multi-language Runtime,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 40, no. 2, pp. 1–43, 2018

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 4

CHALLENGES IN JAVA↔PYTHON TRANSLATION
§ Java is a statically-typed language

§ For statically-typed language, type of variables known at compile-time
§ All kinds of checking can be done by compiler à a lot of trivial bugs caught at an early stage

§ Python is dynamically-typed language
§ Interpreted language; Type is associated with run-time values, not named variables

§ Java and Python belong to same programming paradigm i.e., OOP
§ But huge differences in syntax and programming style

JavaScript & Java have C-like syntax
//JavaScript
class Rectangle {

#height, #width;
constructor(height, width) {

this.#height = height;
this.#width = width;
console.log(“Created”);

}
}

#Python
class Rectangle(object):

def __init__(self, height, width):
self.__width = width
self.__height = height
print(“Created”)

//Java
class Rectangle {

private int height, width;
public Rectangle (int height, int width) {

this.height = height;
this.width = width;
System.out.println(“Created”);

}
}

Python has a different syntax (e.g., tabs for nesting)

Easier to translate Difficult to translate

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 5

THE EARLIER APPROACHES

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 6

EARLY RULE-BASED TRANSPILERS
§ Source-to-source translator / Transcompiler / Transpiler [3][4][5]

§ Rule-based & handcrafted à thus, quite expensive to build
§ Uses traditional concepts such as parsing and abstract syntax trees
§ Vary by the intricacies and difficulty level of constructs that it can handle
§ Long list of equivalences between the two languages à translation requirements

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 7

[3] T. Melhase et al., “java2python: Simple but Effective Tool to Translate Java Source Code into Python.” https://github.com/natural/java2python.
[4] “py2java: Python to Java Language Translator.” https://pypi.org/project/py2java/
[5] T. S. Solutions, “The Most Accurate and Reliable Source Code Converters.” https://www.tangiblesoftwaresolutions.com/.

…

EARLY RULE-BASED TRANSPILERS (CONTD…)
§ Source-to-source translator / Transcompiler / Transpiler

§ Handcrafting exhaustive set of rules à too tedious, too many requirements to satisfy
§ There’s no guarantee that translating piece-by-piece will generate

something ‘meaningful’
§ ‘meaningful’ à a piece of code that works

Many such tools come with a disclaimer
stating limitations:

“…translated codes should not be
expected to compile and run readily.” [4]

Oops! This’ll
not work!!

So, certain
requirements

are necessary to
be chalked out

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 8

[4] “py2java: Python to Java Language Translator.” https://pypi.org/project/py2java/

THE PROPOSED METHOD
FROM A REQUIREMENTS ENGINEERING PERSPECTIVE

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 9

PROGRAM TRANSLATION: TOP-LEVEL BASIC REQUIREMENTS

Two top-level requirements:
1. The target-language code should be syntactically correct

(We just need a T-compiler, and the code should compile)
1. The target-language code should be runtime (input-output)

equivalent to the source-language code
(Given the same set of console inputs or no input, the outputs are the same)

A Java code
An “equivalent” code in Python

import java.io.*;
public class Main
{

static int unitDigitXRaisedY(int x, int y)
{

int res = 1;
for (int i = 0; i < y; i++) res = (res * x) % 10;
return res;

}
public static void main(String args[])
{

System.out.println(unitDigitXRaisedY(4, 2));
}

}

def unitDigitXRaisedY(x, y):
res = 1
for i in range(y):

res = (res * x) % 10
return res

print (unitDigitXRaisedY(4 ,2))

1 2
1

2

Easy to chalk out
requirements J

Difficult L

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 10

def unitDigitXRaisedY(x, y):
res = 1
for i in range(y):

res = (res * x) % 10
return res

if __name__ == '__main__':
print (unitDigitXRaisedY(4 ,2))

PROGRAM TRANSLATION: IMPLEMENTATION REQUIREMENTS

.

Encoder stack Decoder stack

Encoder-Decoder Transformer Architecture

Good Morning, Have a Good Day Bonjour, Passe une bonne journée

§ Recently, Large Language Models (LLMs)[6] revolutionized Natural Language translation

LLM
(Java à Python)

Output Python code (!"!"#$)Input Java code (#!"#$)

§ Here, we train LLMs for Programming Language translation
§ Basically, the LLM will serve as the translator function 𝑓𝑺𝑻: 𝑺 → 𝑻

Input Java code (𝒔) Output Python code (#𝒕)
import math
if __name__ == '__main__':

n = 12
print (math.sqrt(n))

import java.io.*;
public class Main {

public static void main(String[] args) {
double n = 12;
System.out.println(Math.sqrt(n));
}

}

Contextualized
word representation

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 11

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

REQUIREMENTS FOR TRAIN-CORPUS

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 12

TRAIN-CORPUS (C) REQUIREMENTS

§ Like any supervised learning set-up, we need data!
§ Pairs of equivalent Java & Python codes, mined from various competitive coding websites

Java Code Equivalent Python Code
public class Improve { static int calculateSquareSum (int
n) { if (n <= 0) return 0 ; int fibo [] = new int ...

def calculateSquareSum (n) : NEW_LINE INDENT fibo = [0
] * (n + 1) NEW_LINE if (n <= 0) : NEW_LINE ...

import java . util . * ; public class GFG { static int val
(char c) { if (c >= '0' && c <= '9') return (int)...

def val (c) : NEW_LINE INDENT if (c >= '0' and c <= '9'
) : NEW_LINE INDENT return int (c) NEW_LINE DEDENT ...

.

Data Sources:

§ There should be at least 30,000 pairs of Java & Python codes (higher the better)
§ That’s the standard to train a transformer-based LLM architecture

§ For all pairs, both the Java & Python codes should be syntactically correct
§ For all pairs, both the Java & Python codes should be runtime (input-output) equivalent

§ Can be verified from the set of stringent test-cases in the corresponding data source
§ For all pairs, the Java & Python codes should not be too long i.e., at most 512 tokens

§ LLMs accept and produce tokenized sequences (each word ≡ 1 or more token IDs), which have an upper-limit for length

C.R1

C.R2

C.R3

C.R4

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 13

TRAIN-CORPUS (C) REQUIREMENTS (CONTD…)
Java Code Equivalent Python Code

public class Improve { static int calculateSquareSum (int
n) { if (n <= 0) return 0 ; int fibo [] = new int ...

def calculateSquareSum (n) : NEW_LINE INDENT fibo = [0
] * (n + 1) NEW_LINE if (n <= 0) : NEW_LINE ...

import java . util . * ; public class GFG { static int val
(char c) { if (c >= '0' && c <= '9') return (int)...

def val (c) : NEW_LINE INDENT if (c >= '0' and c <= '9'
) : NEW_LINE INDENT return int (c) NEW_LINE DEDENT ...

.

Data Sources:

§ For each source-language feature, that we want the trained LLM to learn to translate,
the number of examples (pairs) in the dataset should count to at least 1% of total corpus

C.R5

E.g.,

. . .

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 14

This ensures the training
corpus is representative
enough of the real-world

COMPILATION REQUIREMENTS
FOR THE LEARNED

LARGE LANGUAGE MODEL (LLM)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 15

LEARNED LLM (L) REQUIREMENT: COMPILATION

LLM
(Java à Python)

Output Python code (!")

Compiler

Compiler Feedback (CF)

Input Java code (#)

.......
Locate first compilation error

§ The output target-language code (&𝒕) should pass error-free by T-compiler
§ For Java as T, we use javac compiler
§ For Python as T, we use the pylint[7] static code analyzer (as Python is an interpreted language)

TOP-LEVEL REQUIREMENT I:
The translated target-language (T) code should be syntactically correct

L.R1

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 16

[7] “pylint: Python code Static Checker.” https://pypi.org/project/pylint/

RUNTIME EQUIVALENCE REQUIREMENTS
FOR THE LEARNED

LARGE LANGUAGE MODEL (LLM)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 17

HOW TO CHECK RUNTIME EQUIVALENCE?

§ Manually writing an exhaustive suite of test-cases
§ Too tedious, chances of missing essential test cases

§ Boundary-value analysis
§ Tests at boundaries between partitions of input values à low test coverages

§ Fuzzing / Fuzz-Testing
§ Injects random invalid inputs into a system à rely on pure luck to find bugs

TOP-LEVEL REQUIREMENT II:
Target-language (T) code should be runtime (IO) equivalent to source-language (S) code

Three major ways to check equivalence:

• Instead, perform automated unit-testing of individual functions
• There is Symflower for Java, but no such popular tool for Python

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 18

HOW TO CHECK RUNTIME EQUIVALENCE? EXHAUSTIVE UNIT-TESTING

§ Solver-based analysis through Symflower
§ Automated tool to generate JUnit tests for each function in a code
§ Support for Java only, not Python
§ Symbolic execution computes necessary inputs for a function

to execute all relevant paths (exhaustive) in its control-flow graph
§ Generates J-Unit tests for all functions in a Java code

public class Main
{

static int minLettersNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minLettersNeeded(n));

}
}

A Java code J-Unit tests for a function

@Test
assertEquals(Main.minLettersNeeded(0), 0)

@Test
assertEquals(Main.minLettersNeeded(1), 2)

TOP-LEVEL REQUIREMENT II:
Target-language (T) code should be runtime (IO) equivalent to source-language (S) code

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 19

ENSURING RUNTIME EQUIVALENCE: EXHAUSTIVE UNIT-TESTING

LLM
(Java à Python)

LLM
(Python à Java)

Input Java code (!)
Intermediate Python code ("#)

def minNeeded(n):
if n % 26 == 0:

return (n // 26)
else:

return ((n // 26) + 1)
n = 52
print (minNeeded(n))

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

Output Java code (!#)

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

§ As we said, solver-based analysis through Symflower: applicable only for Java
§ So, employ two back-to-back LLMs: Java à Python and Python à Java

Test equivalence through unit-testing between
Input Java code & Output Java code

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 20

LLM
(Java à Python)

LLM
(Python à Java)

Input Java code (!)
Intermediate Python code ("#)

def minNeeded(n):
if n % 26 == 0:

return (n // 26)
else:

return ((n // 26) + 1)
n = 52
print (minNeeded(n))

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

Output Java code (!#)

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

Solver-based
analysis by
Symflower

Check pass/fail?

@Test
assertEquals(Main.minNeeded(0), 0)

@Test
assertEquals(Main.minNeeded(1), 2)

LEARNED LLM (L) REQUIREMENT: RUNTIME EQUIVALENCE
1. For each method 𝒑 of input Java code (𝒔), Symflower

generates J-Unit tests {𝑢𝒑}

2. All {𝑢𝒑} should pass, on the method 𝒑 of output Java code (&𝒔)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 21

• Even though input & output Java codes
equivalent, this requirement will fail
• Need to relax the requirement

What if, method name is “minNeeded” in input Java code & “minNeed” in output Java code?

L.R2

L.R3

L.R2

L.R3

1. For each method 𝒑 of input Java code (𝒔), Symflower generates J-Unit tests {𝑢𝒑}

2. All {𝑢𝒑} should pass, on method 𝒑∗ of output Java code ((𝒔), where 𝒑∗ = argmax𝒑∗∈ $𝒔 JaccardSimilarity(𝒑, 𝒑∗)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 22

1

2

Another issue: What if the methods 𝒑, 𝒑∗ do not return anything? They just print something on console

LLM
(Java à Python)

LLM
(Python à Java)

Input Java code (!)
Intermediate Python code ("#)

def minNeeded(n):
if n % 26 == 0:

return (n // 26)
else:

return ((n // 26) + 1)
n = 52
print (minNeeded(n))

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

Output Java code (!#)

public class Main
{

static int minNeeded(int n)
{

if (n % 26 == 0) return (n / 26);
else return ((n / 26) + 1);

}
public static void main(String args[])
{

int n = 52;
System.out.println(minNeeded(n));

}
}

Solver-based
analysis by
Symflower

Check pass/fail?

@Test
assertEquals(Main.minNeeded(0), 0)

@Test
assertEquals(Main.minNeeded(1), 2)

LEARNED LLM (L) REQUIREMENT: RUNTIME EQUIVALENCE (RELAXING L.R3)

L.R2

L.R3

L.R2

L.R3

LEARNED LLM (L) REQUIREMENT: RUNTIME EQUIVALENCE (CONSOLE OUTPUTS)

1. For each method 𝒑 of input Java code (𝒔), Symflower generates J-Unit tests {𝑢𝒑}

2. All {𝑢𝒑} should pass, on method 𝒑∗ of output Java code ((𝒔), where 𝒑∗ = argmax𝒑∗∈&𝒔 JaccardSimilarity(𝒑, 𝒑∗)

3. Let 𝒑𝒐𝒖𝒕 and 𝒑𝒐𝒖𝒕∗ be the respective console outputs à 𝑓'()*+,-(𝒑𝒐𝒖𝒕, 𝒑𝒐𝒖𝒕∗) should be True
Here, 𝑓'()*+,- is a string-matching function that is:

§ case-insensitive à 𝑓'()*+,-(“CS846-ATRE”, “cs846-atre”) = True

§ ignores whitespaces à 𝑓'()*+,-(“good morning”, “goodmorning”) = True

§ disregards punctuations (only when they are not a major portion of the output) à 𝑓'()*+,-(“Hi! Bro.”, “Hi Bro”) = True

§ takes numeric or floating-point values to a common representation à 𝑓'()*+,-(“3.1415”, “3.1”) = True

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 23

These are because: to evaluate
code equivalence, we do not need
a strict string-matching function

L.R2

L.R3

L.R4

L.R2 L.R3

HOW TO TRAIN THE LLM TO FOLLOW SUCH REQUIREMENTS?
§ During training

with cross-entropy
loss, provide
feedbacks to the
LLM: whether
requirements
satisfied or not?

§ Compiler
Feedback (CF)
increases
compilation rate of
output code

§ Symbolic
Execution
Feedback (SF)
increases the
runtime
equivalence rate of
output code

LLM
(Java à Python)

Output Python code (!")

Compiler

Compiler Feedback (CF)

Input Java code (#)

.......
Locate first compilation error

LLM
(Java à Python)

LLM
(Python à Java)

Solver-based
analysis by
Symflower

Check pass/fail?

Symbolic Execution
Feedback (SF)

Input Java code (!) Intermediate Python code ("#) Output Java code (!#)

@Test
assertEquals(Main.power(0), 1)

@Test
assertEquals(Main.power(1), 4)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 24

HOW TO KNOW THAT THE LLM IS
TRAINED WELL-ENOUGH?

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 25

EVALUATION METRICS

§ Qualitatively: Have to
make sure that our LLM
should perform well in
Turing Test

§ To evaluate quantitatively
whether it satisfies the basic
requirements, we need some
metrics

Machine-translated
Python code (#𝒕)

Input Java code
(𝒔)

Gold-standard
Python translation

(𝒕)

Input Java code
(𝒔)

𝒔
#𝒕 𝒕

Code-Translation Turing Test

HumanMachine

3. Machine / AI and Human
returns Python codes #𝒕 and 𝒕

resp.

4. If Tester finds both
translations to be equally

‘good enough’, the machine
is successful in fooling the

Tester

1. Tester unaware about who
is behind which window

2. Tester submits Input Java
code 𝒔 through the windows

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 26

TRADITIONAL EVALUATION METRICS

§ ExactMatch
§ a Boolean score based on perfect match

§ BLEU à Bilingual Evaluation Understudy
§ computes ‘closeness’ with gold-standard translation

through n-gram overlaps; penalizes short predictions

§ CodeBLEU à BLEU, extended for codes
§ checks closeness + syntactic & semantic features
§ Mean of BLEU, weighted n-gram match (WM),

syntactic AST match (SM) &
semantic Data-flow match (DM)

PAGE 27

EM(𝒕𝒄𝒐𝒅𝒆, +𝒕𝒄𝒐𝒅𝒆) = ,1, if 𝒕𝒄𝒐𝒅𝒆 = +𝒕𝒄𝒐𝒅𝒆
0, otherwise

BLEU(𝒕𝒄𝒐𝒅𝒆, +𝒕𝒄𝒐𝒅𝒆) = BrevityPenalty + GeometricAvgPrecision.

= min 1 −
𝒕𝒄𝒐𝒅𝒆
+𝒕𝒄𝒐𝒅𝒆

, 0 +
𝑝2 + 𝑝3 + 𝑝4 + 𝑝5

4

=
5
8

(1-gram precision)𝑝"

=
4
7

(2-gram precision)𝑝#

How to make sure
that +𝒕𝒄𝒐𝒅𝒆 is

‘good enough’?

𝐂𝐨𝐝𝐞BLEU(𝒕𝒄𝒐𝒅𝒆, +𝒕𝒄𝒐𝒅𝒆) =
𝐁𝐋𝐄𝐔 +𝐖𝐌+ 𝐒𝐌+ 𝐃𝐌

4
WM: BLEU, where keywords (for, int, public, etc.) have higher weights
SM: %age of sub-tree matches in Abstract Syntax Tree of 𝒕𝒄𝒐𝒅𝒆 and %𝒕𝒄𝒐𝒅𝒆
DM: %age of sub-graph matches in Data Flow Graph of 𝒕𝒄𝒐𝒅𝒆 and %𝒕𝒄𝒐𝒅𝒆

Gold-standard
Python translation

(!)
Input Java code

(")
Machine-translated

Python code ("#)
Input Java code

($)

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA

TRADITIONAL EVALUATION METRICS: NOT SUITABLE FOR OUR REQUIREMENTS

§ ExactMatch
§ Doesn’t make much sense for Code Translation. Too strict, there can be multiple correct translations
§ Low ExactMatch(𝒕𝒄𝒐𝒅𝒆, %𝒕𝒄𝒐𝒅𝒆) score ⇏ %𝒕𝒄𝒐𝒅𝒆 doesn’t satisfy basic requirements
§ E.g. %𝒕𝒄𝒐𝒅𝒆 = print(”Hello” + ”!”) satisfies requirements of 𝒕𝒄𝒐𝒅𝒆 = print(”Hello!”). Still, ExactMatch(𝒕𝒄𝒐𝒅𝒆, %𝒕𝒄𝒐𝒅𝒆) = 0

§ BLEU
§ More relevant for Natural Language translation (e.g. English to French)
§ Computes ‘closeness’ of %𝒕𝒄𝒐𝒅𝒆 and 𝒕𝒄𝒐𝒅𝒆. High BLEU(𝒕𝒄𝒐𝒅𝒆, %𝒕𝒄𝒐𝒅𝒆) score ⇏ %𝒕𝒄𝒐𝒅𝒆 compiles
§ E.g. 𝒕𝒄𝒐𝒅𝒆 = print(”Hello!”) compiles but, %𝒕𝒄𝒐𝒅𝒆 = print(Hello!”) doesn’t. Still, BLEU(𝒕𝒄𝒐𝒅𝒆, %𝒕𝒄𝒐𝒅𝒆) ≅ 100%

§ CodeBLEU
§ Computes ‘closeness’ of %𝒕𝒄𝒐𝒅𝒆 and 𝒕𝒄𝒐𝒅𝒆, giving priority to Abstract Syntax Tree match & Data-Flow Graph match
§ Like BLEU, %𝒕𝒄𝒐𝒅𝒆 may not compile even though high AST or Data-Flow match

Gold-standard
Python translation

(!)
Input Java code

(")
Machine-translated

Python code ("#)
Input Java code

($)

Our basic requirements were:
1. +𝒕 should compile
2. +𝒕 should be runtime (IO)

equivalent to 𝒔

Traditional metrics (ExactMatch,
BLEU, CodeBLEU) can’t verify whether

basic requirements are satisfied!

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 28

PROPOSED METRICS TO VALIDATE COMPILATION REQUIREMENTS

§ Create a representative test-suite {𝒔} of Java codes, that solve range of algorithmic problems

§ Compilation Accuracy (CompAcc)
§ %age of predicted translations that compiles correctly i.e., CompAcc { %𝒕 } =

%𝒕𝒊:(𝒕𝒊)*+,-./0 12 3)*+,-./4
𝒔

§ Average First Error Position (errPos1st)
§ Fine-grained version of CompAcc, relating to closeness of translations from a perfect compilation

§ errPos1st { %𝒕 } =
∑"#$

𝒔 errPos1st (𝒕𝒊
𝒔

,where errPos1st -𝒕𝒊 = .100 ×
,*0-8-*9 *: ;-408 8*</9 -9=𝐭𝐢 4/0,*90-1./ :*4 ?)*+,-.?8-*9 /44*4

=𝐭𝐢 @A
, if -𝐭𝐢 doesnCt compile

100 , otherwise

#𝒕𝟏𝒔𝟏
A Test-suite of

Java codes
{𝒔}

…
Corresponding set of

Python codes { 4𝒕 }

#𝒕𝟐
#𝒕𝒏
…

LLM
(Java à Python)

𝒔𝒏

𝒔𝟐

Idea: The later it is, better
the translation

.......
Locate first compilation error

.......

.......
Perfect compile

Compilation error

✓
✘

Test-suite of input
Java codes {𝒔}

Our compilation requirement:
• +𝒕 should compile

100

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 29

PROPOSED METRICS TO VALIDATE RUNTIME-EQUIVALENCE REQUIREMENTS

§ It is difficult to check IO-equivalence between 𝐬 and &𝒕 without manually-created test-cases
§ As an alternative, we approximate RunEqAcc 𝐬 , +𝒕 using RunEqAcc 𝐬 , +𝒔

§ Runtime-Equivalence Accuracy (RunEqAcc)
§ Number of J-Unit tests (𝒥𝒔𝒊) on input Java code 𝐬𝐢 that are successful on output Java S𝒔𝒊, averaged over whole test-suite

§ RunEqAcc 𝐬 , #𝒔 =
∑DEF

𝒔 RunEqAcc 𝒔𝒊, *𝒔𝒊
𝒔

§ 𝜀 ≈ 0+, used to avoid zero-division error

#𝒕𝟏𝒔𝟏

A Test-suite of
Java codes

{𝒔}

…
Corresponding set of

Python codes { 4𝒕 }

#𝒕𝒏
…

LLM
(Java à Python)

𝒔𝒏

𝒔𝟐

Test-suite of input
Java codes {𝒔}

#𝒔𝟏

Output Java codes { 4𝒔 }

#𝒔𝟐

#𝒔𝒏
…

LLM
(Python à Java)

#𝒕𝟐

,where RunEqAcc 𝒔𝒊, /𝒔𝒊 =
- + ∑G∈𝒥𝒔𝒊

1G((𝒔𝒊)≡MNOOPMM
- + 𝒥𝒔𝒊

× 100

Our runtime-equiv. requirement:
• +𝒕 should be runtime (IO)

equivalent to 𝒔

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 30

COMPUTING METRICS TOLERANCE : LESS THAN PERFECT DEFINITION OF "PERFECT"

Abbreviations
SM: Syntactic Match
DM: Data-flow Match
EM: Exact Match
CompAcc: Compiler
Accuracy
RunEqAcc: Runtime
Equivalence Accuracy
errPos1st: Average First
Error Position

Python à Java

Java à Python

Proposed metrics based on
the requirements

46.24

57.84

50.34

50.46

42.18

55.06

46.06

39.57

2.52

1.00

96.44 6.8

2.0

2.0

54.26

1.61Java
à Py

Py à
Java

CompAcc 95% 75%

RunEqAcc 47.5% 37.5%

errPos1st 70% 60%

Tolerance p-values
for our proposed method

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 31

[3]
[5]

[4]

[8]

[8]

[9]

[9]

[10]

[10]

[10]

[10]

[11]

[11]

[12]
[13]

[13]
[12]

Noteworthy observation: Python à
Java (dynamically- to statically-typed) is

more difficult than Java à Python!

Traditional metrics

CONCLUSION & FUTURE SCOPE
§ This work is focused at requirement engineering for an LLM-based code translation

§ Java ↔ Python translation: two OOP languages, but syntactically very different
§ To produce syntactically-correct & runtime-equivalent translations
§ Proposed new metrics (CompAcc, RunEqAcc, errPos1st) to verify whether LLM satisfies requirements
§ Computed tolerance p-values for the metrics

§ In Future:
§ Add more requirements for algorithmic-level equivalence: compute-time, space-time
§ Unit-testing can’t guarantee equivalence for unhandled exceptions à need more requirements

§ E.g, out of bound, zero division that are not handled by some try-catch logic
§ Identify language features that are not translatable e.g. pointers, multiple inheritance

§ Might need more requirements on what kind of codes can be translated
§ Translate between two languages of different prog. paradigm (e.g. Java for OOP à Racket for Functional)

§ Evaluate if this requires new requirements
§ Not all new requirements may not be achievable by our existing LLM pipeline

§ Might need more explicit teaching for the LLM

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 32

REFERENCES
[1] B. G. Mateus, M. Martinez, and C. Kolski, “Learning Migration Models for Supporting Incremental Language Migrations of Software Applications,” Information and Software Tech.,
vol. 153, 2023.

[2] M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, M. Luján, and H. Mössenböck, “Cross-language Interoperability in a Multi-language Runtime,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 40, no. 2, pp. 1–43, 2018

[3] T. Melhase et al., “java2python: Simple but Effective Tool to Translate Java Source Code into Python.” https://github.com/natural/java2python .

[4] “py2java: Python to Java Language Translator.” https://pypi.org/project/py2java/

[5] T. S. Solutions, “The Most Accurate and Reliable Source Code Converters.” https://www.tangiblesoftwaresolutions.com/ .

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,” Adv. in Neural Info. Processing Systems
(NeurIPS), vol. 30, 2017.

[7] “pylint: Python code Static Checker.” https://pypi.org/project/pylint/

[8] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for Programming and Natural Languages,”
in Findings of the Association for Computational Linguistics: EMNLP 2020, (Online), pp. 1536–1547, Association for Computational Linguistics, Nov. 2020.

[9] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M.
Zhou, “GraphCodeBERT: Pre-training Code Representations with Data Flow,” in 9th International Conference on Learning Representations (ICLR), 2021.

[10] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang, et al., “CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation,” arXiv preprint arXiv:2102.04664, 2021.

[11] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified Pre-training for Program Understanding and Generation,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Online), pp. 2655–2668, Association for Computational Linguistics, June
2021.

[12] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation,” in Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, (Online and Punta Cana, Dominican Republic), pp. 8696–8708, Association for Computational Linguistics,
2021.

[13] B. Roziere, J. Zhang, F. Charton, M. Harman, G. Synnaeve, and G. Lample, “TransCoder-ST: Leveraging Automated Unit Tests for Unsupervised Code Translation,” in International
Conference on Learning Representations (ICLR), 2022.

REQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA PAGE 33

https://github.com/natural/java2python
https://pypi.org/project/py2java/
https://www.tangiblesoftwaresolutions.com/
https://pypi.org/project/pylint/

THANK YOU!

Photo credit: @bruce.digitalREQUIREMENTS ENGINEERING FOR CODE TRANSLATION, Presented by: PRITHWISH JANA

