
Graph Drawing:
From algorithms to
tools to specific use
case
Zhiying Jiang • 08.04.2021

Overview

Introduction
Graph and Graph Drawing
Graph Layout Algorithms

● Trees

● DAG

● General Graph

DAG Visualization Tools
● Software Based

● Web App Based

Use Case - Concept Map
● Requirement Analysis

● Implementation and Evaluation

Introduction

Introduction

History

● Noli turbare circulos meos! (Do
not disturb my circles!)

● Mill or Morris games

● The Middle Ages Family Tree

Introduction

Nowadays

● Social Networks

● Knowledge Graph

● Protein Protein Interaction

● Citation Network

Graph and Graph Drawing

Graph and Graph Drawing

Graph

● graph G=(V,E) is defined as
the pair of vertices V and
edges E, and any edge in E
connects either two
vertices in V

Graph Drawing

● it's defined as mapping d
that satisfies d: G-> d(G),
where d(G) in R^2 (or even
R^3). Specifically, this
mapping d assigns
coordinates to the nodes
and the bends of edges.

Graph and Graph Drawing

Types

Tree DAG Planar Graph General Graph

Graph Layout Algorithms

Graph Layout Algorithms

Tree (Diagram Types)

● Indentation

● Node-Link diagrams

● Enclosure diagrams

● Layered Diagrams

Graph Layout Algorithms

Tree (Knuth’s)

● Do a top-down inorder
traversal of a tree, with the
depth as its y value and the
global counter as its x value.

Principles:

1. No crossed edges.
2. Nodes at the same

level/depth should be placed
on the same horizontal line
(same y value).

Graph Layout Algorithms

Tree (Knuth’s)

● Do a top-down inorder
traversal of a tree, with the
depth as its y value and the
global counter as its x value.

What’s missing?

● Might be:

Graph Layout Algorithms

Tree (Wetherell’s)

● Do a bottom-up algorithm
that keeps track of next slot
on each row and then
traverse the tree in
postorder

Principles:

1. No crossed edges.
2. Nodes at the same

level/depth should be placed
on the same horizontal line
(same y value).

3. Place the whole graph into
minimum width

Graph Layout Algorithms

Tree (Wetherell’s)

● Do a bottom-up algorithm
that keeps track of next slot
on each row and then
traverse the tree in
postorder

What’s missing?

Graph Layout Algorithms

Tree (Reingold-Tilford’s)

● Start with bottom-up pass of the
tree. The initialization of x
coordinate is arbitrary and y
coordinate is by depth; then merge
left and right subtrees by shifting
right and finally do a top-down pass
for assignment of final positions.
global counter as its x value.

Additional Principles:

4. Parent should be
centered above its children

5. Isomorphic subtrees
should be drawn identically

Graph Layout Algorithms

Tree (Reingold-Tilford’s) Additional Principles:

4. Parent should be
centered above its children

5. Isomorphic subtrees
should be drawn identically

Graph Layout Algorithms

Tree (Reingold-Tilford’s) Finally: 👏

Graph Layout Algorithms
Directed Acyclic Graph
(DAG)

● Directed graphs with no cycles

● If and only if can be ordered
topologically, by arranging the
vertices as a linear ordering
that is consistent with all edge
directions

● Comparing to trees, allow
multiple parents

Graph Layout Algorithms
Directed Acyclic Graph
(DAG)

● Directed graphs with no cycles

● If and only if can be ordered
topologically, by arranging the
vertices as a linear ordering
that is consistent with all edge
directions

● Comparing to trees, allow
multiple parents

Graph Layout Algorithms

DAG (Sugiyama’s method) - Principles

● Edges should point in a uniform direction

● Short edges are more readable

● Nodes should be distributed uniformly to avoid clutter

● Edge crossings should be minimized

● Straight edges are more readable

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

● Cycles Removal;

● Calculate layering;

● Crossing Reduction;

● Routing of the edges;

Graph Layout Algorithms

General Graph

● No explicit hierarchy

● Often large scale

The Principle

● Minimizing crossing
edges

Graph Layout Algorithms
General Graph (Force Directed Method)

● Also called “Spring Embedder”

● Assign “force” to pair of nodes

● Treat graph layout optimization

as a “physical system” simulation

problem

● General framework

Graph Layout Algorithms
General Graph (Force Directed Method)

Basic Version:

|Attractive force|:
c1*log(d/c2)

|Repulsive force|:
c3/d^2

Graph Layout Algorithms
Aesthetics

● Visual complexity --- how easy it is to get an overview

● Regularity --- repetitions like if isomorphic graphs look the same

● Symmetry --- geometric symmetry by rotation, reflection and
translation

● Consistence --- if showing similar patterns indicates similar meaning

● Form, size and proportionality --- size and ``node density and sparsity"

● Algorithms' time complexity --- how long does algorithm take to run

DAG Visualization Tools

DAG Visualization Tools
GraphViz

● DOT language

○ Simple & Intuitive

○ Adopted by many other
applications

○ Support any output format like GIF,
PNG, SVG, PDF or PostScript

● Sugiyama’s method for directed graph

DAG Visualization Tools
GraphViz

● CLI

○ dot for directed graph

○ neato for undirected
graph

● Web

○ webdot HTTP server

DAG Visualization Tools
TikZ/PGF

● For TeX

● Basically can draw anything

● All graph layout algorithms require
LuaTeX compiler

○ You can also implement your
own algorithm in Lua

● Intuitive syntax

DAG Visualization Tools

d3dagre

● d3 + dagre

● dagre is a specific “flavor” of Sugiyama’s method

● Take full advantage of d3’s flexibility without writing layout
algorithm

● Steep learning curve

● SVG

DAG Visualization Tools

Cytoscape.js

● Origin from software, aiming at analyzing large scale
bio-medical data

● Specialized for graph, no other charts

● Number of graph analysis functions implemented, like
minimum spanning tree, clustering, etc.

● Have the most graph layout algorithms

● Canvas

DAG Visualization Tools

GoJS

● Model-View architecture to separate data and style

● Limited pre-built layout algorithm

● Mature commercialized data visualization library

● Easy-to-use API

● Canvas

My Use Case - Concept Map

Concept Map

Intro

● Node? - Concept

● Concept? - Subject concepts like “bayes’ rule”, “gradient
descent”

● Edge? - Prerequisite relation

● Scale? - About 500 concepts, 1000 relations

Concept Map

Requirement Analysis

● Cannot fit in one screen - Zoom in/out function required

● Too many nodes to see prerequisite nodes clearly - Highlight
prerequisite nodes and relations required

● Nodes need to display text directly - text wrapper or
auto-fitting to the shape or other style manipulation required

Concept Map
Implementation and Evaluation (Full Graph)

● Layout Complexity

● Styling Flexibility

● Function Flexibility

● How easy to implement

● Speed

Concept Map
Implementation and Evaluation (Full Graph)

Cytoscape

Concept Map
Implementation and Evaluation (Full Graph)

GoJS

Concept Map
Implementation and Evaluation (Full Graph)

d3dagre

Concept Map
Implementation and Evaluation (Full Graph)

● Layout Complexity

○ Cytoscape: Clear hierarchy, messy direct lines but
easier to trace back

○ GoJS: Clean layout, zigzag lines, impossible to trace

○ d3dagre: Too many parallel lines, impossible to trace;
too spacious

Concept Map
Implementation and Evaluation (Full Graph)

● Styling Flexibility

○ Cytoscape: text wrapper available, but rigorous on
padding, which makes text too small

○ GoJS: text wrapper available, easy to configure, nice
result

○ d3dagre: text wrapper not available, but shape will
adopt to the text automatically; basically full control

Concept Map
Implementation and Evaluation (Full Graph)

● Function Flexibility (especially for highlighting prerequisites)

○ Cytoscape: Extremely easy to find parents or ancestors
as they have functions available to call directly

○ GoJS: Can find parents but ancestors need to hack
through their API

○ d3dagre: No handy tools to calculate parents or
ancestors at front-end, but flexible to read and
manipulate any back-end data

Concept Map
Implementation and Evaluation (Full Graph)

● How easy to implement

○ Cytoscape: Detailed documentation, many examples,
lots of available functions

○ GoJS: Detailed documentation, many examples, easy to
configure

○ d3dagre: Limited documentation, steep learning curve
because of d3

Concept Map
Implementation and Evaluation (Full Graph)

● Speed

○ Cytoscape: 10.26s because of this layout, much faster
for layout like BF layout

○ GoJS: 3.56s, thanks to Canvas

○ d3dagre: 11.88s because of the layout and also the fact
that SVG is not as fast as Canvas

Concept Map
Implementation and Evaluation (Full Graph)

● More discussion

○ SVG, although slow, can manipulate every single DOM
element inside, which makes us able to search text
directly inside browser. But Canvas can’t.

○ Full graph visualization still seem to be unrealistic

○ Maybe should try visualize a subgraph (clique) of the
whole graph

Concept Map
Implementation and Evaluation (Sub Graph)

Cytoscape

Concept Map
Implementation and Evaluation (Sub Graph)

GoJS

Concept Map
Implementation and Evaluation (Sub Graph)

d3dagre

Concept Map
Implementation and Evaluation (Sub Graph)

Cytoscape

Concept Map
Implementation and Evaluation (Sub Graph)

GoJS

Concept Map
Implementation and Evaluation (Sub Graph)

d3dagre

Concept Map
Implementation and Evaluation (Sub Graph)

● More discussion

○ GoJS, although still has cleaner layout, becomes
disadvantageous because of its zigzag edges.

○ They probably don’t do routing of the edges. Ironically,
this might be desirable for really large graphs according
to our previous experiments.

○ Sub graph seems to be a feasible solution for now

Custom Doc Interactiveness Open
Source

Speed Free Easiness Canv SVG

GraphViz ☆☆☆☆ ☆☆☆ ☆ ✔ ☆☆☆☆☆ ✔ ☆☆☆☆☆ × ✔
TikZ ☆☆☆☆☆ ☆☆☆☆☆ ☆ - ☆☆☆☆☆ ✔ ☆☆☆☆☆ × ✔
Cytoscape ☆☆☆ ☆☆☆☆☆ ☆☆☆ ✔ ☆☆☆ ✔ ☆☆☆☆ ✔ ×

GoJS ☆☆☆ ☆☆☆☆☆ ☆☆☆ × ☆☆☆☆ × ☆☆☆☆ ✔ ×

d3dagre ☆☆☆☆☆ ☆ ☆☆☆☆☆ ✔ ☆☆ ✔ ☆ × ✔
sigmajs ☆☆☆☆☆ ☆☆ ☆☆☆☆☆ ✔ ☆☆☆☆☆ ✔ ☆☆☆☆ ✔ ✔
anychart ☆☆ ☆☆☆☆ ☆☆☆☆ × ☆☆☆ × ☆☆☆ × ✔
amchart ☆☆ ☆☆☆ ☆☆☆☆ × ☆☆☆☆☆ × ☆☆☆☆ × ✔

Thanks!

References
Alexander, T. Desmond. "From Adam to Judah: The Significance of the Family Tree in Genesis." Evangelical Quarterly
61.1 (1989): 5-19.

Reingold, Edward M., and John S. Tilford. "Tidier drawings of trees." IEEE Transactions on software Engineering 2
(1981): 223-228.

Stuckey, Peter J. "NP-completeness of minimal width unordered tree layout." Graph Algorithms and Applications 5 5
(2006): 295.

Knuth, Donald E. "Optimum binary search trees." Acta informatica 1.1 (1971): 14-25.

Wetherell, Charles, and Alfred Shannon. "Tidy drawings of trees." IEEE Transactions on software Engineering 5 (1979):
514-520.

Sugiyama, Kozo, Shojiro Tagawa, and Mitsuhiko Toda. "Methods for visual understanding of hierarchical system
structures." IEEE Transactions on Systems, Man, and Cybernetics 11.2 (1981): 109-125.

Tamassia, Roberto, ed. Handbook of graph drawing and visualization. CRC press, 2013.

Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software.
Springer, Berlin, Heidelberg, 2004. 127-148.

Kruja, Eriola, et al. "A short note on the history of graph drawing." International Symposium on Graph Drawing. Springer,
Berlin, Heidelberg, 2001.

Image References
https://www.connectedpapers.com/main/204e3073870fae3d05bcb
c2f6a8e263d9b72e776/Attention-is-All-you-Need/graph
https://support.google.com/docs/answer/9146947?hl=en
https://miro.medium.com/max/1044/1*FBaB_aGUcWbfrLr1Ric5bQ.
png
https://jech.bmj.com/content/jech/62/9/842/F2.large.jpg
https://community.atlassian.com/t5/image/serverpage/image-id/123
488i68AC06362D325AF9?v=v2
https://miro.medium.com/max/1024/0*nnZdvIJqisZ5y7MB.png
https://observablehq.com/@d3/collapsible-tree

https://support.google.com/docs/answer/9146947?hl=en
https://miro.medium.com/max/1044/1*FBaB_aGUcWbfrLr1Ric5bQ.png
https://miro.medium.com/max/1044/1*FBaB_aGUcWbfrLr1Ric5bQ.png
https://jech.bmj.com/content/jech/62/9/842/F2.large.jpg
https://community.atlassian.com/t5/image/serverpage/image-id/123488i68AC06362D325AF9?v=v2
https://community.atlassian.com/t5/image/serverpage/image-id/123488i68AC06362D325AF9?v=v2
https://observablehq.com/@d3/collapsible-tree

