Graph Drawing:
From algorithms to
tools to specific use
case

Zhiying Jiang 08.04.2021

Overview

Introduction
Graph and Graph Drawing
Graph Layout Algorithms

e Trees
e DAG
e General Graph

DAG Visualization Tools
e Software Based
e Web App Based

Use Case - Concept Map
e Requirement Analysis
e |mplementation and Evaluation

Introduction

Introduction

History

e Noliturbare circulos meos! (Do
not disturb my circles!)

e Mill or Morris games

e The Middle Ages Family Tree

Introduction

Nowadays

e Social Networks
e Knowledge Graph
e Protein Protein Interaction

e Citation Network

Graph and Graph Drawing

Graph and Graph Drawing

e graph G=(V,E) is defined as
the pair of vertices V and
edgesE,and any edgeinE
connects either two
verticesinV

it's defined as mapping d
that satisfies d: G-> d(G),
where d(G) in R*2 (or even
R~ 3). Specifically, this
mapping d assigns
coordinates to the nodes
and the bends of edges.

Graph and Graph Drawing

Planar Graph General Graph

Graph Layout Algorithms

Graph Layout Algorithms

Tree (Diagram Types)

e Indentation
e Node-Link diagrams
e Enclosure diagrams

e Layered Diagrams

M src
7 I api
LR
i SPHS analytics®)
M assets animate el
B font
B img datae
B style

B axios _— <

a4 index.js

display- @

M router floxce
P .
51 index.js physics
i query-e
B view scalee
utile
B Course Vis
= Syllabus

¥ Milestone.vue
VY Syllabus.vue
¥ Week.vue
¥ CoursePage.vue
B Domain
¥ DomainPage.vue

Bachelor of Sciences Bachelor of Arts

History
Biology

Math | Physics English
Music | Philosophy
Engineering

interpolate ®

Easing
FunctionSequence

ISchedulable

 Paral

Parallel

Scheduler
Sequence
Transition
Transitioner

TransitionEvent

DirtySprite
LineSprite
RectSprite
TextSprite

DragForce
GravityForce
Force
NBodyForce
Particle
imulation

pring
SpringForce

Graph Layout Algorithms

Tree (Knuth's) Principles:
e Do atop-downinorder 1. Nocrossed edges.
traversal of a tree, with the 2. Nodes at the same
depth as its y value and the level/depth should be placed
global counter as its x value. on the same horizontal line
i (samey value).

knuth_layout(tree, depth):
tree.left_child:
knuth_layout(tree.left_child, depth+1)
tree.x = i
tree.y = depth
i
tree.right_child:
knuth_layout(tree.right_child, depth+1)

Graph Layout Algorithms

Tree (Knuth's) What’s missing?

e Do atop-downinorder e Might be:
traversal of a tree, with the
depth as its y value and the
global counter as its x value.

i
ef knuth_layout(tree, depth):
tree.left_child:
knuth_layout(tree.left_child, depth+1)
tree.x = i
tree.y = depth
i
tree.right_child:
knuth_layout(tree.right_child, depth+1)

Graph Layout Algorithms

Do a bottom-up algorithm
that keeps track of next slot
on each row and then
traverse the treein
postorder

1.

No crossed edges.

Nodes at the same
level/depth should be placed
on the same horizontal line
(samey value).

Place the whole graph into
minimum width

Graph Layout Algorithms

Tree (Wetherell’s) What’s missing?

e Do abottom-up algorithm
that keeps track of next slot
on each row and then
traverse the treein
postorder

Graph Layout Algorithms

Tree (Reingold-Tilford'’s)

Start with bottom-up pass of the
tree. The initialization of x
coordinate is arbitrary and y
coordinate is by depth; then merge
left and right subtrees by shifting
right and finally do a top-down pass
for assignment of final positions.
global counter as its x value.

Additional Principles:

4. Parent should be
centered above its children

5. Isomorphic subtrees
should be drawn identically

Graph Layout Algorithms

Tree (Reingold-Tilford’s)

Algorithm 1: Reingold-Tilford Algorithms

Do post-order traversal of the tree
if node v is a leaf then
‘ v.x = 0;

else
Place the right subtree of v as close to v as possible;
Record how many Az to move

end

Place the node halfway between its children.

A second top-down pass to accumulate Az for the final assignment.

Additional Principles:

4. Parent should be
centered above its children

5. Isomorphic subtrees
should be drawn identically

Graph Layout Algorithms

Tree (Reingold-Tilford'’s) Finally:

Algorithm 1: Reingold-Tilford Algorithms
Do post-order traversal of the tree
if node v is a leaf then
‘ v.x = 0;

else
Place the right subtree of v as close to v as possible;
Record how many Az to move

end

Place the node halfway between its children.

A second top-down pass to accumulate Az for the final assignment.

Graph Layout Algorithms

Directed Acyclic Graph
(DAG)

e Directed graphs with no cycles

e |fandonlyif can be ordered
topologically, by arranging the
vertices as a linear ordering
that is consistent with all edge
directions

e Comparingtotrees, allow
multiple parents

Graph Layout Algorithms

Directed Acyclic Graph
(DAG)

e Directed graphs with no cycles

e |fandonlyif can be ordered
topologically, by arranging the
vertices as a linear ordering
that is consistent with all edge
directions

e Comparingtotrees, allow
multiple parents

Graph Layout Algorithms

DAG (Sugiyama’s method) - Principles

e Edges should point in auniform direction

e Short edges are more readable

e Nodes should be distributed uniformly to avoid clutter
e Edge crossings should be minimized

e Straight edges are more readable

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

Algorithm 2: Sugiyama methods in a high level

Cycles Removal;
Calculate layering;
Crossing Reduction;
Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal;
e (Calculate layering;
e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal;
e (Calculate layering;
e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal,;
e Calculate layering;

e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal;
e Calculate layering;

e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal;
e Calculate layering;
e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

DAG (Sugiyama’s method) - High Level Algorithm

e Cycles Removal;
e Calculate layering;

e Crossing Reduction;

e Routing of the edges;

Graph Layout Algorithms

General Graph

e No explicit hierarchy

e Oftenlargescale
The Principle

e Minimizing crossing
edges

Graph Layout Algorithms

General Graph (Force Directed Method)

e Alsocalled “Spring Embedder”

e Assign “force” to pair of nodes N [P
e Treat graph layout optimization ‘ 3
as a “physical system” simulation
problem

e General framework

Graph Layout Algorithms

General Graph (Force Directed Method)

Basic Version:

Algorithm 3: Force Directed Method

for‘;a‘:h ”lolde v d(} des (u, v) d |Attractive force|:
oreach pair of nodes (u, v) do %
c1*log(d/c2)

| compute repulsive force f,(u,v)

foreach edge e = (u,v) do
| compute attractive force f,(u,v)
sum over all force vectors on v — F(v) ; |Repulsive force]:
| move node v according to F'(v) c3/d"2

Graph Layout Algorithms

Visual complexity --- how easy it is to get an overview
Regularity --- repetitions like if isomorphic graphs look the same

Symmetry --- geometric symmetry by rotation, reflection and
translation
Consistence --- if showing similar patterns indicates similar meaning

Form, size and proportionality --- size and ""node density and sparsity

Algorithms' time complexity --- how long does algorithm take to run

DAG Visualization Tools

DAG Visualization Tools

x\/

DOT language
o Simple & Intuitive

o Adopted by many other
applications

o Support any output format like GIF,
PNG, SVG, PDF or PostScript

Sugiyama’s method for directed graph

digraph G {
main ->
main ->
main ->
execute
execute
init ->
main ->
execute

parse —> execute;
init;

cleanup;

-> make_string;
-> printf
make_string;
printf;

—-> compare

DAG Visualization Tools

i

o CLI dot -Tsvg input.dot
o dot for directed graph

o neato for undirected
graph

e Web

o webdotHTTP server

DAG Visualization Tools

\tikz [rounded corners]
\graph [layered output, sibling distance=8mm, level distance=8mm]

a > {

For TeX P
} >
f ->

Basically can draw anything y

All graph layout algorithms require
LuaTeX compiler a

/
o You can also implement your 1
own algorithm in Lua d x

Intuitive syntax

DAG Visualization Tools

e d3+dagre
e dagre s a specific “flavor” of Sugiyama’s method

e Take full advantage of d3’s flexibility without writing layout
algorithm

e Steeplearningcurve

e SVG

DAG Visualization Tools

e Oirigin from software, aiming at analyzing large scale
bio-medical data

e Specialized for graph, no other charts

e Number of graph analysis functions implemented, like
minimum spanning tree, clustering, etc.

e Have the most graph layout algorithms

e (Canvas

DAG Visualization Tools

e Model-View architecture to separate data and style
e Limited pre-built layout algorithm

e Mature commercialized data visualization library

e FEasy-to-use API

e Canvas

My Use Case - Concept Map

Concept Map

e Node?- Concept

» «

e Concept? - Subject concepts like “bayes’ rule”, “gradient

descent”
e Edge?- Prerequisite relation

e Scale?- About 500 concepts, 1000 relations

Concept Map

e Cannot fitinone screen - Zoom in/out function required

e Too many nodes to see prerequisite nodes clearly - Highlight
prerequisite nodes and relations required

e Nodes need to display text directly - text wrapper or
auto-fitting to the shape or other style manipulation required

Concept Map

Implementation and Evaluation (Full Graph)

e Layout Complexity

e Styling Flexibility

e Function Flexibility

e How easytoimplement

e Speed

Concept Map

Implementation and Evaluation (Full Graph)

Cytoscape

Concept Map

Implementation and Evaluation (Full Graph)

Concept Map

Implementation and Evaluation (Full Graph)

d3dagre

Concept Map

Implementation and Evaluation (Full Graph)

e Layout Complexity

o Cytoscape: Clear hierarchy, messy direct lines but
easier to trace back

o GolS: Clean layout, zigzag lines, impossible to trace

o d3dagre: Too many parallel lines, impossible to trace;
too spacious

Concept Map

Implementation and Evaluation (Full Graph)

e Styling Flexibility

o Cytoscape: text wrapper available, but rigorous on
padding, which makes text too small

o GolJS: text wrapper available, easy to configure, nice
result

o d3dagre: text wrapper not available, but shape will
adopt to the text automatically; basically full control

Concept Map

Implementation and Evaluation (Full Graph)

e Function Flexibility (especially for highlighting prerequisites)

o Cytoscape: Extremely easy to find parents or ancestors
as they have functions available to call directly

o GoJS: Can find parents but ancestors need to hack
through their API

o d3dagre: No handy tools to calculate parents or
ancestors at front-end, but flexible to read and
manipulate any back-end data

Concept Map

Implementation and Evaluation (Full Graph)

e How easytoimplement

o Cytoscape: Detailed documentation, many examples,
lots of available functions

o GoJS: Detailed documentation, many examples, easy to
configure

o d3dagre: Limited documentation, steep learning curve
because of d3

Concept Map

Implementation and Evaluation (Full Graph)

e Speed

o Cytoscape: 10.26s because of this layout, much faster
for layout like BF layout

o GolJS: 3.56s, thanks to Canvas

o d3dagre: 11.88s because of the layout and also the fact
that SVG is not as fast as Canvas

Concept Map

Implementation and Evaluation (Full Graph)

e Morediscussion

o SVG, although slow, can manipulate every single DOM
element inside, which makes us able to search text
directly inside browser. But Canvas can't.

o Full graph visualization still seem to be unrealistic

o Maybe should try visualize a subgraph (clique) of the
whole graph

Concept Map

Implementation and Evaluation (Sub Graph)

random variables conditional probability

independent events Bayes' rule

conditional
independence

Cytoscape

Bayesian networks

Styes ot parsmmeter d-separation hidden Markov models deep belief networks variable elimination
rning Bayes net _—
Parsmetas wth S | St Bayes Ball particlo filter folwant bedand junction trees

Concept Map

uuuuuu

nnnnnnnnnn
aaaaaaaaa

dopendent random
...........

...................

et G OJ S

..............

nn

.......
s
‘‘‘‘‘‘‘‘‘‘

................

unsiporied

,,,,,,,,,,,,,,

...........................

mmm

nnnnnnnnnnnnn

.........
wwwwwwww

Concept Map

Impl

elimination

Gaussian
variable junction trees
elimination

Gaussian

elimination

ementation and Evaluation (Sub Gra

conditional
probability

independent
random variables epands

nditional)
Indopendents Bayes' rule

o

Bayesian
notworke

hidden Markov
‘models

" Bays n ;
d-separation desp belief b fnear Gausian
. learning Bayes
converting
ayes unsupervised net parameters forward-backward it fiter
Bayes Ball pre-training with missing algorith particle fit
haten: parameters.

etween
graphical models

Bayes nec Viterbi Baum-Welch Kalman smoething sequential Monte
learning algorithm, algorithm forward-backward Carlo

d3dagre

Concept Map

Implementation and Evaluation (Sub Graph)

@ Cytoscape

G modas Byt pratar (UNEEE (WS GRS,

ussian variable

forward backward unsupervised
mmmmmmmm

G
aigorithm ‘re-training unction wrees

Pt Bmesnetpaameters graphicaimoden ByesSal - partidefiter

 Gaussian variable.

nnnnnnnnnn

Concept Map

Implementation and Evaluation (Sub Graph)

=

GoJS

Bayes et
aavie deep et [rr—
K1l aseparsion -,
g el

oo doyerrit B

Goueson iy
oy joctonwws S e

simiation L =~ <

...................
...
e wews . Smm ombmn g

''''''
nnnnnn

Concept Map

Implementation and Evaluation (Sub Graph)

conditional

nnnnnnnnnnn
......

. d3dagre

aaaaaaa
................................
g docpbotief) [pwameta) [finesrs:

..............

ssssssss

,,,,,,,,

,,

ariable | junciontess | between o Bayesgal TURDNEDCUENISE B MU paridefin
,,,,,,,,,

nnnnnnnn
eeeeeeeeeeeee

Gaussian learning olgerithm - algorithm © forargbackward Carlo

,,,,,,,,,,,

Concept Map

Implementation and Evaluation (Sub Graph)

e Morediscussion

o GolJS, although still has cleaner layout, becomes
disadvantageous because of its zigzag edges.

o They probably don’t do routing of the edges. Ironically,
this might be desirable for really large graphs according
to our previous experiments.

o Sub graph seems to be a feasible solution for now

GraphViz

TikZ

Cytoscape

GoJS

d3dagre

sigmajs

anychart

amchart

Custom

1R 0 0 e

R KWK
R K
R K

1 S O e e
KRR WK
K

K

Doc

R

KRR
KRR
KRR

-G
18 0 0
KK

Interactiveness

w

*

R K
R K
PR KWK
PR KWK
1R S 0"e
1R S 8¢

Open
Source

4

4

X

X

X

Speed

R KWK

PR KK
K
KKK
YK
KKK
) G O
10 S O e e

Free

X ((X

X

Easiness

R KWK

PR KK
KKK
KKK
*
KKK
KK
KK

Canv

X

SIS

<

SVG

NS

X

X

SIS S

Thanks!

References

Alexander, T. Desmond. "From Adam to Judah: The Significance of the Family Tree in Genesis." Evangelical Quarterly
61.1 (1989): 5-19.

Reingold, Edward M., and John S. Tilford. "Tidier drawings of trees." IEEE Transactions on software Engineering 2
(1981): 223-228.

Stuckey, Peter J. "NP-completeness of minimal width unordered tree layout." Graph Algorithms and Applications 5 5
(2006): 295.

Knuth, Donald E. "Optimum binary search trees." Acta informatica 1.1 (1971): 14-25.

Wetherell, Charles, and Alfred Shannon. "Tidy drawings of trees." IEEE Transactions on software Engineering 5 (1979):
514-520.

Sugiyama, Kozo, Shojiro Tagawa, and Mitsuhiko Toda. "Methods for visual understanding of hierarchical system
structures." IEEE Transactions on Systems, Man, and Cybernetics 11.2 (1981): 109-125.

Tamassia, Roberto, ed. Handbook of graph drawing and visualization. CRC press, 2013.

Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software.
Springer, Berlin, Heidelberg, 2004. 127-148.

Kruja, Eriola, et al. "A short note on the history of graph drawing." International Symposium on Graph Drawing. Springer,
Berlin, Heidelberg, 2001.

Image References

https://www.connectedpapers.com/main/204e3073870fae3d05bcb
c2f6a8e263d9b72e776/Attention-is-All-you-Need/graph
https://support.google.com/docs/answer/21469477hl=en
https://miro.medium.com/max/1044/1*FBaB aGUcWbfrLri1Ric5bQ.
png

https://ijech.omj.com/content/jech/62/9/842/F2.large.ipg
https://community.atlassian.com/t5/image/serverpage/image-id/123
488i68AC06362D325AF92v=v2
https://miro.medium.com/max/1024/0*nnZdvlJqisZ5y7MB.png
https://observablehg.com/@d3/collapsible-tree

https://support.google.com/docs/answer/9146947?hl=en
https://miro.medium.com/max/1044/1*FBaB_aGUcWbfrLr1Ric5bQ.png
https://miro.medium.com/max/1044/1*FBaB_aGUcWbfrLr1Ric5bQ.png
https://jech.bmj.com/content/jech/62/9/842/F2.large.jpg
https://community.atlassian.com/t5/image/serverpage/image-id/123488i68AC06362D325AF9?v=v2
https://community.atlassian.com/t5/image/serverpage/image-id/123488i68AC06362D325AF9?v=v2
https://observablehq.com/@d3/collapsible-tree

