
TECHNION − ISRAEL INSTITUTE OF TECHNOLOGY
Haifa 32000, ISRAEL Computer Science Department

iii

Fishbach 479, Tel.: +972-4-294325
Telex: 46406 TECON IL, Fax: +972-4-221581

BITNET: DBERRY@TECHSEL
CSNET: dberry@sel.technion.AC.IL

Multi-Lingual Word-Processing Research at the Technion

by

Daniel M. Berry

 + � K � 9 J

�

T

�

,

X

Computer Science Department
Technion

Haifa 32000
Israel

ARABIC FORMATTING 41

APPENDIX I

Space — the final frontier.
These are the voyages of the starship Enterprise,
its continuing mission, to explore strange new worlds, to seek out new life
and new civilizations, to boldly go where no one has gone before!

הבא הדור -- mכוכבי oבי מסע

הסופי. הגבול -- החלל

”אנטרפרייז“, החללית של מסעותיה אלה

ותרבויות mחדשי mחיי לאתר ,mמוזרי mחדשי עולמות לחקר המתמשכת במשימתה

נודע! הבלתי עבר אל נועזת משימה חדשות,

gN�¯�B Ñ¹��B ··· ¼�B¸±�B Ó¹q Ö³v¢�B
.×¨�ÝB ��B ··· E�©®�B

,`£�B¢t¢��D' Ö¹��©®�B Öµ¹®¦�B GÜvP Õ� i¡�
l�··¹v a�·§��Bj ,Ö·��¢� íB¸·� Ó·� ¾·����q lù¢·´�¦ìB �·¶�´¶� ç
¾···¹v êD F��¡�D ç Ö»�¢u Ö´¶� ,l � u GBP�©vj l � u

!Ñ�� Ó� vB ¼�¡� í

STAR TREK and STAR TREK: THE NEXT GENERATION are registered trademarks of Paramount Pictures
Corporation.

Outline of Talk
Need
Goal
Software Engineering Concerns

Modular Formatting System
Existing Formatting Tools
Why ditroff and

not WYSIWYG or TEX?

Solved Problems

Requirements of Multilingual Systems
ditroff Intermediate Form
Basic Trick

2

Hebrew R-L Formatting
Chinese and Japanese Alphabet
Top-Bottom Formatting
Bi-Directional vi
Bi-Directional MINIX
Arabic and Farsi Formatting
Indexing
Page Mark Up

Why TEX Cannot Do Trick

Typesetting for Journals
Open Problems

3

Need for Multi-Lingual Word-Processing

First computers developed in English-
speaking countries

First mass-marketing of computers in English-
speaking countries

Spread next to countries whose languages
are written with the Latin alphabet;
some minor fudging needed for accents

´ ` ^ ¨ ¯ ...
and unusual letters

ß æ Æ ø Ø ...

4

Finally have spread to countries with

totally different alphabets:
Arabic/Farsi family
Chinese family
Cyrillic family
Greek
Hebrew family
Hindi

Very large alphabets for which one
byte is not enough to encode all the
characters:

Chinese family

Written in other directions
R-L:

Hebrew family
Arabic/Farsi family

T-B:
Chinese family

5

Need

Formatters

Editors

Applications

Operating Systems

6

Goal

Complete environment for
preparation, proofing, and printing
of technical and non-technical
multi-lingual documents

Need to be able to edit, preview, and typeset
documents with

bibliography and citations
formulae
tables
pictures

line
filled
half-tone

plots
flow diagrams
flow charts
graphs
trees
data structure

program code

7

in
LR Languages

Latin
Greek
Cyrillic

RL Languages
Arabic
Farsi
Hebrew

TB Languags
Chinese
Japanese
Korean

8

A good software engineer is a lazy one!

Use existing system as much as possible

good if user level compatible

better if existing code is modified

best if existing code is externally extended

Choose UNIX environment
for ease in development
for portability of applications
because of its wide availability

Choose vi for editing
because of uniformity world over

Choose ditroff collection for formatting
because of its modularity

9

DITROFF FLOW:

file psfig refer et_al grap pic tbl eqn alg*
dotchart

scatmat

drag

dformat

dag

chem

flo

music

swizzle

dtroff

macros

indx

index
terms

ffortid bditroff pm psdit
laser

printer

screen

photo
type-
setter

Offers hope of implementing new functionality
simply by inserting new pre- and post-processors.

UNIX philosophy:
Separate language processors,

each understanding part of the job,
and leaving all the rest to the others

Each is easily modified independently of the others

All existing pre- and postprocessors
and macro packages continue to work
as each new processor or macro package
added!

No license needed to source code of ditroff
to write a pre- or post-processor!

11

Examples of added functionality

Program Pre/Postof What?Purposeii
Batchii
eqn pre dtroff Formulae
tbl pre dtroff Tables
pic pre dtroff Line Drawings
ideal pre dtroff Line and Filled Drawings
psfig pre dtroff Including Arbitrary POSTSCRIPT Files
refer pre dtroff Bibliographical Citations
indx post dtroff Indexing
ffortid post dtroff Handling Right-to-Left Text
bditroff post dtroff Handling Top-to-Bottom Text
pm post dtroff Page Markup and Figure Placement
psdit post dtroff Translating dtroff Output to POSTSCRIPT
dformat pre pic Data Format
swizzle pre pic Sorting Exchanges
chem pre pic Chemical Diagrams
m2p pre pic Musical Score (that drives speaker) to pic
dag pre pic Directed Acyclic Graphs
drag pre pic Drawing Graghs
flo pre pic Flow Charts
dotchart pre grap Dot Charts
scatmat pre grap Scatter Matrices
et_al post refer Replace “Al, Et” by “et al”

12

Interactiveii
monk pre dtroff Preparing dtroff Input from Window Interface
picasso pre pic Preparing pic Input from Window Interface
fig pre pic Preparing pic Input from Window Interface
suntroff post dtroff Translating dtroff Output to Sunview
xtroff post dtroff Translating dtroff Output to X window

13

Why not WYSIWYG?

MONOLITHIC
everything

it does

Also WYSIOAWYG, WYSIAYG, and WYCGINE!

Better to have WYSAAFSIWYG if WYS is exact
and WYG is everything you need

With today’s Hardware,
Multi-window environment

with batch previewer in one
and editor in another

on dedicated workstation, almost as fast as WYSIWYG

14

Why not TEX?

MONOLITHIC
formulae

tables
limited line drawing

Not really pipeable

Also other problems
More on this later!

15

Note that from the user’s point of view,
it really matters not which of
ditroff or TEX is used.

Both are assembly languages of comparable functionality,
and
both have higher level interfaces, in the forms of

macro or style packages
(e.g., −ms, −me, −mm, −mX, and LATEX)

interactive front ends

Someone who uses plain ditroff or TEX is asking for it!

Reality:
You like what you are used to
and hate what you are not!

16

Problems We Have Solved:

Right-to-Left formatting and Hebrew

Chinese and Japanese Characters

Top-to-Bottom formatting

vi.iv

MINIX.XINIM

Arabic, connecting, and stretching

Indexing without flooding input with
indexing commands

Problems Others Have Solved:

Page Mark Up, page balancing and
figure and footnote placement

17

Requirements for multilingual
formatters, editors, systems, and applications

Input
Time Order (Logical Order)

as if ALL languages were written
left-to-right

Each language (including computer languages)
in its own standard encoding

Output
Visual Order
Fonts with glyphs selected by standard

encoding for each language

File storage
Time order (Logical Order)
Each language in its own standard encoding
(SAME AS INPUT!)

18

Thus conversion
from time order to visual order

done at output time AND at EACH output time
NOT at input time

More general
In files, most significant character of each line

is in same place, so, e.g., sorting
applications work with no change

If line length changed after input,
much easier to get into new visual order
from original time order than
from another visual order

19

Mixing languages
Generally mixing latin and
local language

Latin for computers, scientific
math & technical

Local for people!

two languages only

So use eighth bit as Latin/Local flag
0 → Latin
1 → Local, e.g.,

ESCII — Hebrew
Shift JIS — Japanese

In two-language mixed text, easy to
distinguish which byte is in which
language:

20

Latin — Hebrew (ASCII/ESCII)
iiiiiiiiiiiiiiiiiiiiiiiiii

x x xiiiiiiiiiiiiiiiiiiiiiiiiii

A A E E E A

iiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Latin — Japanese (ASCII/Shift JIS)
iiiiiiiiiiiiiiiiiiiiiiii

x x x xiiiiiiiiiiiiiiiiiiiiiiii

A J J A J J

iiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

If have more than two languages
use in-line escape sequences to
distinguish

21

Character Coding Issues -4

The other coding issue is the order of the codes for the letters.

The ESCII code is a Hebrew extension of the ASCII code.
Characters in the range of 0 to 127 are considered Latin
and follow the ASCII coding. Characters in the range of 128
to 255 are considered Hebrew. The Hebrew letters appear in
alphabetical order, with final letters immediately preceding
their non-final counterpart. A character that is in both
Hebrew and Latin appears twice in the table, their codes
separated by 127.

11

Latin Half (Hexadecimal → Character)

|00 NUL|01 SOH|02 STX|03 ETX|04 EOT|05 ENQ|06 ACK|07 BEL|

|08 BS |09 HT |0A NL |0B VT |0C NP |0D CR |0E SO |0F SI |

|10 DLE|11 DC1|12 DC2|13 DC3|14 DC4|15 NAK|16 SYN|17 ETB|

|18 CAN|19 EM |1A SUB|1B ESC|1C FS |1D GS |1E RS |1F US |

|20 SP |21 ! |22 " |23 # |24 $ |25 % |26 & |27 ’ |

|28 (|29) |2A * |2B + |2C , |2D - |2E . |2F / |

|30 0 |31 1 |32 2 |33 3 |34 4 |35 5 |36 6 |37 7 |

|38 8 |39 9 |3A : |3B ; |3C < |3D = |3E > |3F ? |

12

|40 @ |41 A |42 B |43 C |44 D |45 E |46 F |47 G |

|48 H |49 I |4A J |4B K |4C L |4D M |4E N |4F O |

|50 P |51 Q |52 R |53 S |54 T |55 U |56 V |57 W |

|58 X |59 Y |5A Z |5B [|5C \ |5D] |5E ˆ |5F _ |

|60 ‘ |61 a |62 b |63 c |64 d |65 e |66 f |67 g |

|68 h |69 i |6A j |6B k |6C l |6D m |6E n |6F o |

|70 p |71 q |72 r |73 s |74 t |75 u |76 v |77 w |

|78 x |79 y |7A z |7B { |7C | |7D } |7E ˜ |7F DEL|

13

Hebrew Half

|80 NUL|81 SOH|82 STX|83 ETX|84 EOT|85 ENQ|86 ACK|87 BEL|

|88 BS |89 HT |8A NL |8B VT |8C NP |8D CR |8E SO |8F SI |

|90 DLE|91 DC1|92 DC2|93 DC3|94 DC4|95 NAK|96 SYN|97 ETB|

|98 CAN|99 EM |9A SUB|9B ESC|9C FS |9D GS |9E RS |9F US |

|A0 SP |A1 ! |A2 " |A3 # |A4 $ |A5 % |A6 & |A7 ’ |

|A8 (|A9) |AA * |AB + |AC , |AD - |AE . |AF / |

|B0 0 |B1 1 |B2 2 |B3 B |B4 4 |B5 5 |B6 6 |B7 7 |

|B8 8 |B9 9 |BA : |BB ; |BC < |BD = |BE > |BF ? |

14

|C0 @ |C1 A |C2 B |C3 C |C4 D |C5 E |C6 F |C7 G |

|C8 H |C9 I |CA J |CB K |CC L |CD M |CE N |CF O |

|D0 P |D1 Q |D2 R |D3 S |D4 T |D5 U |D6 V |D7 W |

|D8 X |D9 Y |DA Z |DB [|DC \ |DD] |DE ˆ |DF _ |

|E0 א |E1 ב |E2 ג |E3 ד |E4 ה |E5 ו |E6 ז |E7 ח |

|E8 ט |E9 י |EA j |EB כ |EC ל |ED m |EE מ |EF o |

|F0 נ |F1 ס |F2 ע |F3 s |F4 פ |F5 u |F6 v |F7 w |

|F8 ר |F9 ש |FA ת |FB { |FC | |FD } |FE ˜ |FF DEL|

15

UNICODE -1

UNICODE is a two-byte code for the whole world, containing
one occurrence of each letter that appears in any of most
of the alphabets in the world.

One code for period to be shared by all languages; same for other
punctuation and digits

One code for each Hebrew letter, to be used by Hebrew and
Yiddish

16

UNICODE -2

One code for each Chinese letter to be used by Chinese,
Japanese, and Korean

In text using this code, must use an escape to indicate language
change, because language is not inherent in the codes for the
characters.

17

ditroff intermediate format,
i.e., format of output of dtroff
and of input to device drivers.

This is a line.

is translated by dtroff to

H576
V96
cT
-
49h40i22sw51i22sw51aw56l22i22n40e36.n96 0
- - -= - -= -= - - - - -_____

V# =absolute vertical position
H# =absolute horizontal position
C =Character
M =Movement
w =end-of-word marker
L =end-of-line marker

(also end-of-word unless last character is hyphen)

{H# V# ((CM)+w)+ (CM)+l}+

Pure ASCII

22

TEX’s intermediate form, DVI,
does not have end-of-word and
end-of-line markers,
and is NOT ASCII

(H# V# (CM)+)+

Note that ends-of-word and ends-of-line markers
are NOT needed by device drivers

These were frosting put in by Kernighan
to allow an editor, that was never built,
to work directly with ditroff intermediate form.

23

Basic Trick for Multidirectional Formatting

Let ditroff format time-ordered text
as if all languages were written from left to right

Then for each non-LR direction D,
have a postprocessor for D
reorganize the ditroff intermediate form output
from dtroff

so that
all text to be written in direction D
is in position to be printed in
direction D

The output of the postprocessor is again in
ditroff intermediate form

This is possible because of
end-of-line markers in
ditroff intermediate form

Without these markers,
the reorganization is impossible

ffortid for D = right-to-left
bditroff for D = top-to-bottom

24

ffortid by Buchman

First,
How to Read LR-RL Bi-Directional Document:

Defs: uni-directional chunk
maximal length string of text within
one line, all of whose characters are
in langauges of same direction

In the line,

He said “ ” to Uri.

3 uni-directional chunks are

He said “

” to Uri.

25

Invariant:
Cannot move on to the next line until
all the text on a given line has been read

Within line, one bounces around within
a line to read the uni-directional chunks
in order = current document direction:
Each chunk read in its own direction

In example above, current document direction is LR, so read

He said “ ” to Uri.
hhhhhhhh

hhhhhh
hhhhhhh

26

What we want:

He said to
Dan “ ”
in Hebrew.

Time-ordered input:
He said to Dan ”mולש“ in Hebrew.

After formatting with dtroff (schematically)

He said to
Dan “ ”
in Hebrew.

Can get what we want line-by-line by
flipping Hebrew phrases in place

Works because

Not move to next line (in reading)
until whole line has been read

Permuting characters of line
NOT change total length of line!

27

What we want:

Hello

Time-ordered input:
אוה רמא oדל “Hello” .תילגנאב

After formatting with dtroff (schematically)

Hello

Can get what we want line-by-line by
first flipping whole line

olleH

28

and then flipping Latin phrases in place

Works for same reasons

29

Conversion Algorithm

Assume that file is stored in time order

Language of a character determined by its
font and ffortid knows which fonts are R-L

Current direction of document set globally
by command (actually macro)

for each line in the file do
if the current document direction is L-R then

reverse each contiguous string of RL
characters in the line

else (the current document direction is R-L)
reverse the whole line;
reverse each contiguous string of LR

characters in the line
fi

od

30

Input:

\fRThe next sentence contains one verb.

\fHטפשמה הזה ללוכ לעופ .fR\דחא
The previous sentence contains one verb.

Output:

The next sentence contains one verb.
. The previous sentence contains

one verb.

31

Input:

\fHטפשמה אבה ללוכ לעופ .דחא
\fRThis sentence contains one verb\fH.
טפשמה mדוwה ללוכ לעופ .דחא

Output:

This sentence
contains one verb

32

Basic Multi-Lingual Nature of Modern Hebrew

In modern Hebrew, even if you think you do not have to worry
about mixed-language and mixed-direction text, you do!

Modern Hebrew uses the same numerals as do Latin languages,
the so-called Arabic numerals, which are written from left to
right (i.e., most significant digit to the left), with the same
glyphs as in Latin languages.

When is it legal to park? Nu?

39

Typesetting Chinese and Japanese characters
by Ip and Chow

Their character sets

> 256 Characters
CHINESE — HANZI
KANJI OF JAPANESE

M
N
O
REALLY SAME SET

HANZI OF KOREAN

All are ideographic
> 10K and for all practical purposes
< 64K characters

2 bytes needed

character set organized as matrix:
1 byte = row index
1 byte = column index

JIS: 94×94 (JAPANESE)
GB2312: 94×94 (PRC CHINESE)
KOR: 94×94 (KOREAN)
???: 80×120 (ROC CHINESE)

33

Easy to add capability to print JIS, GB2312, etc
character set to ditroff with NO change to
dtroff itself

dtroff allows up to 255 fonts and
254 characters per font

So 94×94 matrix is made a collection of
94 fonts, each with 94 characters

Character ab,cd of matrix is called

\f(ab \(cd
font character
ab cd

Just need filters from standard codings to
this input form

34

ditroff/ffortid/

d
i
t
r
o
f
f

An Adaptation of the UNIX ditroff
for Formatting Tri-Directional Text

by

Zeev Becker
Daniel M. Berry

Computer Science Department
Technion

Haifa 32000
Israel

� � 6 � 9 � K

 + � K � 9 J

� �

T 9

� ,

, N

X �

� 9

, N

� �

T �

, X

9

Abstract

This paper describes a system for formatting documents con-
sisting of text written in languages printed in three different
directions, left-to-right, right-to-left, and top-to-bottom. For
example, this paper is such a document because it contains
text written in English, Hebrew, Japanese, and Chinese. The
system assumes that the input is in the order in which the text
is read aloud, and it produces output in which each language
is printed in its own correct direction, but for which a human
cognizant of the reading conventions will reproduce the input
order. The system consists of three major pieces of software:
Ossana and Kernighan’s ditroff, for formatting text consisting
of only left-to-right or unidirectional text, Buchman and
Berry’s ffortid for arranging that right-to-left text buried in
ditroff output is printed from right to left, and a new program
\b’ditroff’, for arranging that top-to-bottom text buried in ditr-
off output is printed from top to bottom.

2

Kernighan Ossana ditroff
Berry Buchman ffortid

ditroff
ditroff \b’ditroff’

3

� 6 � (I � (

� � I � � � � I � � E � I � � . ; * K � $.] ^ + U Z � L K � T .

 L + H # & 2 � L �) E A S (R 5 	 � > # (� K � � & @ R 2 P

� K � C � 0 < � / � 1 L � 8 6 I � L � \ < L � F Q L ' 2 � L &

 J � � . H � *) E A S (. � $ ' � K � < � � & @ / � & � (.

) > L K G + ^ / � � � I L � B . (� & � � L � L . L � � � �] ^

+ U Z � L K H � + 0 / R � � � K B . ' � K � �) ?] R . # & � K -

6 * I � 0 / � I ^ / G X R & � � � K � (B $ � ' � K � < � � & @ /

� � � I � > � / � L] ^ . & � (. ? � I * K � Q R 5 	 � > # (�

K � A . � Ossana(Kernighan. ditroff� ditroff. 0 / + D A ^ > L � � � I
� . & � (R � � � U Z � K � A . � Buchman(Berry. ffortid� � � & �
ditroff. 0 / + D A ^ > L � E � I � . & � (R � � � U Z � K � A . �
� � � 7 M � I @ \b’ditroff’� . � $. G 7 � 5 (� � � � I � � � L & �
K �

4

(� I (� 6 �� 6 � (I � (

� ' � � T R U A T S * I � 6 K � L � F < > H K �

L � � . R R Z ^ R S K � (* B] � & E Q # # � �

& . � & O Y � > O A � > B I . ^ B A L � (& $ I

� � 7 F . K L F N Q � $ � ' + . � S ' / � . �

K $ M � F F � � F A R / � 0 � U (((� K 2] �

� . � (. F A � � (5 � ' / K Z � . . 2 1 � � ^ �

G I R 0 O . � D + 	 L � � � � &) � � L � L + �

7 @ � / R � I I E �] K I � L � > $ L � & � U I

� � + T " � T R > ^ � ^) K � L ' & 8 @) Z �

5 B � D I U . R N # . < / ? H L K �
 6 R � �

(' U A D C & O I (& � G] � � G K J I 2 E L E

� D Z ^ � H F G � � X R + L + � � � P A K �

� I � > � M � F H K � & R . 0 . ^ < � L � S � I

� T K L � A (. A � (@ & # / / � . � K (T �

� R � � & N R 0 N A . / � & R L � � H \ � R . �

I O A E � (� / . . ? � � � � � � & � < C 5 .

� F . � D " � + D � � � � K � � � @ * L � 	 L ;

� F � I I E � D I / I � K - � � I /) � 0 � + *23

� 7 �

� � ? � � P � � � L � � O $ � R 1 E V O 4 � L � � 	 < / � � P 2 �

� 8 � Y � � � ^ � $
 * � � 4 � L � 4 �
 4 3 � � � � � � � 8 $

N L C � X � F � ^ E 1 � 1 � � � L � � � \ � : F � � . � � L � O �

F � 8 � O 4 3 * � � � ,
 � � � J � � � � J � � : � E J � � � @

/]
 3 S � � * 6 � ^
 3 X
 � � � � 	 � ^ G # & L �
 4 3] ^ �

� @ N - W � < / � & L �
 �] * � � � @ 4 	 * � /] � G 7 � T �

P O � � ,
 � Ossana and Kernighan’s ditroff* 1 N] � � J � � % L] ^ 3
S
 � � + � Buchman and Berry’s ffortid* 1 N] Y W + � \b’ditroff’*
 3 S

 E J �
 � � + �

6

� 7 �� 7 �

� O 	 ' M] F G A � � W &
 � � O � 1 $ 4 � < $ �

� F] S A ^ * H N T � � L 3 @ � 4 . � N � ^ / � �

+ F Y � N 3 1 A A � @ < � X / � 3 � � L
 � � R ?

� ' W F � S N N � P 4 /

] � * � � C 4 $ � 1 �

* + F A
 	 ' A O 	 � 4 �
 J � L L � 3
 P E �

 � O N �] S N � * & 3 � 3 � � � � X � * 2 V P

3 R D � � � D � � L] � S � � O � � � � � O �

S B T � + � D � , / � ^ � � : , � � F � � � 4 �

 ' I " � J I +
]
 � 	 � �
 F \ � � 4 8 � �

E D D E " � T E � � � � � * E � � � ^ � � � L L

J I * R U � R R / G] @ ^ 6 J � 8 : E � L Y � �

� T 1 R C % O N S 7 * N G � � � F 1 � � � � �

 R N Y H L F I S � - # ^ � J � � � 8 � 	 O

NEED FOR TRI-DIRECTIONAL FORMATTING

In PRC, Xinjinang Uighur autonomous region,
have documents in

Uighur, Kazak, Kirgiz, Mongol R-L
English (Technical) L-R
Chinese T-B

In SINGAPORE, all over
English, Malay, Tamil L-R
Chinese T-B
Arabic, Urdu R-L

In HONG KONG newspapers
Chinese Text T-B
Chinese Headlines R-L
English Advertisements L-R

etc.

10

Input (shown in stylized form),

.ft R \"Roman
English
.ll 4i \" line length 4 inches
.br
.PR \" predominantly right-to-left
.ft HB \"Hebrew

.br

.PL \" predominantly left-to-right

.ft KT \"Katakana
� � � *

.br

.BT \" begin top-to-bottom

.ft HR \"Hiragana
2 I � *

.sp

.ft CH \"Chinese
! Z

.br

.ET \" end top-to-bottom

15

Assuming English and Katakana printed from left to right
Hebrew printed from right to left
Hiragana and Chinese printed from
top to bottom with columns laid out from right to left,
Output is something like:

English

� � � *

2

I

�

*

!

Z

2

I

�

*

!

Z

16

OBSERVED PROPERTIES OF
CHINESE/JAPANESE

TOP-TO-BOTTOM TEXT

Characters are printed in rectangular grid with NO extra space between "words"
and NO attempt to avoid breaking lines in middle of "words" and just before
punctuation —

EVEN when Latin text is embedded within.

Grid arrangement fits in nicely with constant sized square Hanzis:

D

A

N

B

E

R

R

Y

g

22

In all of the above,
there were NO changes to dtroff

except to recompile it with larger table sizes
to allow up to 255 fonts

as opposed to the default 10
and to fix bugs (sigh!)

exposed by this size change

36

vi.iv, a Bi-Directional vi by Habusha

Same trick is played for vi.iv, except that
because vi, as all editors must be,
is a monolithic program,
the change is made to the base program, vi

The line reorganization algorithm
is inserted into the screen manager

Each time any character in any line
is changed, the line is subjected to
the algorithm and is redrawn on screen

37

vi.iv assumes

Files stored in time order

LR language text with eighth bit off
RL language text with eighth bit on

Terminal described by termcap

Displays all text in visual order as a function of
text itself

AND current view direction

which is :settable

NOTE: nothing particular to Hebrew here!

38

Structure of vi:

editing
command
processor

display processor

screen

old
screen
image

new
screen
image

termcap

keyboard

edited
file

Structure used by emacs
used by anything based on curses

39

Ideal structure for vi.iv

Trying to build vi.iv with as few changes
as possible to vi

Clear that have to change editing part for new
commands, e.g.,

change view direction
change input language/direction

But try to do ALL other changes ONLY in

Screen Manager

Get screen manager to apply layout algorithm
for each line changed as a result of an editing
command and to send ONLY these lines to screen

40

Why is this approach good?

It’s lazy!!!

Largely unchanged editing part insures downward
compatibility

Note that because files and input are in
time order, unchanged editing part, INCLUDING
pattern matching, works!!

41

MINIX.XINIM, a Di-Directional MINIX, a mini-UNIX
by Allon

Same trick is played to build
MINIX.XINIM from MINIX.

The line reorganization algorithm
is put into the device drivers for
the screen, the line printer,
and any other device whose output
is human-read.

Each line that passes throough is
subject to reorganization before
being thrown at the device

The result is that from this simple change,
the kernel and ALL line-oriented
application programs become bi-directional

with NO change to the rest of the kernel
or to any of the application programs.

42

Output

Algorithm

Layout

Device Drivers

Kernel

Unchanged Applications

43

Line-oriented applications include

sh csh cat more grep gres sort uniq ed

and do not include programs that
write to the full screen such as

vi emacs and
curses-based applications

However the latter can be made bi-directional
by inserting the line reorganization algorithm
into curses, as was done to vi

44

Arabic and Farsi formatting by Srouji

Arabic and Farsi are R-L like Hebrew

But ... other problems

Different forms of letters based on
position in word

Have input preprocessor that identifies
position and translates letter code
into glyph code

So input is in pure spelling form
the form assumed by standard codes
ASMO and IISCI

People think pure spelling and
it is suited for alphabetization

45

Connecting letters

just have base line segment of each letter
be in

same vertical position,
same thickness, and

flush to bounding box on connecting side

keshide —
stretch either the last letter or
the connection to the last letter
in a line

rather than spreading words to achieve
left justification

How to achieve keshide without changing dtroff?

46

In any case, ffortid works by totally reformating line

Input in ditroff intermediate form

Extract the text of the line from input

Reorganize text of line so that
R-L-font text is printed R-L

Use dtroff’s line-filling algorithm with
dtroff’s width tables to build
unjustified line and to calculate
distance δ from end of text to end of line

Divide δ by number of interword gaps
(with a smidgen more after sentence punctuation)
and distribute that amount of white space
to each interword gap

47

For Arabic and Farsi, add an option that either

inserts a base-line filler of δ units before
last connecting-before letter in the line

divides δ by number of words having a
connecting-before letter and
inserts base-line fillers of that length
before last connecting-before letter
of each word in the line

To stretch last letters themselves needs dynamic font;
J. André has proposed and illustrated them

We get keshide WITHOUT changing dtroff itself!!

48

Indexing
(Not really multilingual, but making use of trick!)

Usual technique in ditroff:
flood document file with commands
.tm term \n%
which send term and current page number
to standard error

Similar device in TEX

49

Abe wrote program indx with input:

one file with index terms

ditroff intermediate form output of document to be indexed

Document broken into lines AND pages
whose numbers are known

Note that because of end-of-word markers,
input words can be found

50

indx finds page numbers
(and even line numbers, if so requested)

of all occurences of each index term

and builds ditroff input file for index

Exact format of index is determined
by definitions of macros invoked in
this file

NO need to flood document file with
indexing instructions

Document file is kept clean for editing,
greping, spelling, proofing,
dictioning, doubleing, etc.

51

Page Markup

Problems with all batch,
one-pass formatters, such as ditroff

1. Widow and orphan lines

Last line of paragraph at top of page
first line of paragraph at bottom of page

Second is avoidable by not beginning a
paragraph UNLESS there is room for at
least two lines (.ne command)

But avoiding first requires look ahead

52

2. Figure placement

Presently handled by macro packages
using diversions, but very UNSTABLE

3. Multiple column text
figure placement
starting single column after a bit

of double-column output

4. Balancing pages
all pages same length

The solutions to all of these really require
two-pass algorithms

53

Kernighan’s solution: Program pm

First turn off pagination

In any case, dtroff knows NOTHING
about page length

Page length implemented by macro packages
using traps that can be set at
particular distances from top of current page

So now dtroff thinks that whole document
is ONE page!

54

Change macros for UNITs to output
BEGIN-UNIT and END-UNIT markers only

in particular NO floating

So get text broken into lines on
one LONG page with

beginnings and ends of
paragraphs, figures, footnotes, etc.

marked and appearing in the order
that they were input

pm accepts ditroff intermediate format
and outputs in the same format

However, it uses the fact that it is a
second pass over the text to do
a good job of figure and footnote placement
in balanced, possibly multi-column pages,
with no widows and orphans

The algorithm for figure placement is greedy
So it is stable

55

Because this was done with
NO change to dtroff

still, its line-breaking and justification
leaves much aesthetics to be desired

Since dtroff does it line-by-line,
interword gaps of two different lines
can be radically different

(albeit all the same within each line)

TEX’s algorithm does line balancing for
whole paragraph BEFORE outputting any line

Results are visibly better

56

Note that NONE of the above tricks
can be performed with TEX!!!

TEX DVI format does not have the necessary information
end-of-line marker
end-of-word marker

Thus to do the above tricks, it is necessary to either
change DVI format OR
do the trick inside a modified TEX

Necessitates change to TEX in either case.

Nightmare of one or more of

necessitating all DVI processors out there
to be changed

distributing a new version of TEX
maintaining several programs with mostly

identical code

None is very appetizing!

57

To make bi-directional TEX,
Knuth and Mackay opted to change TEX itself

to make TEX/XET

But it is clearly harder to make TEX/XET
as one monolithic program

(without damaging pure TEX part)
than it is to make a XET

(in the model of ffortid)

58

Modularity of ditroff system
paid dividends in speed and security

We were able to QUICKLY get the new functions in

WITHOUT having to diddle with any of
AT&T’s widely-distributed ditroff programs

WITHOUT risk of changing ditroff functionality and
of eliminating bugs that had become features!

59

time line

60

Journals I have typeset my own articles for (in ditroff, of course)

Electronic Publishing
Journal of Logic Programming
Journal of Compuer Languages
Journal of Systems and Software
Software—Practice and Experience
ACM Transactions on Programming

Languages and Systems
TUGboat (!)

Journals that use ditroff technology

Electronic Publishing (also accepts TEX input)
Interactive Learning International
Journal of Software Maintenance
AT&T Technical Journal

61

Open Research Problems

Extensible WYSIWYG formatter

Bi-directional UNIX

Tri-directional vi, MINIX, and UNIX
what does scrolling mean?

Better Paragraphing in dtroff

Multilingual X Windows

Dynamic fonts with stretchable letters

62

