Logical Approach to Physical Data Independence

and Query Compilation
Updates

David Toman

D.R. Cheriton School of Computer Science
University of

Waloo
T
<>

1/12

The Story So Far. ..

W s e .

Y = (ZL UXipU Zp) 2ip (query compilation)

A N ¥

Waterioo

Review Updates 2/12

The Story So Far. ..

r = (ZL UXipU Zp) 2ip (query compilation)

Features:
@ Flexible physical design: constraints ¥p U X| p and code for Sp
= main-memory operations, disk access, external sources of data, .. .;
@ Query plans are efficient

= all combination of access paths and simple operators;
= interpolation and postprocessing to find efficient .

Waterioo

Review Updates 2/12

DATA UPDATE

Waterioo
Review Updates 3/12

What is an Update?

User Update: R; € S,

begin-transaction

n .__ O
RL.—-wg,
Ry =g,/

n .__ o .
Rm = YR’

end-transaction

,,,,,,,,,,,,,

Data Update

Updates

4/12

What is an Update?

User Update: R; € S,

begin-transaction
insert @E1 into Ry; delete ¢p from R;;
insert @E into Ry, delete g, from Rs;
insert @Em into Rm; delete ¢p from R,
end-transaction

,,,,,,,,,,,,,

Data Update Updates 4/12

What is an Update?

User Update: R; € S,

begin-transaction
insert @E1 into Ry; delete ¢p from R;;
insert @R into Ry; delete ¢p from Rs;
insert @Em into Rm; delete g from Rn;
end-transaction

= Assumption-1: transactions are consistency-preserving.

= Assumption-2: results of cpﬁ and ¢, are given explicitly
as finite sets of tuples.

,,,,,,,,,,,,,

Data Update Updates 4/12

What is an Update?

User Update: R, € S,

begin-transaction
insert @E1 into Ry; delete ¢p from R;;
insert @E into Ry; delete ¢p from Rs;
insert @Em into Rm; delete g from Rn;
end-transaction

= Assumption-1: transactions are consistency-preserving.

= Assumption-2: results of ¢, and @5 are given explicitly
as finite sets of tuples.

Observation:

Typical user transactions modify only few relations
= transaction types (specify which updates are empty).

uuuuuuuuuuuu

Data Update Updates 4/12

What is the Problem?

@ how do we get from user update to physical update?
= we need to synthesize ¢}, ¢ for each access path R € Sh.

Waterioo
Data Update Updates 5/12

What is the Problem?

@ how do we get from user update to physical update?
= we need to synthesize ¢}, ¢ for each access path R € Sh.
... but what are the available access paths now?

Waterioo
Data Update Updates 5/12

What is the Problem?

@ how do we get from user update to physical update?
= we need to synthesize ¢}, ¢ for each access path R € Sh.
... but what are the available access paths now?

@ o', ¢ may need invented values (RIDs): where do they come from?
= constant complement idea (kind of an oracle).

Waterioo
Data Update Updates 5/12

What is the Problem?

@ how do we get from user update to physical update?
= we need to synthesize ¢}, ¢ for each access path R € Sh.
... but what are the available access paths now?

@ o, o~ may need invented values (RIDs): where do they come from?
= constant complement idea (kind of an oracle).

@ access paths are modified one-at-time: what should the ordering be?
= how does this affect the synthesis of ¢, »~ for other access paths?

Waterioo
Data Update Updates 5/12

UPDATING DATA VIA INTERPOLATION

Waterioo
Data Update Updates 6/12

Updating Access Paths

IDEA: “Update Schema” ¥V

@ make two copies of the schema X:
3 9 (old: before update) and X" (new: after update);

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 7112

Updating Access Paths

IDEA: “Update Schema” ¥V

@ make two copies of the schema X:
3 9 (old: before update) and X" (new: after update);
@ add constraints describing the effect(s) of the update:
YE = {Vxy,..., x.Rt(Xy,...,xk) = R"(x1,...,X) A —R°(x1,...,Xk),
VX1, Xk R (X, oo Xk) = RO(Xq, -« oy Xk) A =R (Xq, ..o, Xk)
| R/k e SLUSpl.

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 7112

Updating Access Paths

IDEA: “Update Schema” ¥V

@ make two copies of the schema X:
3 9 (old: before update) and X" (new: after update);
@ add constraints describing the effect(s) of the update:
YE = {Vxy,..., x.Rt(Xy,...,xk) = R"(x1,...,X) A —R°(x1,...,Xk),
VX1, Xk R (X, oo Xk) = RO(Xq, -« oy Xk) A =R (Xq, ..o, Xk)
| R/k e SLUSpl.

New schema ¥V = ¥°UYX"U X*; logical symbols/access paths in xY??

Waterioo

Updating Data via Interpolation Updates 7112

Updating Access Paths

IDEA: “Update Schema” ¥V

@ make two copies of the schema X:
3 9 (old: before update) and X" (new: after update);
@ add constraints describing the effect(s) of the update:
YE = {Vxy,..., x.Rt(Xy,...,xk) = R"(x1,...,X) A —R°(x1,...,Xk),
VX1, Xk R (X, oo Xk) = RO(Xq, -« oy Xk) A =R (Xq, ..o, Xk)
| R/k e SLUSpl.

New schema ¥V = ¥°UYX"U X*; logical symbols/access paths in xY??
S.= {R"|RecSA}U{RT, R~ |RcSA}US US[;
Sa= {R°|ReSA}U{RT R~ |R/€S.}.

Waterioo

Updating Data via Interpolation Updates 7112

Updating Access Paths

IDEA: “Update Schema” ¥V

@ make two copies of the schema X:
3 9 (old: before update) and X" (new: after update);
@ add constraints describing the effect(s) of the update:
YE = {Vxy,..., x.Rt(Xy,...,xk) = R"(x1,...,X) A —R°(x1,...,Xk),
VX1, Xk R (X, oo Xk) = RO(Xq, -« oy Xk) A =R (Xq, ..o, Xk)
| R/k e SLUSpl.

New schema ¥V = ¥°UYX"U X*; logical symbols/access paths in xY??
S.= {R"|RecSA}U{RT, R~ |RcSA}US US[;
Sa= {R°|ReSA}U{RT R~ |R/€S.}.

Update code = interpolants for R*(x) and R~ (x) under XV (for each R € Sp);
... still needs code that inserts/removes tuples into/from access paths.

Waterioo

Updating Data via Interpolation Updates 7112

Example

Relational Design: emp records hold dept-id (instead of pointer)
@ User transaction of the form:

{employee™ (123, Bob, $50k), workst(123,345)}

@ Update code (for emp™):

emp™ (X1, X2, X3, X4) := employee™(Xy, X2, X3) A works™ (X, X4)

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 8/12

Example

Relational Design: emp records hold dept-id (instead of pointer)
@ User transaction of the form:

{employee™ (123, Bob, $50k), workst(123,345)}

@ Update code (for emp™):

emp™ (X1, X2, X3, X4) := employee™(Xy, X2, X3) A works™ (X, X4)

... doesn’t quite work with our physical design with pointers (why?)

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 8/12

Where do the “invented” Values come from?

Problem
@ User transaction of the form:

{employee™ (123, Bob, $50k), workst(123,345)}

@ What should empfile™(w)’s update code look like?

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 9/12

Where do the “invented” Values come from?

@ User transaction of the form:
{employee™ (123, Bob, $50k), workst(123,345)}

@ What should empfile™(w)’s update code look like?

VXx.y,z.(employee(X,y,2) — Iw.(empfile(w) A emp—num(w, X)))
Vx,y,z,w.((employee(X,y, z) A emp—num(W, X)) — emp—-name (W, y))
Vx,y,z,w,u.((employee(X, ¥, Z) A emp—num(w, X) A works(X, u)

A dept-num(V, U)) — emp—-dept(w, v)).

Waterioo

Updating Data via Interpolation Updates 9/12

Where do the “invented” Values come from?

Problem
@ What should empfile™(w)'s update code look like?

Vx.y,Zz.(employee(X,y,z) — Iw.(empfile(w) A emp—num(w, X)))
VX, y,z,w.((employee(X,y, Z) A emp—num(w, X)) — emp—name(Ww, y))
VXx,y,z,w,u.((employee(X, Y, Z) A emp—num(w, X) A works(X, u)

A dept—num(V, U)) — emp—-dept (W, v)).

@ forempfilet(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A deptcomp(U, V) A empcomp(y, Z, £, v, X)

@ for emp-—num, etc.: no-op.

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 9/12

Constant Complement Access Path

CC for emp records: empcomp/5/4

function empcomp-first
if an emp record r with r—>num = X;
exists at address Xs return true

X5 := new emp
X5—>num = Xq
Xs—>name := Xo
Xs—>sal := X3
Xs—>dept := Xy

return true

function empcomp-next
return false

Waterioo

Updating Data via Interpolation Updates 10/12

Constant Complement Access Path

CC for emp records: empcomp/5/4

function empcomp-first
if an emp record r with r—>num = X;
exists at address Xs return true

X5 := new emp
X5—>num = Xq
Xs—>name := Xo
Xs—>sal := X3
Xs—>dept := Xy

return true

function empcomp-next
return false

Observation(s):
@ “fills” all fields of a new record = emp-id, etc., no-ops;

...@ needs to check for existence of all emp records (not just in empfilel)
Waterloo

Updating Data via Interpolation Updates 10/12

Schematic Cycles and Update Sequencing
Still a problem:
@ forempfile®(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A deptcomp(U, V) A empcomp(y, Z,t, v, X),

Waterioo

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing
Still a problem:
@ forempfile®(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A deptcomp(U, V) A empcomp(y, Z,t, v, X),

... what should happen if department u doesn’t exist?

Waterioo

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing
Still a problem:
@ forempfile®(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A deptcomp(U, V) A empcomp(y, Z,t, v, X),

... what should happen if department u doesn’t exist?
... 0k, if it is a new department, who manages it?

Waterioo

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing
Still a problem:
@ forempfile®(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A deptcomp(U, V) A empcomp(y, Z,t, v, X),

... what should happen if department u doesn’t exist?
... 0k, if it is a new department, who manages it?

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Waterioo

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #1: force CC to use all attributes of the AP

Modify deptcomp(y, X) to deptcomp(y, n, m, x)/4/3
= i.e., force it to take complete dept records (same as empcomp).

@ forempfilet(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A departmentt(u, n, m)
A deptcomp(U, n, X, V) A empcomp(y, Z, t, v, X)

Universiy ot
Waterioo
Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #1: force CC to use all attributes of the AP

Modify deptcomp(y, X) to deptcomp(y, n, m, x)/4/3
= i.e., force it to take complete dept records (same as empcomp).

@ forempfilet(x):
Jy,z,t,u,v.employee™(y,z,t) Aworks™(y, u)
A departmentt(u, n, m)
A deptcomp(U, n, X, V) A empcomp(y, Z, t, v, X)

How do you insert the first employee and department??
OOPS: not definable (because of binding patterns)

Universiy ot
Waterioo
Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #2: stage updates via reification of attributes

@ for deptfile™(x):
Jy, z, t.department (2, y,t) A dept comp(Zz, X),

uuuuuuuuuuuu

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #2: stage updates via reification of attributes

@ for deptfile™(x):
Jy, z, t.department (2, y,t) A dept comp(Zz, X),
Q forempfilet(x):
Jy, z,t,u,v.employee™(y,z,t) Aworks™(y, u)
Adeptfile(V) A dept—num(V,u) A empcomp(y, Z,t, Vv, X),

uuuuuuuuuuuu

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #2: stage updates via reification of attributes

@ for deptfile™(x):
Jy, z, t.department (2, y,t) A dept comp(Zz, X),
Q forempfilet(x):
Jy, z,t,u,v.employee™(y,z,t) Aworks™(y, u)
Adeptfile(V) A dept—num(V,u) A empcomp(y, Z,t, Vv, X),

@ for dept-manager™(x, y):
Jz,t,u. department (2, t, u) A dept file(x) A dept—num(X, Z)
A(3z,t,v,w.employeet(u, z,t) Aworks™t(u, V)
Aempfile(y) Aemp-id(u,y))

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 11/12

Schematic Cycles and Update Sequencing

Constant Complement can ONLY be used with the AP that stores the records
= modify Sa as required when compiling AP update code.

Attempt #2: stage updates via reification of attributes

@ for deptfile™(x):
Jy, z, t.department (2, y,t) A dept comp(Zz, X),
Q forempfilet(x):
Jy, z,t,u,v.employee™(y,z,t) Aworks™(y, u)
Adeptfile(V) A dept—num(V,u) A empcomp(y, Z,t, Vv, X),

Q for dept-manager™(x,y):
Jz,t,u. department (2, t, u) A dept file(x) A dept—num(X, Z)
A(3z,t,v,w.employeet(u, z,t) Aworks™t(u, V)
Aempfile(y) A emp-id(u,y))
@ for dept—name™(x, y):
Jz,t.department™(z,y,t) A deptfile(X) A dept-num(X, Z)

,,,,,,,,,,,,,

Updating Data via Interpolation Updates 11/12

Summary

@ code for update of an access path
@ synthesized queries ", ¢~ over update schema,
@ code for primitive inserts/deletes,
@ code for constant complement access paths (for “invented values”);

@ schematic cycles must be broken via reification;

Waterioo

Updating Data via Interpolation Updates 12/12

Summary

@ code for update of an access path
@ synthesized queries ", ¢~ over update schema,
@ code for primitive inserts/deletes,
@ code for constant complement access paths (for “invented values”);

@ schematic cycles must be broken via reification;

@ not entirely satisfactory (e.g., no in-place update)

Waterioo

Updating Data via Interpolation Updates 12/12

	Data Update
	Updating Data via Interpolation

