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Setup

Setting
Input: (1) Schema Σ (set of integrity constraints);

(2) Data D = {R1, . . . ,Rk} (instance of access paths); and
(3) Query ϕ (a formula)

Convention: ABox A vs. database DA

We assume that for every access path RAP(~x) in DA there is
a logical predicate R(~x) (with the same arity), and
a constraint ∀~x .RAP(~x)→ R(~x).
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Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering (under
certain answer semantics) is tractable (in data complexity)?

YES: Conjunctive queries (or positive) and “lite” Description Logics:
1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

3 The CFD family
⇒ qualified ∀ (over total functions), functional dependencies
⇒ certain answers PTIME-complete for data complexity

OBDA and Lite Logics OBDA et al. 4 / 1



Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering (under
certain answer semantics) is tractable (in data complexity)?

YES: Conjunctive queries (or positive) and “lite” Description Logics:
1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

3 The CFD family
⇒ qualified ∀ (over total functions), functional dependencies
⇒ certain answers PTIME-complete for data complexity

OBDA and Lite Logics OBDA et al. 4 / 1



DL-Lite Family of DLs

Definition (DL-Lite family: Schemata/TBoxes)
1 Roles R and concepts C as follows:

R ::= P | P− C ::= ⊥ | A | ∃R
2 Schemata are represented as TBoxes: a finite set T of constraints

C1 u · · · u Cn v C R1 v R2

Access paths (data)⇒ ABox A (recall the “convention” about access paths!)

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the query.
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Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨

(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)

= {bob, sue}
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QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox Σ
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ Σ do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R;
return Q† := (

∨
R)

Theorem

Σ ∪ A |= Q(~a) if and only if DA |= Q†(~a)

⇐ can be VERY large
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EL Family of DLs

Definition (EL-Lite family: Schemata and TBoxes)
1 Concepts C as follows:

C ::= A | > | ⊥ | C u C | ∃R.C
2 Schemata are represented as TBoxes: a finite set T of constraints

C1 v C2 R1 v R2

Access paths (data)⇒ ABox A (recall the “convention” about access paths!)

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the data.
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Combined Approach

Can an approach based on rewriting be used for EL?

NO: EL is PTIME-complete (data complexity).

Combined Approach
We effectively transform

1 the ABox (access paths) A to a canonical structure D∗A utilizing Σ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s).

Theorem (Lutz, _, Wolter: IJCAI’09)

Σ ∪ A |= Q(~a) if and only if D∗A |= Q‡(~a)
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Example (with almost DL-Lite schema)

TBox (Schema): Employee v ∃Works.Project
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:
1 D∗A = { Employee(bob),Works(bob, cWorks),

Works(sue, slides),Works(sue, cWorks),Project(cWorks), }
2 Q‡ = Q ∧ (x 6= cWorks)

Query Execution:

Q‡(D∗A) = {bob, sue}
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A Combined Approach and DL-Lite

Can the exponential size of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach
. . . but query rewriting is much more involved due to inverse roles;

Theorem (Konchatov, Lutz, _, Wolter, KR10)

Σ ∪ A |= Q(~a) if and only if D∗A |= Q‡(~a)

(. . . still exponential for role hierarchies.)

Theorem (Lutz, Seylan,_,Wolter, ISWC13)

Σ ∪ A |= Q(~a) if and only if D∗A |= Qfilter(~a)

(. . . polynomial in |H|, but uses UDF feature of DB2.)
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CFD family of Logics

Definition (CFDnc: Schemata and TBoxes)
1 Syntax formed from path functions Pf and concepts C,D as follows:

C ::= A | ∀Pf .C
D ::= A | ¬C | ∀Pf .C | C : Pf1, . . . ,Pfk → Pf

2 Schemata are represented as a TBox:
finite set T of constraints C v D.

3 Data is represented as an ABox (recall again the AP “convention”):
finite set A of concept (A(a)) and equational (Pf(a) = Pf′(b)) assertions.

Query Answering: The Perfect Combined Approach
IDEA: incorporate

reachability induced by schematic knowledge into the data, and
types induced by schematic knowledge into the query.
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DATA EXCHANGE
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Setup

Schema Mapping
source schema (signature) SP and (closed) data;
target schema (signature) SL;
mapping constraints: s-t TGDs–formulas of the form

∀~x .ϕ(~x)→ ∃~y .ψ(~x , ~y) where ϕ is a CQ over SP and ψ a CQ over SL.

[Arenas et al: Foundations of Data Exchange]

Definition
J (over SL) is a solution for I (over SP) w.r.t. Σ if (I, J) |= Σ.

. . . too many solutions (TGDs imply open world @SL!)
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Universal Solutions and Cores

Problem(s):
Multiple solutions (target instances) for single closed world source

⇒ how to answer queries over target? certain answers w.r.t. all solutions.

IDEA:
Find the best solution: one that can be used instead of every other solution.

an universal solution: homomorphism to all other solutions
⇒ variables (marked nulls): representation system [Imielinski&Lipski’84]
⇒ can be used to answer CQ/UCQ (how and why?)

a smallest universal solution—the core.

core can be constructed using the chase (in PTIME);
what happens if we have additional constraints on the target (SL)?
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LIMITS AND ISSUES WITH POSSIBLE
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Certain Answers: What is the Price?

High Computational Cost even for mild deviation from Lite Logics (and CQ)
coNP-hard for DATA COMPLEXITY

Example
Schema&Data:

Σ = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj )},Node = {n1, . . .nm},
Colour = {r ,g,b} }

Query: ∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

. . . coNP-complete for all DLs between AL and SHIQ.

OBDA-Lite can only say Colour ⊇ {r ,g,b} (due to OWA)
Data Exchange cannot say ∀x , y .ColNode(x , y)→ Colour(y) (not an s-t TGD)
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Certain Answers: What about more complex Queries?

(safe) Negation, Inequality

Theorem (Gutíerrez-Basulto et al., RR13)
OBDA for CQ with single inequality or with safe negated atoms over DL-LiteH

is undecidable.

Aggregation

⇒ count/sum aggregate functions do not play nicely with certain answers
epistemic operators (count the number of known answers)

[Calvanese et al., ONISW08]
range/lower bounds semantics (at least so many)

[Kostylev and Reutter, AAAI13]

. . . and it is (data complexity-wise) hard in all cases.
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Certain Answers??

Example (Unintuitive Behaviour of Queries:)
1 ∃x .Phone("John", x)?

⇒ YES

2 Phone("John", x)?

⇒ {}

under Σ = {∀x .Person(x)→ ∃y .Phone(x , y)}
and D = {Person("John")}.

Embedded SQL-like Example
if “∃x .Phone("John", x)” then
begin

x := “Phone("John", x)”;
print "John’s phone number is:" x

end
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Summary

certain answers are tractable only for
Lite schemata and Conjunctive/UC Queries

pretty much any extension leads to complexity (decidability) issues

Next time:THE DATABASE EMPIRE STRIKES BACK
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