Logical Approach to Physical Data Independence and Query Compilation Classical OBDA and Data Exchange

David Toman

D.R. Cheriton School of Computer Science University of Waterloo

・ロト ・回ト ・ヨト ・ヨト

OBDA AND LITE LOGICS

▲口と▲□と▲目と▲目と 目 めぐの

OBDA et al. 2 / 1

Setup

Setting

Input: (1) Schema Σ (set of integrity constraints); (2) Data $D = \{R_1, \dots, R_k\}$ (instance of access paths); and (3) Query φ (a formula)

・ロン ・回 と ・ 回 と ・ 回 と

Setup

Setting

Input: (1) Schema Σ (set of integrity constraints); (2) Data $D = \{R_1, \dots, R_k\}$ (instance of access paths); and (3) Query φ (a formula)

Definition (Certain Answers)

$$\operatorname{cert}_{\Sigma,D}(\varphi) = \{ \vec{a} \mid \Sigma \cup D \models \varphi(\vec{a}) \} = \bigcap_{I \models \Sigma \cup D} \{ \vec{a} \mid I \models \varphi(\vec{a}) \}$$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Setup

Setting

Input: (1) Schema Σ (set of integrity constraints); (2) Data $D = \{R_1, \dots, R_k\}$ (instance of access paths); and (3) Query φ (a formula)

Definition (Certain Answers)

$$\operatorname{cert}_{\Sigma,D}(\varphi) = \{ \vec{a} \mid \Sigma \cup D \models \varphi(\vec{a}) \} = \bigcap_{I \models \Sigma \cup D} \{ \vec{a} \mid I \models \varphi(\vec{a}) \}$$

Convention: ABox A vs. database D_A

We assume that for every access path $R_{AP}(\vec{x})$ in D_A there is

- a logical predicate $R(\vec{x})$ (with the same arity), and
- a constraint $\forall \vec{x} . R_{AP}(\vec{x}) \rightarrow R(\vec{x})$.

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Can this be Done Efficiently at all?

Question

Can there be a *non-trivial* schema language for which *query answering* (under certain answer semantics) is *tractable* (in data complexity)?

Question

Can there be a *non-trivial* schema language for which *query answering* (under certain answer semantics) is *tractable* (in data complexity)?

YES: Conjunctive queries (or positive) and "lite" Description Logics:

- The DL-Lite family
 - \Rightarrow conjunction, \perp , domain/range, unqualified \exists , role inverse, UNA
 - \Rightarrow certain answers in AC_0 for data complexity (maps to SQL)
- $\textcircled{2} \ \ \, \text{The} \ \ \, \mathcal{EL} \ \, \text{family} \ \ \, \label{eq:linear}$
 - \Rightarrow conjunction, qualified \exists
 - ⇒ certain answers *PTIME-complete* for data complexity
- The CFD family
 - \Rightarrow qualified \forall (over total functions), functional dependencies
 - ⇒ certain answers PTIME-complete for data complexity

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata/TBoxes)

Roles R and concepts C as follows:

$$R ::= P \mid P^- \qquad C ::= \perp \mid A \mid \exists R$$

2 Schemata are represented as TBoxes: a finite set T of *constraints*

 $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C$ $R_1 \sqsubseteq R_2$

Access paths (data) \Rightarrow ABox \mathcal{A} (recall the "convention" about access paths!)

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata/TBoxes)

Roles R and concepts C as follows:

$$R ::= P | P^- \qquad C ::= \bot | A | \exists R$$

2 Schemata are represented as TBoxes: a finite set T of *constraints*

 $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C$ $R_1 \sqsubseteq R_2$

Access paths (data) \Rightarrow ABox \mathcal{A} (recall the "convention" about access paths!)

How to compute answers to CQs?

IDEA: incorporate schematic knowledge into the query.

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

 $Q^{\dagger} = (\exists y. \textit{Works}(x, y) \land \textit{Project}(y)) \lor$

TBox (Schema): $Employee \sqsubseteq \exists Works \\ \exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

$$egin{aligned} \mathcal{Q}^{\dagger} = & (\exists y. \textit{Works}(x, y) \land \textit{Project}(y)) \lor \ & (\exists y, z. \textit{Works}(x, y) \land \textit{Works}(z, y)) \lor \end{aligned}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

$$\begin{array}{ll} \mathcal{Q}^{\dagger} = & (\exists y. \textit{Works}(x, y) \land \textit{Project}(y)) \lor \\ & (\exists y, z. \textit{Works}(x, y) \land \textit{Works}(z, y)) \lor \\ & (\exists y. \textit{Works}(x, y)) \lor \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

$$\begin{array}{lll} \mathcal{Q}^{\dagger} = & (\exists y. \textit{Works}(x, y) \land \textit{Project}(y)) \lor \\ & (\exists y, z. \textit{Works}(x, y) \land \textit{Works}(z, y)) \lor \\ & (\exists y. \textit{Works}(x, y)) \lor \\ & (\textit{Employee}(x)) \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

$$\begin{array}{ll} Q^{\dagger} = & (\exists y. \textit{Works}_{\textit{AP}}(x, y) \land \textit{Project}_{\textit{AP}}(y)) \lor \\ & (\exists y, z. \textit{Works}_{\textit{AP}}(x, y) \land \textit{Works}_{\textit{AP}}(z, y)) \lor \\ & (\exists y. \textit{Works}_{\textit{AP}}(x, y)) \lor \\ & (\textit{Employee}_{\textit{AP}}(x)) \end{array}$$

Query Execution:

$$\mathcal{O}^{\dagger} \left(\begin{array}{c} \{ \textit{Employee(bob)}, \\ \textit{Works(sue, slides)} \} \end{array} \right)$$

・ロト ・回ト ・ ヨト ・ ヨト

TBox (Schema):Employee $\sqsubseteq \exists Works$ $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

$$\begin{array}{ll} Q^{\dagger} = & (\exists y. Works_{AP}(x, y) \land Project_{AP}(y)) \lor \\ & (\exists y, z. Works_{AP}(x, y) \land Works_{AP}(z, y)) \lor \\ & (\exists y. Works_{AP}(x, y)) \lor \\ & (Employee_{AP}(x)) \end{array}$$

Query Execution:

G

$$P^{\dagger}\left(\begin{array}{c} \{ \textit{Employee(bob)}, \\ \textit{Works(sue, slides)} \end{array} \right) = \{\textit{bob}, \textit{sue} \}$$

<ロ> <同> <同> <同> < 同> < 同>

QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox \Sigma
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \Sigma do
            if \alpha is applicable to Q' then
                 R = R \cup \{Q'[\mathsf{lhs}(\alpha)/\mathsf{rhs}(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                 \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no query unique up to variable renaming can be added to R;
return Q^{\dagger} := (\bigvee R)
```


QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox \Sigma
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \Sigma do
            if \alpha is applicable to Q' then
                 R = R \cup \{Q'[\mathsf{lhs}(\alpha)/\mathsf{rhs}(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                 \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no query unique up to variable renaming can be added to R;
return Q^{\dagger} := (\bigvee R)
```

Theorem

Waterloo

$$\Sigma \cup \mathcal{A} \models \mathcal{Q}(\vec{a})$$
 if and only if $\mathcal{D}_{\mathcal{A}} \models \mathcal{Q}^{\dagger}(\vec{a})$

QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox \Sigma
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \Sigma do
            if \alpha is applicable to Q' then
                 R = R \cup \{Q'[\mathsf{lhs}(\alpha)/\mathsf{rhs}(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                 \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no query unique up to variable renaming can be added to R;
return Q^{\dagger} := (\bigvee R)
```

Theorem

Waterloo

 $\Sigma \cup \mathcal{A} \models Q(\vec{a})$ if and only if $D_{\mathcal{A}} \models Q^{\dagger}(\vec{a}) \quad \Leftarrow can \ be \ VERY \ large$

\mathcal{EL} Family of DLs

Definition (*EL*-Lite family: Schemata and TBoxes)

Concepts C as follows:

$$C ::= A \mid \top \mid \bot \mid C \sqcap C \mid \exists R.C$$

2 Schemata are represented as TBoxes: a finite set \mathcal{T} of *constraints*

 $C_1 \sqsubseteq C_2$ $R_1 \sqsubseteq R_2$

Access paths (data) \Rightarrow ABox A (recall the "convention" about access paths!)

\mathcal{EL} Family of DLs

Definition (*EL*-Lite family: Schemata and TBoxes)

Concepts C as follows:

$$C ::= A \mid \top \mid \bot \mid C \sqcap C \mid \exists R.C$$

2 Schemata are represented as TBoxes: a finite set \mathcal{T} of *constraints*

 $C_1 \sqsubseteq C_2$ $R_1 \sqsubseteq R_2$

Access paths (data) \Rightarrow ABox \mathcal{A} (recall the "convention" about access paths!)

How to compute answers to CQs?

IDEA: incorporate schematic knowledge into the data.

Can an approach based on *rewriting* be used for *EL*?

OBDA and Lite Logics

Image: A matrix

OBDA et al. 9 / 1

.

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete (data complexity).

4 3 4 4 3

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete (data complexity).

Combined Approach

We effectively transform

- the ABox (access paths) A to a *canonical structure* D^*_A utilizing Σ ,
- 2 the conjunctive query Q to a relational query Q^{\ddagger} .

... both *polynomial* in the input(s).

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete (data complexity).

Combined Approach

We effectively transform

- the ABox (access paths) A to a *canonical structure* D^*_A utilizing Σ ,
- 2 the conjunctive query Q to a relational query Q^{\ddagger} .

... both *polynomial* in the input(s).

イロト イヨト イヨト イヨト

Theorem (Lutz, _, Wolter: IJCAI'09)

$$\Sigma \cup \mathcal{A} \models Q(\vec{a})$$
 if and only if $D^*_{\mathcal{A}} \models Q^{\ddagger}(\vec{a})$

Example (with almost DL-Lite schema)

TBox (Schema):Employee $\sqsubseteq \exists Works.Project$ $\exists Works.T \sqsubseteq \exists Works.Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {*Employee*(*bob*), *Works*(*sue*, *slides*)}

- E > - E >

Example (with almost DL-Lite schema)

TBox (Schema):Employee $\sqsubseteq \exists Works.Project$ $\exists Works.T \sqsubseteq \exists Works.Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {Employee(bob), Works(sue, slides)}

Rewriting:

2
$$Q^{\ddagger} = Q \land (x \neq c_{Works})$$

Example (with almost DL-Lite schema)

TBox (Schema):Employee $\sqsubseteq \exists Works.Project$ $\exists Works.T \sqsubseteq \exists Works.Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {*Employee*(*bob*), *Works*(*sue*, *slides*)}

Rewriting:

$$Q^{\ddagger} = Q \land (x \neq c_{Works})$$

Query Execution:

$$Q^{\ddagger}(D^*_{\mathcal{A}}) = \{bob, sue\}$$

・ロン ・回 ・ ・ ヨン・

Can the exponential size of rewriting be avoided for DL-Lite?

OBDA and Lite Logics

OBDA et al. 11 / 1

Can the *exponential size* of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach

... but query rewriting is much more involved due to *inverse roles*;

Can the *exponential size* of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach

... but query rewriting is much more involved due to *inverse roles*;

Theorem (Konchatov, Lutz, _, Wolter, KR10)

 $\Sigma \cup A \models Q(\vec{a})$ if and only if $D^*_{\mathcal{A}} \models Q^{\ddagger}(\vec{a})$

(... still exponential for role hierarchies.)

Can the *exponential size* of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach

... but query rewriting is much more involved due to *inverse roles*;

Theorem (Konchatov, Lutz, _, Wolter, KR10)

$$\Sigma \cup A \models Q(\vec{a})$$
 if and only if $D^*_{\mathcal{A}} \models Q^{\ddagger}(\vec{a})$

(... still exponential for role hierarchies.)

Theorem (Lutz, Seylan,_,Wolter, ISWC13)

 $\Sigma \cup A \models Q(\vec{a})$ if and only if $D^*_{\mathcal{A}} \models Q^{\text{filter}}(\vec{a})$

(... polynomial in $|\mathcal{H}|$, but uses UDF feature of DB2.)

Definition (CFD_{nc} : Schemata and TBoxes)

Syntax formed from *path functions* Pf and *concepts C*, *D* as follows:

$$C ::= A \mid \forall \mathsf{Pf.}C$$
$$D ::= A \mid \neg C \mid \forall \mathsf{Pf.}C \mid C : \mathsf{Pf}_1, \dots, \mathsf{Pf}_k \to \mathsf{Pf}$$

Schemata are represented as a TBox: finite set T of *constraints* $C \sqsubseteq D$.

Otata is represented as an ABox (recall again the AP "convention"): finite set A of concept (A(a)) and equational (Pf(a) = Pf'(b)) assertions.

Definition (CFD_{nc} : Schemata and TBoxes)

Syntax formed from *path functions* Pf and *concepts C*, *D* as follows:

$$C ::= A \mid \forall \mathsf{Pf.}C$$

$$D ::= A \mid \neg C \mid \forall \mathsf{Pf.}C \mid \mathbf{C} : \mathsf{Pf}_1, \dots, \mathsf{Pf}_k \to \mathsf{Pf}$$

Schemata are represented as a TBox: finite set T of *constraints* $C \sqsubseteq D$.

Otata is represented as an ABox (recall again the AP "convention"): finite set A of concept (A(a)) and equational (Pf(a) = Pf'(b)) assertions.

Definition (CFD_{nc} : Schemata and TBoxes)

Syntax formed from *path functions* Pf and *concepts C*, *D* as follows:

$$C ::= A \mid \forall \mathsf{Pf.}C$$
$$D ::= A \mid \neg C \mid \forall \mathsf{Pf.}C \mid C : \mathsf{Pf}_1, \dots, \mathsf{Pf}_k \to \mathsf{Pf}$$

Schemata are represented as a TBox: finite set T of *constraints* $C \sqsubseteq D$.

Otata is represented as an ABox (recall again the AP "convention"): finite set A of concept (A(a)) and equational (Pf(a) = Pf'(b)) assertions.

Rewriting Approach: can't work—reachability in ABox (PTIME-c) Combined Approach: can't work—too many *types* (anon. completion too big)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (CFD_{nc} : Schemata and TBoxes)

Syntax formed from *path functions* Pf and *concepts C*, *D* as follows:

$$C ::= A \mid \forall \mathsf{Pf.}C$$
$$D ::= A \mid \neg C \mid \forall \mathsf{Pf.}C \mid C : \mathsf{Pf}_1, \dots, \mathsf{Pf}_k \to \mathsf{Pf}$$

Schemata are represented as a TBox: finite set T of *constraints* $C \sqsubseteq D$.

Otata is represented as an ABox (recall again the AP "convention"): finite set A of concept (A(a)) and equational (Pf(a) = Pf'(b)) assertions.

Query Answering: The Perfect Combined Approach

IDEA: incorporate

- reachability induced by schematic knowledge into the data, and
- types induced by schematic knowledge into the query.

DATA EXCHANGE

OBDA and Lite Logics

OBDA et al. 13 / 1

・ロト ・回 ト ・ ヨト ・ ヨ

Setup

Schema Mapping

- source schema (signature) S_P and (closed) data;
- target schema (signature) S_L;
- mapping constraints: s-t TGDs-formulas of the form

 $\forall \vec{x}. \varphi(\vec{x}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y}) \text{ where } \varphi \text{ is a CQ over } S_P \text{ and } \psi \text{ a CQ over } S_L.$

The general setting of data exchange is this:

[Arenas et al: Foundations of Data Exchange]

(日)

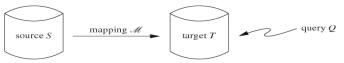
Setup

Schema Mapping

- source schema (signature) S_P and (closed) data;
- target schema (signature) S_L;
- mapping constraints: s-t TGDs-formulas of the form

 $\forall \vec{x}. \varphi(\vec{x}) \rightarrow \exists \vec{y}. \psi(\vec{x}, \vec{y}) \text{ where } \varphi \text{ is a CQ over } S_{P} \text{ and } \psi \text{ a CQ over } S_{L}.$

The general setting of data exchange is this:



[Arenas et al: Foundations of Data Exchange]

Definition J (over S_L) is a *solution* for I (over S_P) w.r.t. Σ if $(I, J) \models \Sigma$. waterioo ... too many solutions (TGDs imply open world $@S_L!)_{L \cap C}$

Data Exchange

Universal Solutions and Cores

Problem(s):

Multiple solutions (target instances) for single closed world source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

イロト イポト イヨト イヨト

Universal Solutions and Cores

Problem(s):

Multiple solutions (target instances) for single closed world source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

Universal Solutions and Cores

Problem(s):

Multiple solutions (target instances) for single closed world source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

• an universal solution: homomorphism to all other solutions

Multiple *solutions* (target instances) for single *closed world* source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

- an universal solution: homomorphism to all other solutions
 - ⇒ variables (marked nulls): representation system [Imielinski&Lipski'84]

Multiple *solutions* (target instances) for single *closed world* source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

- an universal solution: homomorphism to all other solutions
 - ⇒ variables (marked nulls): representation system [Imielinski&Lipski'84]
 - \Rightarrow can be used to answer CQ/UCQ (how and why?)

Multiple *solutions* (target instances) for single *closed world* source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

- an universal solution: homomorphism to all other solutions
 - ⇒ variables (marked nulls): representation system [Imielinski&Lipski'84]
 - \Rightarrow can be used to answer CQ/UCQ (how and why?)
- a smallest universal solution—the core.

Multiple *solutions* (target instances) for single *closed world* source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

- an *universal solution*: homomorphism to all other solutions
 - ⇒ variables (marked nulls): representation system [Imielinski&Lipski'84]
 - \Rightarrow can be used to answer CQ/UCQ (how and why?)
- a smallest universal solution—the core.
- core can be constructed using the chase (in PTIME);

Multiple *solutions* (target instances) for single *closed world* source

 \Rightarrow how to answer queries over target? *certain answers* w.r.t. all solutions.

IDEA:

Find the *best* solution: one that can be used instead of every other solution.

- an *universal solution*: homomorphism to all other solutions
 - ⇒ variables (marked nulls): representation system [Imielinski&Lipski'84]
 - \Rightarrow can be used to answer CQ/UCQ (how and why?)
- a smallest universal solution—the core.
- core can be constructed using the chase (in PTIME);
- what happens if we have additional constraints on the target (S_L)?

イロト イヨト イヨト イヨト

LIMITS AND ISSUES WITH POSSIBLE WORLDS

Data Exchange

OBDA et al. 16 / 1

∃ ► 4.

High Computational Cost even for mild deviation from *Lite* Logics (and CQ) *coNP-hard* for *DATA COMPLEXITY*

Example

Schema&Data:

$$\Sigma = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y) \}$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots, n_m\}, \\ Colour = \{r, g, b\}$$

High Computational Cost even for mild deviation from *Lite* Logics (and CQ) *coNP-hard* for *DATA COMPLEXITY*

Example

Schema&Data:

$$\Sigma = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y) \}$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots, n_m\}, Colour = \{r, g, b\} \}$$

• Query: $\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$

High Computational Cost even for mild deviation from *Lite* Logics (and CQ) *coNP-hard* for *DATA COMPLEXITY*

Example

Schema&Data:

$$\Xi = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y)$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots, n_m\}, Colour = \{r, g, b\} \}$$

• Query: $\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$ \Rightarrow the graph (*Node*, *Edge*) is NOT 3-colourable.

High Computational Cost even for mild deviation from *Lite* Logics (and CQ) *coNP-hard* for *DATA COMPLEXITY*

Example

Schema&Data:

$$\Xi = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y)$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots, n_m\}, Colour = \{r, g, b\} \}$$

• Query: $\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$ \Rightarrow the graph (*Node*, *Edge*) is NOT 3-colourable.

 $\ldots \text{ coNP-complete for all DLs between } \mathcal{AL} \text{ and } \mathcal{SHIQ}.$

High Computational Cost even for mild deviation from *Lite* Logics (and CQ) *coNP-hard* for *DATA COMPLEXITY*

Example

Schema&Data:

$$= \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y)$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots, n_m\}, Colour = \{r, g, b\} \}$$

• Query: $\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$ \Rightarrow the graph (*Node*, Edge) is NOT 3-colourable.

 $\ldots \text{ coNP-complete for all DLs between } \mathcal{AL} \text{ and } \mathcal{SHIQ}.$

OBDA-Lite can only say Colour $\supseteq \{r, g, b\}$ (due to OWA) Data Exchange cannot say $\forall x, y. ColNode(x, y) \rightarrow Colour(y)$ (not an s-t TGD)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Certain Answers: What about more complex Queries?

(safe) Negation, Inequality

Theorem (Gutíerrez-Basulto et al., RR13)

OBDA for CQ with single inequality or with safe negated atoms over DL-Lite^H is undecidable.

Aggregation

- \Rightarrow *count/sum* aggregate functions do not play nicely with *certain answers*
 - epistemic operators (count the number of known answers) [Calvanese et al., ONISW08]
 - range/lower bounds semantics (at least so many)
 - [Kostylev and Reutter, AAAI13]
 - ... and it is (data complexity-wise) hard in all cases.

Example (Unintuitive Behaviour of Queries:)

- ③ ∃x.Phone("John", x)?
- Phone("John", x)?

under $\Sigma = \{ \forall x. Person(x) \rightarrow \exists y. Phone(x, y) \}$ and $D = \{ Person("John") \}.$

Example (Unintuitive Behaviour of Queries:)

- ③ ∃x.Phone("John", x)?
- Phone("John", x)?

under $\Sigma = \{ \forall x. Person(x) \rightarrow \exists y. Phone(x, y) \}$ and $D = \{ Person("John") \}.$

Embedded SQL-like Example

```
if "∃x.Phone("John", x)" then
    begin
    x := "Phone("John", x)";
    print "John's phone number is:" x
    end
```


Example (Unintuitive Behaviour of Queries:)

- $\exists x. Phone("John", x)? \Rightarrow YES$
- 2 Phone("John", x)? \Rightarrow { }

under $\Sigma = \{ \forall x. Person(x) \rightarrow \exists y. Phone(x, y) \}$ and $D = \{ Person("John") \}.$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Embedded SQL-like Example

```
if "∃x.Phone("John", x)" then
    begin
    x := "Phone("John", x)";
    print "John's phone number is:" x
    end
```


Example (Unintuitive Behaviour of Queries:)

- ∃x.Phone("John",x)? ⇒ YES
- 2 $Phone("John", x)? \Rightarrow \{ \}$

under $\Sigma = \{ \forall x. Person(x) \rightarrow \exists y. Phone(x, y) \}$ and $D = \{ Person("John") \}.$

Embedded SQL-like Example

```
if "∃x.Phone("John", x)" then
  begin
  x := "Phone("John", x)";
  print "John's phone number is:" x
  end
```


(D) (A) (A) (A)

- certain answers are tractable only for *Lite schemata* and *Conjunctive/UC Queries*
- pretty much any extension leads to complexity (decidability) issues

- certain answers are tractable only for *Lite schemata* and *Conjunctive/UC Queries*
- pretty much any extension leads to complexity (decidability) issues

Next time: THE DATABASE EMPIRE STRIKES BACK

Limits and Issues with Possible Worlds