Logical Approach to Physical Data Independence and Query Compilation
 Query Rewriting

David Toman

D.R. Cheriton School of Computer Science

University of
Waterloo

The Story So Far...

The Story So Far...

$$
\Sigma=\left(\Sigma_{L} \cup \Sigma_{L P} \cup \Sigma_{P}\right)
$$

Features:

- Flexible physical design: constraints $\Sigma_{P} \cup \Sigma_{L P}$ and code for S_{A}
\Rightarrow main-memory operations, disk access, external sources of data, ...;
- Query plans are efficient
\Rightarrow all combination of access paths and simple operators;
\Rightarrow often comparable to hand-written programs.

The Story So Far...

(1) How do we find ψ such that $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ and $\Sigma \models \varphi \leftrightarrow \psi$?
(2) How do we deal with non-logical issues (e.g., duplicates)?

Goal and Steps

(1) Find ψ such that $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ and $\Sigma \models \varphi \leftrightarrow \psi$?

- search for optimal ψ (according to a cost model)
- in general many candidates (even for CQ: join-order optimization)

Goal and Steps

(1) Find ψ such that $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ and $\Sigma \models \varphi \leftrightarrow \psi$?

- search for optimal ψ (according to a cost model)
- in general many candidates (even for CQ: join-order optimization)
(2) How do we deal with non-logical issues?
- elimination of unnecessary duplicate elimination operations
- cut insertion (when one solution suffices)

Query Rewriting

Chase and Backchase

- Input: φ a $C Q, \Sigma$ a set of dependencies, and S_{A}.
\Rightarrow a dependency is a formula $\forall \bar{x} . \alpha \rightarrow \beta$ where α and β are CQs.

Chase and Backchase

- Input: φ a $C Q, \Sigma$ a set of dependencies, and S_{A}.
\Rightarrow a dependency is a formula $\forall \bar{x} . \alpha \rightarrow \beta$ where α and β are CQs.
- Algorithm:
(1) chase φ with Σ producing a CQ $\operatorname{chase}_{\Sigma}(\varphi)$;
- chase $\sum_{\sum}^{0}=\varphi$
- chase $\sum_{\Sigma}^{i+1}=$ chase $_{\Sigma}^{i} \wedge(\beta \theta)$ for $\forall \bar{x} . \alpha \rightarrow \beta \in \Sigma$ and $\theta: \alpha \mapsto$ chase $_{\Sigma}^{i}$;
- chase $_{\Sigma}=\lim _{i \rightarrow \infty}$ chase $_{\Sigma}^{i}$.
(2) select $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ such that atoms $(\psi) \subseteq \operatorname{atoms}\left(\operatorname{chase}_{\Sigma}(\varphi)\right)$;
(3) chase ψ with Σ producing $\operatorname{chase}_{\Sigma}(\psi)$;
(9) test whether chase ${ }_{\Sigma}(\psi)$ implies φ
\Rightarrow essentially atoms $(\varphi) \subseteq \operatorname{atoms}\left(\operatorname{chase}_{\Sigma}(\psi)\right)$.

Chase and Backchase

- Input: φ a $C Q, \Sigma$ a set of dependencies, and S_{A}.
\Rightarrow a dependency is a formula $\forall \bar{x} . \alpha \rightarrow \beta$ where α and β are CQs.
- Algorithm:
(1) chase φ with Σ producing a $\mathrm{CQ} \operatorname{chase}_{\Sigma}(\varphi)$;
(2) select $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ such that atoms $(\psi) \subseteq \operatorname{atoms}\left(\operatorname{chase}_{\Sigma}(\varphi)\right)$;
(3) chase ψ with Σ producing $\operatorname{chase}_{\Sigma}(\psi)$;
(9) test whether chase ${ }_{\Sigma}(\psi)$ implies φ
$\Rightarrow \operatorname{essentially} \operatorname{atoms}(\varphi) \subseteq \operatorname{atoms}\left(\operatorname{chase}_{\Sigma}(\psi)\right)$.
- Problems:
- chase $\Sigma(\varphi)$ may be infinite (non-termination);
\Rightarrow in theory restrict Σ to constraints w/terminating chase;
\Rightarrow in practice fair interleaving of the steps of the algorithm
- it only works well for CQs.

Won't work in General

- Chase extensions
- disjunctions in heads of dependencies: UCQ plans
- denial dependencies: pruning of disjuncts in such UCQ

Won't work in General

- Chase extensions
- disjunctions in heads of dependencies: UCQ plans
- denial dependencies: pruning of disjuncts in such UCQ
- does the algorithm find a plan if one exists?

Won't work in General

- Chase extensions
- disjunctions in heads of dependencies: UCQ plans
- denial dependencies: pruning of disjuncts in such UCQ
- does the algorithm find a plan if one exists?

Example

- $\mathrm{S}_{\mathrm{L}}=\{R / 2\}, \mathrm{S}_{\mathrm{P}}=\mathrm{S}_{\mathrm{A}}=\left\{V_{1} / 2 / 0, V_{2} / 2 / 0, V_{3} / 2 / 0\right\}$,
- $\Sigma=\left\{\forall x, y \cdot V_{1}(x, y) \equiv \exists u, w .(R(u, x) \wedge R(u, w) \wedge R(w, y)), \quad\right.$,
$\forall x, y \cdot V_{2}(x, y) \equiv \exists u, w \cdot(R(x, u) \wedge R(u, w) \wedge R(w, y))$,
$\left.\forall x, y \cdot V_{3}(x, y) \equiv \exists u \cdot(R(x, u) \wedge R(u, y))\right\}$
- $\varphi=\exists u, v, w \cdot(R(u, x) \wedge R(u, w) \wedge R(w, v) \wedge R(v, y))$,

Won't work in General

- Chase extensions
- disjunctions in heads of dependencies: UCQ plans
- denial dependencies: pruning of disjuncts in such UCQ
- does the algorithm find a plan if one exists?

Example

- $\mathrm{S}_{\mathrm{L}}=\{R / 2\}, \mathrm{S}_{\mathrm{P}}=\mathrm{S}_{\mathrm{A}}=\left\{V_{1} / 2 / 0, V_{2} / 2 / 0, V_{3} / 2 / 0\right\}$,
- $\Sigma=\left\{\forall x, y \cdot V_{1}(x, y) \equiv \exists u, w .(R(u, x) \wedge R(u, w) \wedge R(w, y)), \quad\right.$,
$\forall x, y \cdot V_{2}(x, y) \equiv \exists u, w \cdot(R(x, u) \wedge R(u, w) \wedge R(w, y))$,
$\left.\forall x, y \cdot V_{3}(x, y) \equiv \exists u \cdot(R(x, u) \wedge R(u, y)) \quad\right\}$
- $\varphi=\exists u, v, w \cdot(R(u, x) \wedge R(u, w) \wedge R(w, v) \wedge R(v, y))$,
- $\psi=\exists u .\left(V_{1}(x, u) \wedge \forall w .\left(V_{3}(w, u) \rightarrow V_{2}(w, y)\right)\right)$.
... but there is not a CQ rewriting.

Won't work in General

- Chase extensions
- disjunctions in heads of dependencies: UCQ plans
- denial dependencies: pruning of disjuncts in such UCQ
- does the algorithm find a plan if one exists?

Example

- $\mathrm{S}_{\mathrm{L}}=\{R / 2\}, \mathrm{S}_{\mathrm{P}}=\mathrm{S}_{\mathrm{A}}=\left\{V_{1} / 2 / 0, V_{2} / 2 / 0, V_{3} / 2 / 0\right\}$,
- $\Sigma=\left\{\forall x, y \cdot V_{1}(x, y) \equiv \exists u, w \cdot(R(u, x) \wedge R(u, w) \wedge R(w, y)), \quad\right.$, $\forall x, y \cdot V_{2}(x, y) \equiv \exists u, w \cdot(R(x, u) \wedge R(u, w) \wedge R(w, y))$, $\left.\forall x, y \cdot V_{3}(x, y) \equiv \exists u \cdot(R(x, u) \wedge R(u, y))\right\}$
- $\varphi=\exists u, v, w \cdot(R(u, x) \wedge R(u, w) \wedge R(w, v) \wedge R(v, y))$,
- $\psi=\exists u .\left(V_{1}(x, u) \wedge \forall w .\left(V_{3}(w, u) \rightarrow V_{2}(w, y)\right)\right)$.
... but there is not a CQ rewriting.
\Rightarrow cannot be found by chase-backchase

INTERPOLATION

Definability and Interpolation

Definition (Beth Definability)
A formula φ is definable w.r.t. Σ and S_{A} if $\varphi^{M_{1}}=\varphi^{M_{2}}$
for every pair M_{1}, M_{2} of models of Σ such that $R^{M_{1}}=R^{M_{2}}$ for all $R \in \mathrm{~S}_{\mathrm{A}}$.
\Rightarrow sometimes called parametric definability (due to S_{A}).

Definability and Interpolation

Definition (Beth Definability)

A formula φ is definable w.r.t. Σ and S_{A} if $\varphi^{M_{1}}=\varphi^{M_{2}}$
for every pair M_{1}, M_{2} of models of Σ such that $R^{M_{1}}=R^{M_{2}}$ for all $R \in \mathrm{~S}_{\mathrm{A}}$.
\Rightarrow sometimes called parametric definability (due to S_{A}).

Theorem (Craig'57)

Let α and β be FO formulæ such that $\models \alpha \rightarrow \beta$. Then there is a FO formula $\gamma \in \mathcal{L}(\alpha) \cap \mathcal{L}(\beta)$, called an interpolant, such that $\models \alpha \rightarrow \gamma$ and $\models \gamma \rightarrow \beta$.

How do we Use it?

IDEA:

Only allow queries that are Beth definable w.r.t. Σ and S_{A}
\Rightarrow provides users with an illusion of a single model

How do we Use it?

IDEA:

Only allow queries that are Beth definable w.r.t. Σ and S_{A}
\Rightarrow provides users with an illusion of a single model

Definability Test:
φ is definable w.r.t. Σ and S_{A} if and only if $\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*}$ for Σ^{*} and φ^{*} having all $R \notin \mathrm{~S}_{\mathrm{A}}$ replaced by R^{*} (Beth).

How do we Use it?

IDEA:

Only allow queries that are Beth definable w.r.t. Σ and S_{A}
\Rightarrow provides users with an illusion of a single model

Definability Test:
φ is definable w.r.t. Σ and S_{A} if and only if $\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*}$ for Σ^{*} and φ^{*} having all $R \notin \mathrm{~S}_{\mathrm{A}}$ replaced by R^{*} (Beth).
Interpolant Existence:
If φ is definable w.r.t. Σ and S_{A} then there is a FO $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ such that $\Sigma \models \varphi \leftrightarrow \psi$ (Craig).

How do we Use it?

IDEA:

Only allow queries that are Beth definable w.r.t. Σ and S_{A}

$$
\Rightarrow \text { provides users with an illusion of a single model }
$$

Definability Test:
φ is definable w.r.t. Σ and S_{A} if and only if $\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*}$ for Σ^{*} and φ^{*} having all $R \notin \mathrm{~S}_{\mathrm{A}}$ replaced by R^{*} (Beth).
Interpolant Existence:
If φ is definable w.r.t. Σ and S_{A} then there is a FO $\psi \in \mathcal{L}\left(\mathrm{S}_{\mathrm{A}}\right)$ such that $\Sigma \models \varphi \leftrightarrow \psi$ (Craig).

NOTE: this does NOT account for binding patterns.

Derivation

INPUT: finite Σ and φ.; output: ψ

$$
\begin{array}{ll}
\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*} & \Rightarrow \\
\vDash(\bigwedge \Sigma) \rightarrow\left(\left(\bigwedge \Sigma^{*}\right) \rightarrow\left(\varphi \rightarrow \varphi^{*}\right)\right) & \Rightarrow \\
\vDash(\bigwedge \Sigma) \rightarrow\left(\varphi \rightarrow\left(\left(\bigwedge \Sigma^{*}\right) \rightarrow \varphi^{*}\right)\right) & \Rightarrow \\
\left.\models((\bigwedge \Sigma) \wedge \varphi) \rightarrow\left(\left(\bigwedge \Sigma^{*}\right) \rightarrow \varphi^{*}\right)\right) & \Rightarrow \\
\models((\bigwedge \Sigma) \wedge \varphi) \rightarrow \psi \text { and } \models \psi \rightarrow\left(\left(\bigwedge \Sigma^{*}\right) \rightarrow \varphi^{*}\right) & \Rightarrow \\
\models(\bigwedge \Sigma) \rightarrow(\varphi \rightarrow \psi) \text { and } \models\left(\bigwedge \Sigma^{*}\right) \rightarrow\left(\psi \rightarrow \varphi^{*}\right) & \Rightarrow \\
\Sigma \models \varphi \rightarrow \psi \text { and } \Sigma^{*} \models \psi \rightarrow \varphi^{*} & \Rightarrow \\
\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \psi \text { and } \Sigma \cup \Sigma^{*} \models \psi \rightarrow \varphi^{*} & \Rightarrow \\
\Sigma \cup \Sigma^{*} \models \varphi^{*} \rightarrow \varphi & \Rightarrow \\
\vdots & \\
\Sigma \cup \Sigma^{*} \models \varphi^{*} \rightarrow \psi \text { and } \Sigma \cup \Sigma^{*} \models \psi \rightarrow \varphi &
\end{array}
$$

Constructive Interpolation via Tableau

IDEA:

We try to prove $\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*}$ producing a proof (in a form of closed tableau) from which extract the interpolant.

Constructive Interpolation via Tableau

IDEA:

We try to prove $\Sigma \cup \Sigma^{*} \models \varphi \rightarrow \varphi^{*}$ producing a proof (in a form of closed tableau) from which extract the interpolant.

(Biased) Analytic Tableau

A refutation proof system for FOL:

- instead of $\vdash \alpha \rightarrow \beta$ we show $S=\left\{\alpha^{L}, \neg \beta^{R}\right\}$ is inconsistent formulæ in S are adorned by L and R (needed for interpolant extraction);
- we use inference rules to generate successors of S in a proof tree;
- a proof is complete if all leaves contain a clash, a pair $\delta, \neg \delta$ otherwise the tableau saturates an we can extract a counterexample.

Interpolant Extraction (by example)

- an invariant for interpolation $S \xrightarrow{\text { int }} \psi$ is $\left(\bigwedge S^{L}\right) \rightarrow \psi$ and $\psi \rightarrow\left(\neg \bigwedge S^{R}\right)$ where S^{L} and S^{R} are subsets of S derived from adornments of formulas.

Interpolant Extraction (by example)

- an invariant for interpolation $S \xrightarrow{\text { int }} \psi$ is $\left(\bigwedge S^{L}\right) \rightarrow \psi$ and $\psi \rightarrow\left(\neg \bigwedge S^{R}\right)$ where S^{L} and S^{R} are subsets of S derived from adornments of formulas.
- tableau rules (sample):
- LR clash $S \cup\left\{R^{L}, \neg R^{R}\right\} \xrightarrow{\text { int }} R, R \in \mathrm{~S}_{\mathrm{A}}$ because

$$
\left(\wedge S^{L} \wedge R^{L}\right) \rightarrow R \text { and } R \rightarrow\left(R^{R} \vee \neg \wedge S^{R}\right)
$$

Interpolant Extraction (by example)

- an invariant for interpolation $S \xrightarrow{\text { int }} \psi$ is $\left(\bigwedge S^{L}\right) \rightarrow \psi$ and $\psi \rightarrow\left(\neg \bigwedge S^{R}\right)$ where S^{L} and S^{R} are subsets of S derived from adornments of formulas.
- tableau rules (sample):
- LR clash $S \cup\left\{R^{L}, \neg R^{R}\right\} \xrightarrow{\text { int }} R, R \in \mathrm{~S}_{\mathrm{A}}$ because

$$
\left(\wedge S^{L} \wedge R^{L}\right) \rightarrow R \text { and } R \rightarrow\left(R^{R} \vee \neg \wedge S^{R}\right)
$$

$\left(\wedge S^{L} \wedge \alpha^{L} \wedge \beta^{L}\right) \rightarrow \delta$ implies $\left(\wedge S^{L} \wedge(\alpha \wedge \beta)^{L}\right) \rightarrow \delta$.

Interpolant Extraction (by example)

- an invariant for interpolation $S \xrightarrow{\text { int }} \psi$ is $\left(\bigwedge S^{L}\right) \rightarrow \psi$ and $\psi \rightarrow\left(\neg \bigwedge S^{R}\right)$ where S^{L} and S^{R} are subsets of S derived from adornments of formulas.
- tableau rules (sample):
- LR clash $S \cup\left\{R^{L}, \neg R^{R}\right\} \xrightarrow{\text { int }} R, R \in \mathrm{~S}_{\mathrm{A}}$ because

$$
\left(\wedge S^{L} \wedge R^{L}\right) \rightarrow R \text { and } R \rightarrow\left(R^{R} \vee \neg \wedge S^{R}\right)
$$

- L-conjunction $\xrightarrow[{\frac{S \cup\left\{\alpha^{L}, \beta^{L}\right\}}{S \cup\left\{(\alpha \wedge \beta)^{L}\right\} \xrightarrow{\text { int }} \delta}} \delta]{\text { int }}$ because

$$
\left(\wedge S^{L} \wedge \alpha^{L} \wedge \beta^{L}\right) \rightarrow \delta \text { implies }\left(\wedge S^{L} \wedge(\alpha \wedge \beta)^{L}\right) \rightarrow \delta
$$

$$
\begin{aligned}
\wedge S^{L} \rightarrow \delta_{\alpha}, \delta_{\alpha} \rightarrow & \left(\alpha^{R} \vee \neg \wedge S^{R}\right) \text { and } \wedge S^{L} \rightarrow \delta_{\beta}, \delta_{\beta} \rightarrow \\
& \left(\beta^{R} \vee \neg \wedge S^{R}\right) \\
& \text { implies }\left(\wedge S^{L}\right) \rightarrow \delta_{\alpha} \wedge \delta_{\beta}, \delta_{\alpha} \wedge \delta_{\beta} \rightarrow(\alpha \vee \beta)^{R} \vee \neg \wedge S^{R} .
\end{aligned}
$$

wateririoo - etc. (see [Fitting] for details)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO, why?)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO)
\Rightarrow do we get "enough"? (NO)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO)
\Rightarrow do we get "enough"? (NO, needs tableau modifications)

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO)
\Rightarrow do we get "enough"? (NO)
(2) Is backtracking of the tableau proofs feasible approach? (NO)
\Rightarrow in Σ we separate

- "logical" (lots, complex) and
- "physical" (few, simple) constraints
... limits backtracking during plan search to physical constraints;

Implementation "details"

(1) Plan enumeration:
\Rightarrow enumeration of proofs \sim enumeration all equivalent rewritings? (NO)
\Rightarrow do we want to enumerate all equivalent rewritings? (NO)
\Rightarrow do we get "enough"? (NO)
(2) Is backtracking of the tableau proofs feasible approach? (NO)
\Rightarrow in Σ we separate

- "logical" (lots, complex) and
- "physical" (few, simple) constraints
... limits backtracking during plan search to physical constraints;
(3) Still needs to check for satisfaction of binding patterns.

Post-PROCESSING

Duplicate Elimination Elimination

In general $\exists x . \psi$ has to eliminate duplicates in the result (expensive)
\Rightarrow we want to detect when duplicate elimination can be safely omitted.

Duplicate Elimination Elimination

In general $\exists x . \psi$ has to eliminate duplicates in the result (expensive)
\Rightarrow we want to detect when duplicate elimination can be safely omitted.

IDEA:

Separate the projection operation $(\exists \bar{x}$.) to

- a duplicate preserving projection (\exists) and
- an explicit (idempotent) duplicate elimination operator $(\{\cdot\})$.

Duplicate Elimination Elimination

In general $\exists x . \psi$ has to eliminate duplicates in the result (expensive)
\Rightarrow we want to detect when duplicate elimination can be safely omitted.

IDEA:

Separate the projection operation ($\exists \bar{x}$.) to

- a duplicate preserving projection (\exists) and
- an explicit (idempotent) duplicate elimination operator $(\{\cdot\})$.

Use the following rewrites to eliminate/minimize the use of $\{\cdot\}$:

$$
\begin{aligned}
Q\left[\left\{R\left(x_{1}, \ldots, x_{k}\right)\right\}\right] & \leftrightarrow Q\left[R\left(x_{1}, \ldots, x_{k}\right)\right] \\
Q\left[\left\{Q_{1} \wedge Q_{2}\right\}\right] & \leftrightarrow Q\left[\left\{Q_{1}\right\} \wedge\left\{Q_{2}\right\}\right] \\
Q\left[\left\{\neg Q_{1}\right\}\right] & \leftrightarrow Q\left[\neg Q_{1}\right] \\
Q\left[\neg\left\{Q_{1}\right\}\right] & \leftrightarrow Q\left[\neg Q_{1}\right] \\
Q\left[\left\{Q_{1} \vee Q_{2}\right\}\right] & \leftrightarrow Q\left[\left\{Q_{1}\right\} \vee\left\{Q_{2}\right\}\right] \quad \text { if } \Sigma \cup\{Q[]\} \models Q_{1} \wedge Q_{2} \rightarrow \perp \\
Q\left[\left\{\exists x \cdot Q_{1}\right\}\right] & \leftrightarrow Q\left[\exists x .\left\{Q_{1}\right\}\right] \quad \text { if } \\
& \Sigma \cup\left\{Q[] \wedge\left(Q_{1}\right)\left[y_{1} / x\right] \wedge\left(Q_{1}\right)\left[y_{2} / x\right\} \models y_{1} \approx y_{2}\right.
\end{aligned}
$$

wateriow where y_{1} and y_{2} are fresh variable names not occurring in Q, Q_{1}, and Q_{2}.

Summary

(1) interpolation provides a powerful tool for query optimization, but

- efficiency of reasoning is an issue (single proof is not sufficient)
- generating enough candidate plans (at odds with structural proofs)
- but needs to avoid useless plans (e.g., co-joining tautologies, etc.)

Summary

(1) interpolation provides a powerful tool for query optimization, but

- efficiency of reasoning is an issue (single proof is not sufficient)
- generating enough candidate plans (at odds with structural proofs)
- but needs to avoid useless plans (e.g., co-joining tautologies, etc.)
(2) postprocessing needed to deal with non-FO features
- duplicate semantics (hard to even define query equivalence!)
- cuts (see textbook for details)

