Logical Approach to Physical Data Independence

and Query Compilation
Query Rewriting

David Toman

D.R. Cheriton School of Computer Science
University of

Waterloo

E§

1/1

The Story So Far. ..

N Ewn R .

Y = (ZLUXpUIp) Yip (query compilation)

N N y

Waterioo

Review Query Rewriting 2/1

The Story So Far. ..

Y = (XLUZpUXp) Yip (query compilation)

Features:
@ Flexible physical design: constraints ¥p U X| p and code for Sp
= main-memory operations, disk access, external sources of data, .. .;
@ Query plans are efficient

= all combination of access paths and simple operators;
= often comparable to hand-written programs.

...........

Review Query Rewriting 2/1

The Story So Far. ..

Y = (ZLUXpUIp) Yip (query compilation)

@ How do we find ¢ such that ¢ € £L(Sa) and & = ¢ <> ?

@ How do we deal with non-logical issues (e.g., duplicates)?

Waterioo

Review Query Rewriting 2/1

Goal and Steps

@ Find ¢ suchthaty € £(Sa) and X | ¢ <> ¢?

e search for optimal) (according to a cost model)
e in general many candidates (even for CQ: join-order optimization)

Waterioo

Review Query Rewriting 3/1

Goal and Steps

@ Find ¢ suchthaty € £(Sa) and X | ¢ <> ¢?

e search for optimal) (according to a cost model)
e in general many candidates (even for CQ: join-order optimization)

@ How do we deal with non-logical issues?

e elimination of unnecessary duplicate elimination operations
e cutinsertion (when one solution suffices)

Waterioo

Review Query Rewriting 3/1

QUERY REWRITING

Waterioo

Review Query Rewriting 4/1

Chase and Backchase

@ Input: p a CQ, X a set of dependencies, and Sa.
= a dependency is a formula Vx.a« — 3 where « and 3 are CQs.

Waterioo

Query Rewriting Query Rewriting 5/1

Chase and Backchase

@ Input: p a CQ, X a set of dependencies, and Sa.
= a dependency is a formula Vx.a« — 3 where « and 3 are CQs.

@ Algorithm:

@ chase ¢ with ¥ producing a CQ chasex(y);

o chasel =o

o chase{" = chase A(30) for ¥X.a — 8 € ¥ and

6 : o — chasey; '

o chaser =lim, ., chases.
@ select ¢ € £(Sa) such that atoms(v)) C atoms(chases ());
@ chase ¢ with X producing chases (v);
© test whether chasex(v)) implies ¢

= essentially atoms(y) C atoms(chasesx())).

Waterioo

Query Rewriting Query Rewriting 5/1

Chase and Backchase

@ Input: p a CQ, X a set of dependencies, and Sa.
= a dependency is a formula Vx.a« — 3 where « and 3 are CQs.

@ Algorithm:
@ chase ¢ with ¥ producing a CQ chases(y);
@ select ¢ € £(Sa) such that atoms(v)) C atoms(chases ());
@ chase ¢ with X producing chases (v);
© test whether chasex(v)) implies ¢
= essentially atoms(y) C atoms(chasex())).

@ Problems:
e chaseyx () may be infinite (non-termination);

= in theory restrict X to constraints w/terminating chase;
= in practice fair interleaving of the steps of the algorithm

e it only works well for CQs.

Waterioo

Query Rewriting Query Rewriting 5/1

Won’t work in General

@ Chase extensions

e disjunctions in heads of dependencies: UCQ plans
e denial dependencies: pruning of disjuncts in such UCQ

Waterioo

Query Rewriting Query Rewriting 6/1

Won’t work in General

@ Chase extensions

e disjunctions in heads of dependencies: UCQ plans
e denial dependencies: pruning of disjuncts in such UCQ

@ does the algorithm find a plan if one exists?

Waterioo

Query Rewriting Query Rewriting 6/1

Won’t work in General

@ Chase extensions

e disjunctions in heads of dependencies: UCQ plans
e denial dependencies: pruning of disjuncts in such UCQ

@ does the algorithm find a plan if one exists?

o S.={R/2}, Sp =Sa = {V1/2/0,V2/2/0, V3/2/0},

o = {Vx,y.Vi(x,y) = 3u,w.(R(u,x) A R(u,w) AR(W.y)), .
vx,y.Vo(x,y) = 3u, w.(R(x,u) A R(u,w) A R(w, y)),
vx,y.Va(x,y) = 3u.(R(x,u) A R(u, y)) }

o ¢ =3u,v,w.(R(u,x) A R(u,w) A R(w,v) A R(v,y)),

Waterioo

Query Rewriting Query Rewriting 6/1

Won’t work in General

@ Chase extensions

e disjunctions in heads of dependencies: UCQ plans
e denial dependencies: pruning of disjuncts in such UCQ

@ does the algorithm find a plan if one exists?

o S_ = {R/2}, Sp = Sa = {V1/2/0, V2/2/0, V3/2/0},

o X = {Vx,y.Vi(x,y) =3u,w.(R(u,x) A R(u,w) A R(w,y)), ,
vx,y.Vo(x,y) = 3u, w.(R(x,u) A R(u,w) A R(w, y)),
vx,y.Va(x,y) = 3u.(R(x,u) A R(u, y)) }

o ¢ =3u,v,w.(R(u,x) A R(u,w) A R(w,v) A R(v,y)),

o ¢ =3Ju.(Vi(x,u) A\Vw.(Va(w,u) — Vo(w,y))).

... but there is not a CQ rewriting.

Waterioo

Query Rewriting Query Rewriting 6/1

Won’t work in General

@ Chase extensions

e disjunctions in heads of dependencies: UCQ plans
e denial dependencies: pruning of disjuncts in such UCQ

@ does the algorithm find a plan if one exists?

o S_ = {R/2}, Sp = Sa = {V1/2/0, V2/2/0, V3/2/0},

o X = {Vx,y.Vi(x,y) =3u,w.(R(u,x) A R(u,w) A R(w,y)), ,
vx,y.Vo(x,y) = 3u, w.(R(x,u) A R(u,w) A R(w, y)),
vx,y.Va(x,y) = 3u.(R(x,u) A R(u, y)) }

o ¢ =3u,v,w.(R(u,x) A R(u,w) A R(w,v) A R(v,y)),

o ¢ =3Ju.(Vi(x,u) A\Vw.(Va(w,u) — Vo(w,y))).

... but there is not a CQ rewriting.

= cannot be found by chase-backchase
Whterioo

Query Rewriting Query Rewriting 6/1

INTERPOLATION

Waterioo

Query Rewriting Query Rewriting 71

Definability and Interpolation

Definition (Beth Definability)

A formula ¢ is definable w.r.t. ¥ and Sp if pM = M
for every pair My, M, of models of © such that R = RM: for all R € Sa.

= sometimes called parametric definability (due to Sa).

,,,,,,,,,,,,,

Interpolation Query Rewriting 8/1

Definability and Interpolation

Definition (Beth Definability)

A formula ¢ is definable w.r.t. ¥ and Sp if pM = M
for every pair My, M, of models of © such that R = RM: for all R € Sa.

= sometimes called parametric definability (due to Sa).

Theorem (Craig’57)

Let « and g be FO formulze such that = « — (. Then there is a FO formula
v € L(a) N L(B), called an interpolant, such that = o« — v and = v — 8.

,,,,,,,,,,,,,

Interpolation Query Rewriting 8/1

How do we Use it?

Only allow queries that are Beth definable w.r.t. ¥ and Sa
= provides users with an illusion of a single model

,,,,,,,,,,,,,

Interpolation Query Rewriting 9/1

How do we Use it?

Only allow queries that are Beth definable w.r.t. ¥ and Sa
= provides users with an illusion of a single model

Definability Test:
v is definable w.r.t. X and Sp ifand only if XU X" = p — ¢*
for ¥* and ¢* having all R ¢ Sp replaced by R* (Beth).

,,,,,,,,,,,,,

Interpolation Query Rewriting 9/1

How do we Use it?

Only allow queries that are Beth definable w.r.t. ¥ and Sa
= provides users with an illusion of a single model

Definability Test:
v is definable w.r.t. X and Sp ifand only if XU X" = p — ¢*
for ¥* and ¢* having all R ¢ Sp replaced by R* (Beth).
Interpolant Existence:
If © is definable w.r.t. ¥ and Sa then
there is a FO ¢ € £(Sa) such that ¥ = ¢ + ¢ (Craig).

Waterioo

Interpolation Query Rewriting 9/1

How do we Use it?

Only allow queries that are Beth definable w.r.t. ¥ and Sa
= provides users with an illusion of a single model

Definability Test:
v is definable w.r.t. X and Sp ifand only if XU X" = p — ¢*
for ¥* and ¢* having all R ¢ Sp replaced by R* (Beth).
Interpolant Existence:
If © is definable w.r.t. ¥ and Sa then
there is a FO ¢ € £(Sa) such that ¥ = ¢ + ¢ (Craig).

NOTE: this does NOT account for binding patterns.

Waterioo

Interpolation Query Rewriting 9/1

Derivation

INPUT: finite X and ¢.; output: ¢

YUX*Ep—

E(AZ) = (AZ") = (¢ = ¢7))
E(AL) = (= (AX") = ¢")
E(AD)Ae) = (ANET) = ¢7))

F(AD)Ag) = dand = — ((AXY) = ¢7)
F(AL) = (p—=v)and E(AT) = (0 —¢")
YEp—vYand ZF E Y — o*

YU Ep—ogand T U Eo¢ —

L R

4

YUX* Ep* =

4

SUY*Ep* > dandXZUul*=uv =

Waterioo
Interpolation Query Rewriting 10/1

Constructive Interpolation via Tableau

We try to prove ¥ U T* = ¢ — ¢* producing a proof (in a form of closed
tableau) from which extract the interpolant.

,,,,,,,,,,,,,

Interpolation Query Rewriting 1/1

Constructive Interpolation via Tableau

We try to prove X U * |= ¢ — ¢* producing a proof (in a form of closed
tableau) from which extract the interpolant.

(Biased) Analytic Tableau
A refutation proof system for FOL:

@ instead of - a — 8 we show S = {at, -3} is inconsistent
formulee in S are adorned by L and R (needed for interpolant extraction);

@ we use inference rules to generate successors of S in a proof tree;

@ a proof is complete if all leaves contain a clash, a pair , =
otherwise the tableau saturates an we can extract a counterexample.

Waterioo

Interpolation Query Rewriting 1/1

Interpolant Extraction (by example)

@ an invariant for interpolation S 75 v is (A\ St) — v and v — (= A SF)
where St and S are subsets of S derived from adornments of formulas.

Waterioo

Interpolation Query Rewriting 12/1

Interpolant Extraction (by example)

@ an invariant for interpolation S 75 v is (A\ St) — v and v — (= A SF)
where St and S are subsets of S derived from adornments of formulas.
@ tableau rules (sample):
e LRclash|SU{R:, -R"} ™ R| R € S, because
(ASARY) — R and R — (RR v -\ SF)

Waterioo

Interpolation Query Rewriting 12/1

Interpolant Extraction (by example)

@ an invariant for interpolation S 75 v is (A\ St) — v and v — (= A SF)
where St and S are subsets of S derived from adornments of formulas.
@ tableau rules (sample):
e LRclash|SU{R:, -R"} ™ R| R € S, because
(ASEARY) = R and R— (RFv A SP)

| su{at gy s
e L-conjunction " because
Su{(anp)t} 56

(ASt Aot A ply — simplies (A St A (a A B)F) — 6.

Waterioo

Interpolation Query Rewriting 12/1

Interpolant Extraction (by example)

@ an invariant for interpolation S 75 v is (A\ St) — v and v — (= A SF)
where St and S are subsets of S derived from adornments of formulas.
@ tableau rules (sample):
e LRclash|SU{R:, -R"} ™ R| R € S, because
(ASEARY) = R and R— (RFv A SP)

| su{at gy s
e L-conjunction " because
Su{(anp)t} 56

(ASt Aot A ply — simplies (A St A (a A B)F) — 6.

Su{af ™5, and SU{B} 5,

SU{(aVB)Ft 60 Ads

because

o R-Disjunction

ASt = 64,00 = (@ V= ASHand A St — 65,65 — (B v -\ SH)
implies (/\ St) = 0o A 3,00 Ads — (aV B)Fv = SR
watetioo @ etc. (see [Fitting] for details)

Interpolation Query Rewriting 12/1

Implementation “details”

@ Plan enumeration:

= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:

= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO)

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:

= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO, why?)

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:
= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO)
= do we get “enough”? (NO)

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:
= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO)
= do we get “enough”? (NO, needs tableau modifications)

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:
= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO)
= do we get “enough”? (NO)
@ Is backtracking of the tableau proofs feasible approach? (NO)
= in X we separate

o “logical” (lots, complex) and
e “physical” (few, simple) constraints

... limits backtracking during plan search to physical constraints;

Waterioo

Interpolation Query Rewriting 13/1

Implementation “details”

@ Plan enumeration:
= enumeration of proofs ~ enumeration all equivalent rewritings? (NO)
= do we want to enumerate all equivalent rewritings? (NO)
= do we get “enough”? (NO)
@ Is backtracking of the tableau proofs feasible approach? (NO)
= in X we separate

o “logical” (lots, complex) and
e “physical” (few, simple) constraints

... limits backtracking during plan search to physical constraints;

@ Still needs to check for satisfaction of binding patterns.

Waterioo

Interpolation Query Rewriting 13/1

POST-PROCESSING

Waterioo

Interpolation Query Rewriting 14/1

Duplicate Elimination Elimination

In general Ix.¢ has to eliminate duplicates in the result (expensive)
= we want to detect when duplicate elimination can be safely omitted.

Waterioo

Post-processing Query Rewriting 15/1

Duplicate Elimination Elimination

In general Ix.¢ has to eliminate duplicates in the result (expensive)
= we want to detect when duplicate elimination can be safely omitted.

Separate the projection operation (3x.) to

@ a duplicate preserving projection (3) and
@ an explicit (idempotent) duplicate elimination operator ({-}).

Waterioo

Post-processing Query Rewriting 15/1

Duplicate Elimination Elimination

In general Ix.¢ has to eliminate duplicates in the result (expensive)
= we want to detect when duplicate elimination can be safely omitted.

Separate the projection operation (3x.) to

@ a duplicate preserving projection (3) and
@ an explicit (idempotent) duplicate elimination operator ({-}).

Use the following rewrites to eliminate/minimize the use of {-}:

Q[{R(X1 e ,Xk)}] — Q[R(X1 . ,Xk)]
Q{Q1 A Qo}] = Q{Q1} A {Qx}]
Q{~Qi}] < Q[-Q4]
Q-{Qi}] < Q[-Q4]
Q[{Q1 vV Qz}] > Q[{Q1} vV {Qz}] if > U {Q[]} }Z ONQ — L
Ql{3x.Q1}] <> Q[Fx.{ Q4 }] if
TU{QA Q) /XA (Q)ly2/X} E yi = e

witsriosvhere y1 and y» are fresh variable names not occurring in Q, Qy, and Q».

Post-processing Query Rewriting 15/1

Summary

@ interpolation provides a powerful tool for query optimization, but
o efficiency of reasoning is an issue (single proof is not sufficient)
e generating enough candidate plans (at odds with structural proofs)
e but needs to avoid useless plans (e.g., co-joining tautologies, etc.)

Waterioo

Post-processing Query Rewriting 16/1

Summary

@ interpolation provides a powerful tool for query optimization, but
o efficiency of reasoning is an issue (single proof is not sufficient)
e generating enough candidate plans (at odds with structural proofs)
e but needs to avoid useless plans (e.g., co-joining tautologies, etc.)

@ postprocessing needed to deal with non-FO features
e duplicate semantics (hard to even define query equivalence!)
e cuts (see textbook for details)

Waterioo

Post-processing Query Rewriting 16/1

