
Logical Approach to Physical Data Independence
and Query Compilation

Query Rewriting

David Toman

D.R. Cheriton School of Computer Science

1 / 1

The Story So Far. . .

ΣL SL ϕoo

Σ = (ΣL ∪ ΣLP ∪ ΣP) ΣLP (query compilation)

��
ΣP SA ⊆ SP ψoo

1 How do we find ψ such that ψ ∈ L(SA) and Σ |= ϕ↔ ψ?

2 How do we deal with non-logical issues (e.g., duplicates)?

Review Query Rewriting 2 / 1

The Story So Far. . .

ΣL SL ϕoo

Σ = (ΣL ∪ ΣLP ∪ ΣP) ΣLP (query compilation)

��
ΣP SA ⊆ SP ψoo

Features:
Flexible physical design: constraints ΣP ∪ ΣLP and code for SA

⇒ main-memory operations, disk access, external sources of data, . . . ;
Query plans are efficient
⇒ all combination of access paths and simple operators;
⇒ often comparable to hand-written programs.

1 How do we find ψ such that ψ ∈ L(SA) and Σ |= ϕ↔ ψ?

2 How do we deal with non-logical issues (e.g., duplicates)?

Review Query Rewriting 2 / 1

The Story So Far. . .

ΣL SL ϕoo

Σ = (ΣL ∪ ΣLP ∪ ΣP) ΣLP (query compilation)

��
ΣP SA ⊆ SP ψoo

1 How do we find ψ such that ψ ∈ L(SA) and Σ |= ϕ↔ ψ?

2 How do we deal with non-logical issues (e.g., duplicates)?

Review Query Rewriting 2 / 1

Goal and Steps

1 Find ψ such that ψ ∈ L(SA) and Σ |= ϕ↔ ψ?

search for optimal ψ (according to a cost model)
in general many candidates (even for CQ: join-order optimization)

2 How do we deal with non-logical issues?

elimination of unnecessary duplicate elimination operations
cut insertion (when one solution suffices)

Review Query Rewriting 3 / 1

Goal and Steps

1 Find ψ such that ψ ∈ L(SA) and Σ |= ϕ↔ ψ?

search for optimal ψ (according to a cost model)
in general many candidates (even for CQ: join-order optimization)

2 How do we deal with non-logical issues?

elimination of unnecessary duplicate elimination operations
cut insertion (when one solution suffices)

Review Query Rewriting 3 / 1

QUERY REWRITING

Review Query Rewriting 4 / 1

Chase and Backchase

Input: ϕ a CQ, Σ a set of dependencies, and SA.
⇒ a dependency is a formula ∀x̄ .α→ β where α and β are CQs.

Algorithm:
1 chase ϕ with Σ producing a CQ chaseΣ(ϕ);
2 select ψ ∈ L(SA) such that atoms(ψ) ⊆ atoms(chaseΣ(ϕ));
3 chase ψ with Σ producing chaseΣ(ψ);
4 test whether chaseΣ(ψ) implies ϕ

⇒ essentially atoms(ϕ) ⊆ atoms(chaseΣ(ψ)).

Problems:

chaseΣ(ϕ) may be infinite (non-termination);
⇒ in theory restrict Σ to constraints w/terminating chase;
⇒ in practice fair interleaving of the steps of the algorithm

it only works well for CQs.

Query Rewriting Query Rewriting 5 / 1

Chase and Backchase

Input: ϕ a CQ, Σ a set of dependencies, and SA.
⇒ a dependency is a formula ∀x̄ .α→ β where α and β are CQs.

Algorithm:
1 chase ϕ with Σ producing a CQ chaseΣ(ϕ);

chase0
Σ = ϕ

chasei+1
Σ = chasei

Σ ∧(βθ) for ∀x̄ .α→ β ∈ Σ and
θ : α 7→ chasei

Σ;
chaseΣ = limi→∞ chasei

Σ.
2 select ψ ∈ L(SA) such that atoms(ψ) ⊆ atoms(chaseΣ(ϕ));
3 chase ψ with Σ producing chaseΣ(ψ);
4 test whether chaseΣ(ψ) implies ϕ

⇒ essentially atoms(ϕ) ⊆ atoms(chaseΣ(ψ)).

Problems:

chaseΣ(ϕ) may be infinite (non-termination);
⇒ in theory restrict Σ to constraints w/terminating chase;
⇒ in practice fair interleaving of the steps of the algorithm

it only works well for CQs.

Query Rewriting Query Rewriting 5 / 1

Chase and Backchase

Input: ϕ a CQ, Σ a set of dependencies, and SA.
⇒ a dependency is a formula ∀x̄ .α→ β where α and β are CQs.

Algorithm:
1 chase ϕ with Σ producing a CQ chaseΣ(ϕ);
2 select ψ ∈ L(SA) such that atoms(ψ) ⊆ atoms(chaseΣ(ϕ));
3 chase ψ with Σ producing chaseΣ(ψ);
4 test whether chaseΣ(ψ) implies ϕ

⇒ essentially atoms(ϕ) ⊆ atoms(chaseΣ(ψ)).

Problems:

chaseΣ(ϕ) may be infinite (non-termination);
⇒ in theory restrict Σ to constraints w/terminating chase;
⇒ in practice fair interleaving of the steps of the algorithm

it only works well for CQs.

Query Rewriting Query Rewriting 5 / 1

Won’t work in General

Chase extensions
disjunctions in heads of dependencies: UCQ plans
denial dependencies: pruning of disjuncts in such UCQ

does the algorithm find a plan if one exists?

Example
SL = {R/2}, SP = SA = {V1/2/0,V2/2/0,V3/2/0},
Σ = { ∀x , y .V1(x , y) ≡ ∃u,w .(R(u, x) ∧ R(u,w) ∧ R(w , y)),

∀x , y .V2(x , y) ≡ ∃u,w .(R(x ,u) ∧ R(u,w) ∧ R(w , y)),
∀x , y .V3(x , y) ≡ ∃u.(R(x ,u) ∧ R(u, y)) }

,

ϕ = ∃u, v ,w .(R(u, x) ∧ R(u,w) ∧ R(w , v) ∧ R(v , y)),

ψ = ∃u.(V1(x ,u) ∧ ∀w .(V3(w ,u)→ V2(w , y))).

. . . but there is not a CQ rewriting.

⇒ cannot be found by chase-backchase

Query Rewriting Query Rewriting 6 / 1

Won’t work in General

Chase extensions
disjunctions in heads of dependencies: UCQ plans
denial dependencies: pruning of disjuncts in such UCQ

does the algorithm find a plan if one exists?

Example
SL = {R/2}, SP = SA = {V1/2/0,V2/2/0,V3/2/0},
Σ = { ∀x , y .V1(x , y) ≡ ∃u,w .(R(u, x) ∧ R(u,w) ∧ R(w , y)),

∀x , y .V2(x , y) ≡ ∃u,w .(R(x ,u) ∧ R(u,w) ∧ R(w , y)),
∀x , y .V3(x , y) ≡ ∃u.(R(x ,u) ∧ R(u, y)) }

,

ϕ = ∃u, v ,w .(R(u, x) ∧ R(u,w) ∧ R(w , v) ∧ R(v , y)),

ψ = ∃u.(V1(x ,u) ∧ ∀w .(V3(w ,u)→ V2(w , y))).

. . . but there is not a CQ rewriting.

⇒ cannot be found by chase-backchase

Query Rewriting Query Rewriting 6 / 1

Won’t work in General

Chase extensions
disjunctions in heads of dependencies: UCQ plans
denial dependencies: pruning of disjuncts in such UCQ

does the algorithm find a plan if one exists?

Example
SL = {R/2}, SP = SA = {V1/2/0,V2/2/0,V3/2/0},
Σ = { ∀x , y .V1(x , y) ≡ ∃u,w .(R(u, x) ∧ R(u,w) ∧ R(w , y)),

∀x , y .V2(x , y) ≡ ∃u,w .(R(x ,u) ∧ R(u,w) ∧ R(w , y)),
∀x , y .V3(x , y) ≡ ∃u.(R(x ,u) ∧ R(u, y)) }

,

ϕ = ∃u, v ,w .(R(u, x) ∧ R(u,w) ∧ R(w , v) ∧ R(v , y)),

ψ = ∃u.(V1(x ,u) ∧ ∀w .(V3(w ,u)→ V2(w , y))).

. . . but there is not a CQ rewriting.

⇒ cannot be found by chase-backchase

Query Rewriting Query Rewriting 6 / 1

Won’t work in General

Chase extensions
disjunctions in heads of dependencies: UCQ plans
denial dependencies: pruning of disjuncts in such UCQ

does the algorithm find a plan if one exists?

Example
SL = {R/2}, SP = SA = {V1/2/0,V2/2/0,V3/2/0},
Σ = { ∀x , y .V1(x , y) ≡ ∃u,w .(R(u, x) ∧ R(u,w) ∧ R(w , y)),

∀x , y .V2(x , y) ≡ ∃u,w .(R(x ,u) ∧ R(u,w) ∧ R(w , y)),
∀x , y .V3(x , y) ≡ ∃u.(R(x ,u) ∧ R(u, y)) }

,

ϕ = ∃u, v ,w .(R(u, x) ∧ R(u,w) ∧ R(w , v) ∧ R(v , y)),

ψ = ∃u.(V1(x ,u) ∧ ∀w .(V3(w ,u)→ V2(w , y))).

. . . but there is not a CQ rewriting.

⇒ cannot be found by chase-backchase

Query Rewriting Query Rewriting 6 / 1

Won’t work in General

Chase extensions
disjunctions in heads of dependencies: UCQ plans
denial dependencies: pruning of disjuncts in such UCQ

does the algorithm find a plan if one exists?

Example
SL = {R/2}, SP = SA = {V1/2/0,V2/2/0,V3/2/0},
Σ = { ∀x , y .V1(x , y) ≡ ∃u,w .(R(u, x) ∧ R(u,w) ∧ R(w , y)),

∀x , y .V2(x , y) ≡ ∃u,w .(R(x ,u) ∧ R(u,w) ∧ R(w , y)),
∀x , y .V3(x , y) ≡ ∃u.(R(x ,u) ∧ R(u, y)) }

,

ϕ = ∃u, v ,w .(R(u, x) ∧ R(u,w) ∧ R(w , v) ∧ R(v , y)),

ψ = ∃u.(V1(x ,u) ∧ ∀w .(V3(w ,u)→ V2(w , y))).

. . . but there is not a CQ rewriting.

⇒ cannot be found by chase-backchase

Query Rewriting Query Rewriting 6 / 1

INTERPOLATION

Query Rewriting Query Rewriting 7 / 1

Definability and Interpolation

Definition (Beth Definability)
A formula ϕ is definable w.r.t. Σ and SA if ϕM1 = ϕM2

for every pair M1, M2 of models of Σ such that RM1 = RM2 for all R ∈ SA.

⇒ sometimes called parametric definability (due to SA).

Theorem (Craig’57)
Let α and β be FO formulæ such that |= α→ β. Then there is a FO formula
γ ∈ L(α) ∩ L(β), called an interpolant, such that |= α→ γ and |= γ → β.

Interpolation Query Rewriting 8 / 1

Definability and Interpolation

Definition (Beth Definability)
A formula ϕ is definable w.r.t. Σ and SA if ϕM1 = ϕM2

for every pair M1, M2 of models of Σ such that RM1 = RM2 for all R ∈ SA.

⇒ sometimes called parametric definability (due to SA).

Theorem (Craig’57)
Let α and β be FO formulæ such that |= α→ β. Then there is a FO formula
γ ∈ L(α) ∩ L(β), called an interpolant, such that |= α→ γ and |= γ → β.

Interpolation Query Rewriting 8 / 1

How do we Use it?

IDEA:
Only allow queries that are Beth definable w.r.t. Σ and SA

⇒ provides users with an illusion of a single model

Definability Test:
ϕ is definable w.r.t. Σ and SA if and only if Σ ∪ Σ∗ |= ϕ→ ϕ∗

for Σ∗ and ϕ∗ having all R 6∈ SA replaced by R∗ (Beth).

Interpolant Existence:
If ϕ is definable w.r.t. Σ and SA then

there is a FO ψ ∈ L(SA) such that Σ |= ϕ↔ ψ (Craig).

NOTE: this does NOT account for binding patterns.

Interpolation Query Rewriting 9 / 1

How do we Use it?

IDEA:
Only allow queries that are Beth definable w.r.t. Σ and SA

⇒ provides users with an illusion of a single model

Definability Test:
ϕ is definable w.r.t. Σ and SA if and only if Σ ∪ Σ∗ |= ϕ→ ϕ∗

for Σ∗ and ϕ∗ having all R 6∈ SA replaced by R∗ (Beth).

Interpolant Existence:
If ϕ is definable w.r.t. Σ and SA then

there is a FO ψ ∈ L(SA) such that Σ |= ϕ↔ ψ (Craig).

NOTE: this does NOT account for binding patterns.

Interpolation Query Rewriting 9 / 1

How do we Use it?

IDEA:
Only allow queries that are Beth definable w.r.t. Σ and SA

⇒ provides users with an illusion of a single model

Definability Test:
ϕ is definable w.r.t. Σ and SA if and only if Σ ∪ Σ∗ |= ϕ→ ϕ∗

for Σ∗ and ϕ∗ having all R 6∈ SA replaced by R∗ (Beth).
Interpolant Existence:

If ϕ is definable w.r.t. Σ and SA then
there is a FO ψ ∈ L(SA) such that Σ |= ϕ↔ ψ (Craig).

NOTE: this does NOT account for binding patterns.

Interpolation Query Rewriting 9 / 1

How do we Use it?

IDEA:
Only allow queries that are Beth definable w.r.t. Σ and SA

⇒ provides users with an illusion of a single model

Definability Test:
ϕ is definable w.r.t. Σ and SA if and only if Σ ∪ Σ∗ |= ϕ→ ϕ∗

for Σ∗ and ϕ∗ having all R 6∈ SA replaced by R∗ (Beth).
Interpolant Existence:

If ϕ is definable w.r.t. Σ and SA then
there is a FO ψ ∈ L(SA) such that Σ |= ϕ↔ ψ (Craig).

NOTE: this does NOT account for binding patterns.

Interpolation Query Rewriting 9 / 1

Derivation

INPUT: finite Σ and ϕ.; output: ψ

Σ ∪ Σ∗ |= ϕ→ ϕ∗ ⇒
|= (

∧
Σ)→ ((

∧
Σ∗)→ (ϕ→ ϕ∗)) ⇒

|= (
∧

Σ)→ (ϕ→ ((
∧

Σ∗)→ ϕ∗)) ⇒
|= ((

∧
Σ) ∧ ϕ)→ ((

∧
Σ∗)→ ϕ∗)) ⇒

|= ((
∧

Σ) ∧ ϕ)→ ψ and |= ψ → ((
∧

Σ∗)→ ϕ∗) ⇒
|= (

∧
Σ)→ (ϕ→ ψ) and |= (

∧
Σ∗)→ (ψ → ϕ∗) ⇒

Σ |= ϕ→ ψ and Σ∗ |= ψ → ϕ∗ ⇒
Σ ∪ Σ∗ |= ϕ→ ψ and Σ ∪ Σ∗ |= ψ → ϕ∗

Σ ∪ Σ∗ |= ϕ∗ → ϕ ⇒
... ⇒

Σ ∪ Σ∗ |= ϕ∗ → ψ and Σ ∪ Σ∗ |= ψ → ϕ

Interpolation Query Rewriting 10 / 1

Constructive Interpolation via Tableau

IDEA:
We try to prove Σ ∪ Σ∗ |= ϕ→ ϕ∗ producing a proof (in a form of closed
tableau) from which extract the interpolant.

(Biased) Analytic Tableau
A refutation proof system for FOL:

instead of ` α→ β we show S = {αL,¬βR} is inconsistent
formulæ in S are adorned by L and R (needed for interpolant extraction);

we use inference rules to generate successors of S in a proof tree;
a proof is complete if all leaves contain a clash, a pair δ,¬δ

otherwise the tableau saturates an we can extract a counterexample.

Interpolation Query Rewriting 11 / 1

Constructive Interpolation via Tableau

IDEA:
We try to prove Σ ∪ Σ∗ |= ϕ→ ϕ∗ producing a proof (in a form of closed
tableau) from which extract the interpolant.

(Biased) Analytic Tableau
A refutation proof system for FOL:

instead of ` α→ β we show S = {αL,¬βR} is inconsistent
formulæ in S are adorned by L and R (needed for interpolant extraction);

we use inference rules to generate successors of S in a proof tree;
a proof is complete if all leaves contain a clash, a pair δ,¬δ

otherwise the tableau saturates an we can extract a counterexample.

Interpolation Query Rewriting 11 / 1

Interpolant Extraction (by example)

an invariant for interpolation S int−→ψ is (
∧

SL)→ ψ and ψ → (¬
∧

SR)

where SL and SR are subsets of S derived from adornments of formulas.

tableau rules (sample):

LR clash S ∪ {RL,¬RR} int−→R , R ∈ SA because

(
∧

SL ∧ RL)→ R and R → (RR ∨ ¬
∧

SR)

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ
because

(
∧

SL ∧ αL ∧ βL)→ δ implies (
∧

SL ∧ (α ∧ β)L)→ δ.

R-Disjunction
S ∪ {αR} int−→ δα and S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ
because

∧
SL → δα, δα → (αR ∨ ¬

∧
SR) and

∧
SL → δβ , δβ → (βR ∨ ¬

∧
SR)

implies (
∧

SL)→ δα ∧ δβ , δα ∧ δβ → (α ∨ β)R ∨ ¬
∧

SR .
etc. (see [Fitting] for details)

Interpolation Query Rewriting 12 / 1

Interpolant Extraction (by example)

an invariant for interpolation S int−→ψ is (
∧

SL)→ ψ and ψ → (¬
∧

SR)

where SL and SR are subsets of S derived from adornments of formulas.

tableau rules (sample):

LR clash S ∪ {RL,¬RR} int−→R , R ∈ SA because

(
∧

SL ∧ RL)→ R and R → (RR ∨ ¬
∧

SR)

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ
because

(
∧

SL ∧ αL ∧ βL)→ δ implies (
∧

SL ∧ (α ∧ β)L)→ δ.

R-Disjunction
S ∪ {αR} int−→ δα and S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ
because

∧
SL → δα, δα → (αR ∨ ¬

∧
SR) and

∧
SL → δβ , δβ → (βR ∨ ¬

∧
SR)

implies (
∧

SL)→ δα ∧ δβ , δα ∧ δβ → (α ∨ β)R ∨ ¬
∧

SR .
etc. (see [Fitting] for details)

Interpolation Query Rewriting 12 / 1

Interpolant Extraction (by example)

an invariant for interpolation S int−→ψ is (
∧

SL)→ ψ and ψ → (¬
∧

SR)

where SL and SR are subsets of S derived from adornments of formulas.

tableau rules (sample):

LR clash S ∪ {RL,¬RR} int−→R , R ∈ SA because

(
∧

SL ∧ RL)→ R and R → (RR ∨ ¬
∧

SR)

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ
because

(
∧

SL ∧ αL ∧ βL)→ δ implies (
∧

SL ∧ (α ∧ β)L)→ δ.

R-Disjunction
S ∪ {αR} int−→ δα and S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ
because

∧
SL → δα, δα → (αR ∨ ¬

∧
SR) and

∧
SL → δβ , δβ → (βR ∨ ¬

∧
SR)

implies (
∧

SL)→ δα ∧ δβ , δα ∧ δβ → (α ∨ β)R ∨ ¬
∧

SR .
etc. (see [Fitting] for details)

Interpolation Query Rewriting 12 / 1

Interpolant Extraction (by example)

an invariant for interpolation S int−→ψ is (
∧

SL)→ ψ and ψ → (¬
∧

SR)

where SL and SR are subsets of S derived from adornments of formulas.

tableau rules (sample):

LR clash S ∪ {RL,¬RR} int−→R , R ∈ SA because

(
∧

SL ∧ RL)→ R and R → (RR ∨ ¬
∧

SR)

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ
because

(
∧

SL ∧ αL ∧ βL)→ δ implies (
∧

SL ∧ (α ∧ β)L)→ δ.

R-Disjunction
S ∪ {αR} int−→ δα and S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ
because

∧
SL → δα, δα → (αR ∨ ¬

∧
SR) and

∧
SL → δβ , δβ → (βR ∨ ¬

∧
SR)

implies (
∧

SL)→ δα ∧ δβ , δα ∧ δβ → (α ∨ β)R ∨ ¬
∧

SR .
etc. (see [Fitting] for details)

Interpolation Query Rewriting 12 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)

⇒ do we want to enumerate all equivalent rewritings? (NO)
⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO)

⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO, why?)

⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO)
⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO)
⇒ do we get “enough”? (NO, needs tableau modifications)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO)
⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

Implementation “details”

1 Plan enumeration:

⇒ enumeration of proofs ∼ enumeration all equivalent rewritings? (NO)
⇒ do we want to enumerate all equivalent rewritings? (NO)
⇒ do we get “enough”? (NO)

2 Is backtracking of the tableau proofs feasible approach? (NO)

⇒ in Σ we separate

“logical” (lots, complex) and
“physical” (few, simple) constraints

. . . limits backtracking during plan search to physical constraints;

3 Still needs to check for satisfaction of binding patterns.

Interpolation Query Rewriting 13 / 1

POST-PROCESSING

Interpolation Query Rewriting 14 / 1

Duplicate Elimination Elimination

In general ∃x .ψ has to eliminate duplicates in the result (expensive)
⇒ we want to detect when duplicate elimination can be safely omitted.

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

where y1 and y2 are fresh variable names not occurring in Q, Q1, and Q2.

Post-processing Query Rewriting 15 / 1

Duplicate Elimination Elimination

In general ∃x .ψ has to eliminate duplicates in the result (expensive)
⇒ we want to detect when duplicate elimination can be safely omitted.

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

where y1 and y2 are fresh variable names not occurring in Q, Q1, and Q2.

Post-processing Query Rewriting 15 / 1

Duplicate Elimination Elimination

In general ∃x .ψ has to eliminate duplicates in the result (expensive)
⇒ we want to detect when duplicate elimination can be safely omitted.

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

where y1 and y2 are fresh variable names not occurring in Q, Q1, and Q2.
Post-processing Query Rewriting 15 / 1

Summary

1 interpolation provides a powerful tool for query optimization, but
efficiency of reasoning is an issue (single proof is not sufficient)
generating enough candidate plans (at odds with structural proofs)
but needs to avoid useless plans (e.g., co-joining tautologies, etc.)

2 postprocessing needed to deal with non-FO features
duplicate semantics (hard to even define query equivalence!)
cuts (see textbook for details)

Post-processing Query Rewriting 16 / 1

Summary

1 interpolation provides a powerful tool for query optimization, but
efficiency of reasoning is an issue (single proof is not sufficient)
generating enough candidate plans (at odds with structural proofs)
but needs to avoid useless plans (e.g., co-joining tautologies, etc.)

2 postprocessing needed to deal with non-FO features
duplicate semantics (hard to even define query equivalence!)
cuts (see textbook for details)

Post-processing Query Rewriting 16 / 1

