Exercise 3

Problems:
(1) Show that a simple a conjunction (NLJ) of access paths, the execution depends on the order of conjuncts but not on the parenthesization of the expression.
(2) (a) Show that the standard analytic tableau calculus fails to find the rewriting $A \wedge(B \vee C)$ for the query $(A \wedge B) \vee(A \wedge C)$ w.r.t. $\Sigma=\emptyset$ and $S_{A}=\{A, B, C\}$; why?
(b) Can you think of a way to modify the calculus and/or the way the rewriting problem is presented to the calculus that avoids such problems?
(3) Design an interpolation rules for first-order quantifiers and show its correctness.

The quantifier rules are (there are two more for $\neg \forall x . \gamma$ and $\neg \exists x . \gamma$):

$$
\frac{S \cup\{\forall x \cdot \gamma(x), \gamma(t)\}}{S \cup\{\forall x \cdot \gamma(x)\}}(\forall) \quad \frac{S \cup\{\gamma(c)\}}{S \cup\{\exists x \cdot \gamma(x)\}}(\exists)
$$

for t an arbitrary term and c a fresh (Skolem) constant.
Hint: whether a quantifier is produced in the interpolant will depend on whether t occurs elsewhere in (parts of) S. What role do the $(\cdot)^{L} /(\cdot)^{R}$ labels play?
(a) Show how updates (insertion/deletion) will be compiled for the standard design containing a single ternary table R with an additional index on its 2nd attribute.

