Exercise 1

- **O** Under what conditions does $\{\vec{a} \mid \Sigma \cup D \models \varphi(\vec{a})\} = \bigcap_{I \models \Sigma, I_{|D} = D} \{\theta \mid I, \theta \models \varphi\}$ hold?
- Show that, given a DL-Lite/ \mathcal{EL} TBox \mathcal{T} ,
 - if K = (T, {A(a)}) is consistent, then it has a tree model rooted by (the interpretation of) a;
 - if $\mathcal{K} = (\mathcal{T}, \{R(a, b), R(b, c), R(c, a)\})$ is consistent, then it has a model consisting of three disjoint trees rooted by *a*, *b*, and *c*, respectively, such that the roots are connected by *R* (clockwise), but that it has no tree model.
 - extend (b) to an arbitrary ABox \mathcal{A} .
- Show that $\mathcal{K} \models \varphi(\vec{a})$ if and only if $\mathcal{U}_{\mathcal{K}} \models \varphi(\vec{a})$.
- **(4)** Consider a DL-Lite/ \mathcal{EL} knowledge base \mathcal{K} and a conjunctive query

 $\varphi = \exists z_1, z_2.R(z_1, x) \land R(z_1, y) \land R(x, z_2) \land R(y, z_2) \land A(z_2).$

Which of the variables in φ must be mapped to (interpretations of) ABox individuals and which can be mapped to anonymous individuals (and under what conditions) in the canonical model $\mathcal{U}_{\mathcal{K}}$?