
Ontology-based Data Access
a.k.a. Queries and the Open World Assumption

David Toman

D. R. Cheriton School of Computer Science

D. Toman (Waterloo) Queries and Ontologies 1 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 1:

Definition (Implicit Definability)
A query Q is implicitly definable in Ds if Q(M1) = Q(M2) for all pairs of
databases M1 |= T and M2 |= T s. t. Ai(M1) = Ai(M2) for all Ai ∈ D.

1 Chase/Craig Interpolation provides rewriting ψ(D)

2 In some cases ϕ is not implicitly definable
⇒ in particular when OWA plays a role (e.g., NULLs)

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 1:

Definition (Implicit Definability)
A query Q is implicitly definable in Ds if Q(M1) = Q(M2) for all pairs of
databases M1 |= T and M2 |= T s. t. Ai(M1) = Ai(M2) for all Ai ∈ D.

1 Chase/Craig Interpolation provides rewriting ψ(D)

2 In some cases ϕ is not implicitly definable
⇒ in particular when OWA plays a role (e.g., NULLs)

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

ODBA: Queries and Ontologies

IDEA:
Queries answers are logical consequences of explicit data

combined with background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
• Bob is a BOSS (explicit data)
• Every BOSS is an EMPloyee (ontology)

List all EMPloyees⇒ {Bob} (query)

D. Toman (Waterloo) Queries and Ontologies 3 / 15

ODBA: Queries and Ontologies

IDEA:
Queries answers are logical consequences of explicit data

combined with background knowledge
⇒ Ontology-based Data Access (OBDA)

Example
• Bob is a BOSS (explicit data)
• Every BOSS is an EMPloyee (ontology)

List all EMPloyees⇒ {Bob} (query)

D. Toman (Waterloo) Queries and Ontologies 3 / 15

Difficulties: User Expectations

Example
• EMP(Sue)
• EMP v ∃PHONENUM

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

D. Toman (Waterloo) Queries and Ontologies 4 / 15

Difficulties: User Expectations

Example
• EMP(Sue)
• EMP v ∃PHONENUM

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

D. Toman (Waterloo) Queries and Ontologies 4 / 15

Difficulties: User Expectations

Example
• EMP(Sue)
• EMP v ∃PHONENUM

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

D. Toman (Waterloo) Queries and Ontologies 4 / 15

Difficulties: User Expectations

Example
• EMP(Sue)
• EMP v ∃PHONENUM

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:

D. Toman (Waterloo) Queries and Ontologies 4 / 15

Why? Certain Answers

Example (Unintuitive Behaviour of Queries:)
1 ∃x .Phone("Sue", x)?

⇒ YES

2 Phone("Sue", x)?

⇒ {}

under T = {∀x .Person(x)→ ∃y .Phone(x , y)}
and D = {Person("Sue")}.

D. Toman (Waterloo) Queries and Ontologies 5 / 15

Why? Certain Answers

Example (Unintuitive Behaviour of Queries:)
1 ∃x .Phone("Sue", x)? ⇒ YES

2 Phone("Sue", x)? ⇒ {}

under T = {∀x .Person(x)→ ∃y .Phone(x , y)}
and D = {Person("Sue")}.

D. Toman (Waterloo) Queries and Ontologies 5 / 15

The problem: Users (essentially) EXPECT CWA

What does A = {EMP(Bob),EMP(Sue)} mean?

OWA: BobI ∈ EMPI ,SueI ∈ EMPI (KR folks)

CWA: {BobI ,SueI} = EMPI (DB folks and users)

. . . at least for their relations (i.e., in the conceptual schema).

Simulations:
CWA in OWA: closure axioms: ∀x .EMP(x)→ (x = Bob) ∨ (x = Sue);

OWA in CWA: auxiliary symbols: ExpEMP(Bob),ExpEMP(Sue)
and constraints: ∀x .ExpEMP(x)→ EMP(x)

D. Toman (Waterloo) Queries and Ontologies 6 / 15

The problem: Users (essentially) EXPECT CWA

What does A = {EMP(Bob),EMP(Sue)} mean?

OWA: BobI ∈ EMPI ,SueI ∈ EMPI (KR folks)

CWA: {BobI ,SueI} = EMPI (DB folks and users)

. . . at least for their relations (i.e., in the conceptual schema).

Simulations:
CWA in OWA: closure axioms: ∀x .EMP(x)→ (x = Bob) ∨ (x = Sue);

OWA in CWA: auxiliary symbols: ExpEMP(Bob),ExpEMP(Sue)
and constraints: ∀x .ExpEMP(x)→ EMP(x)

D. Toman (Waterloo) Queries and Ontologies 6 / 15

Certain Answers: What is the Price?

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

coNP-complete for all DLs between AL and SHIQ

(DATA complexity!)

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Certain Answers: What is the Price?

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

coNP-complete for all DLs between AL and SHIQ

(DATA complexity!)

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Certain Answers: What is the Price?

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

coNP-complete for all DLs between AL and SHIQ

(DATA complexity!)

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Certain Answers: What is the Price?

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

coNP-complete for all DLs between AL and SHIQ

(DATA complexity!)

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Certain Answers: What is the Price?

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

coNP-complete for all DLs between AL and SHIQ (DATA complexity!)

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 8 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 8 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 8 / 15

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)
1 Roles R and concepts C as follows:

R ::= P | P− C ::= ⊥ | A | ∃R
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 u · · · u Cn v C R1 v R2

Definition (DL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA here: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the query.

D. Toman (Waterloo) Queries and Ontologies 9 / 15

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)
1 Roles R and concepts C as follows:

R ::= P | P− C ::= ⊥ | A | ∃R
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 u · · · u Cn v C R1 v R2

Definition (DL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA here: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the query.

D. Toman (Waterloo) Queries and Ontologies 9 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)

= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)

= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)

= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)
= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 10 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q†

⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 11 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q†

⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 11 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q† ⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 11 / 15

EL Family of DLs

Definition (EL-Lite family: Schemata and TBoxes)
1 Concepts C as follows:

C ::= A | > | ⊥ | C u C | ∃R.C
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 v C2 R1 v R2

Definition (EL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA again: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the data.

D. Toman (Waterloo) Queries and Ontologies 12 / 15

EL Family of DLs

Definition (EL-Lite family: Schemata and TBoxes)
1 Concepts C as follows:

C ::= A | > | ⊥ | C u C | ∃R.C
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 v C2 R1 v R2

Definition (EL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA again: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the data.

D. Toman (Waterloo) Queries and Ontologies 12 / 15

Combined Approach

Can an approach based on rewriting be used for EL?

NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 14 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 14 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 14 / 15

Summary

1 Answering queries over databases with respect to schema
constraints/ontologies is hard.

2 Choice between:
Query Definability:

⇒ expressive schema languages and queries
⇒ rewritten queries in AC0 (∼ efficient)
⇒ but rewriting is hard to find and may not exist

Certain Answers:
⇒ weak schema languages and positive queries only
⇒ rewritten queries still complex (data complexity)
⇒ but certain answers are always defined

D. Toman (Waterloo) Queries and Ontologies 15 / 15

