Ontology-based Data Access a.k.a. Queries and the Open World Assumption

David Toman

D. R. Cheriton School of Computer Science

- University of Waterloo

Open World Assumption and Possible Worlds

Setting

Input:
(1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 1:

Definition (Implicit Definability)

A query Q is implicitly definable in $D s$ if $Q\left(M_{1}\right)=Q\left(M_{2}\right)$ for all pairs of databases $M_{1} \models \mathcal{T}$ and $M_{2} \models \mathcal{T}$ s. t. $A_{i}\left(M_{1}\right)=A_{i}\left(M_{2}\right)$ for all $A_{i} \in D$.

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

OPTION 1:

Definition (Implicit Definability)

A query Q is implicitly definable in $D s$ if $Q\left(M_{1}\right)=Q\left(M_{2}\right)$ for all pairs of databases $M_{1} \models \mathcal{T}$ and $M_{2} \models \mathcal{T}$ s. t. $A_{i}\left(M_{1}\right)=A_{i}\left(M_{2}\right)$ for all $A_{i} \in D$.
(1) Chase/Craig Interpolation provides rewriting $\psi(D)$
(2) In some cases φ is not implicitly definable
\Rightarrow in particular when OWA plays a role (e.g., NULLs)

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 2:

Definition (Certain Answers)

$$
\operatorname{cert}_{\mathcal{T}, D}(\varphi)=\bigcap_{M \models \mathcal{T} \cup D}\{\vec{a}|M, \vec{a}|=\varphi\}
$$

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

How do we answer φ over D w.r.t. T ?

OPTION 2:

Definition (Certain Answers)
Answer to $\varphi(D)$ under $\mathcal{T}:=\operatorname{cert}_{\mathcal{T}, D}(\varphi)=\bigcap_{M \vDash \mathcal{T} \cup D}\{\vec{a} \mid M, \vec{a} \models \varphi\}$

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema \mathcal{T} (set of integrity constraints);
(2) Data $D=\left\{A_{1}, \ldots, A_{k}\right\}$ (instance of some predicates); and
(3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 2:

Definition (Certain Answers)

$$
\text { Answer to } \varphi(D) \text { under } \mathcal{T}:=\operatorname{cert}_{\mathcal{T}, D}(\varphi)=\bigcap_{M \models \mathcal{T} \cup D}\{\vec{a} \mid M, \vec{a} \models \varphi\}
$$

(1) Essentially a variant of [Imielinski\&Lipski] approach
(2) Answer to φ is always defined (unlike in OPTION 1)
... any drawbacks?

ODBA: Queries and Ontologies

IDEA:

Queries answers are logical consequences of explicit data combined with background knowledge
\Rightarrow Ontology-based Data Access (OBDA)

ODBA: Queries and Ontologies

IDEA:

Queries answers are logical consequences of explicit data combined with background knowledge
\Rightarrow Ontology-based Data Access (OBDA)

Example

- Bob is a BOSS
(explicit data)
- Every BOSS is an EMPloyee
(ontology)
List all EMPloyees \Rightarrow \{Bob $\}$

Difficulties: User Expectations

Example

- EMP(Sue)
- EMP $\sqsubseteq \exists P H O N E N U M$

Difficulties: User Expectations

Example

- EMP(Sue)
- EMP $\sqsubseteq \exists P H O N E N U M$

User: Does Sue have a phone number?
Information System: YES

Difficulties: User Expectations

Example

- EMP(Sue)
- EMP $\sqsubseteq \exists P H O N E N U M$

User: Does Sue have a phone number?
Information System: YES
User: OK, tell me Sue's phone number!
Information System: (no answer)

Difficulties: User Expectations

Example

- EMP(Sue)
- EMP $\sqsubseteq \exists P H O N E N U M$

User: Does Sue have a phone number?
Information System: YES
User: OK, tell me Sue's phone number!
Information System: (no answer)
User:

Why? Certain Answers

Example (Unintuitive Behaviour of Queries:)

(1) $\exists x$.Phone("Sue", x)?
(2) Phone("Sue", x)?

$$
\begin{array}{r}
\text { under } \mathcal{T}=\{\forall x . \text { Person }(x) \rightarrow \exists y . \text { Phone }(x, y)\} \\
\text { and } D=\{\text { Person("Sue") }\} .
\end{array}
$$

Why? Certain Answers

Example (Unintuitive Behaviour of Queries:)

(1) $\exists x$.Phone("Sue", x)? \Rightarrow YES
(2) Phone("Sue", x)? $\Rightarrow\}$

$$
\begin{array}{r}
\text { under } \mathcal{T}=\{\forall x . \operatorname{Person}(x) \rightarrow \exists y . \operatorname{Phone}(x, y)\} \\
\text { and } D=\{\operatorname{Person}(" \text { Sue } ")\} .
\end{array}
$$

The problem: Users (essentially) EXPECT CWA

```
What does \mathcal{A ={EMP(Bob), EMP(Sue)} mean?}
    OWA: Bob }\mp@subsup{}{}{\mathcal{I}}\inEM\mp@subsup{P}{}{\mathcal{I}},Su\mp@subsup{e}{}{\mathcal{I}}\inEM\mp@subsup{P}{}{\mathcal{I}
    CWA: {Bob 
    (DB folks and users)
```

\ldots at least for their relations (i.e., in the conceptual schema).

The problem: Users (essentially) EXPECT CWA

What does $\mathcal{A}=\{E M P($ Bob $), E M P($ Sue $)\}$ mean?

OWA: $B o b^{\mathcal{I}} \in E M P^{\mathcal{I}}, S u e^{\mathcal{I}} \in E M P^{\mathcal{I}}$
(KR folks)
CWA: $\left\{\right.$ Bob $\left.^{\mathcal{I}}, S u e^{\mathcal{I}}\right\}=E M P^{\mathcal{I}}$
(DB folks and users)
... at least for their relations (i.e., in the conceptual schema).

Simulations:
CWA in OWA: closure axioms: $\forall x . E M P(x) \rightarrow(x=B o b) \vee(x=$ Sue $)$; OWA in CWA: auxiliary symbols: ExpEMP(Bob), ExpEMP (Sue) and constraints: $\forall x$.ExpEMP $(x) \rightarrow E M P(x)$

Certain Answers: What is the Price?

Example

- Schema\&Data:

$$
\begin{aligned}
\mathcal{T}= & \{\forall x, y . \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Node}(x), \\
& \forall x, y . \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Colour}(y) \\
D= & \left\{\text { Edge }=\left\{\left(n_{i}, n_{j}\right)\right\}, \text { Node }=\left\{n_{1}, \ldots n_{m}\right\}\right. \\
& \operatorname{Colour}=\{r, g, b\}\}
\end{aligned}
$$

Certain Answers: What is the Price?

Example

- Schema\&Data:

$$
\left.\begin{array}{rl}
\mathcal{T}= & \{\forall x, y \cdot \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Node}(x), \\
\forall x, y \cdot \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Colour}(y)
\end{array}\right\}, \quad \begin{aligned}
D=\left\{\text { Edge }=\left\{\left(n_{i}, n_{j}\right)\right\}, \text { Node }=\left\{n_{1}, \ldots n_{m}\right\},\right. \\
\quad \operatorname{Colour}=\{r, g, b\}\}
\end{aligned}
$$

- Query:

$$
\exists x, y, c . \operatorname{Edge}(x, y) \wedge \operatorname{ColNode}(x, c) \wedge \operatorname{ColNode}(y, c)
$$

Certain Answers: What is the Price?

Example

- Schema\&Data:

$$
\left.\left.\begin{array}{rl}
\mathcal{T}= & \{\forall x, y . \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Node}(x), \\
\forall x, y \cdot \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Colour}(y)
\end{array}\right\}\right)
$$

- Query:

$$
\exists x, y, c . \operatorname{Edge}(x, y) \wedge \operatorname{ColNode}(x, c) \wedge \operatorname{ColNode}(y, c)
$$

\Rightarrow the graph (Node, Edge) is NOT 3-colourable.

Certain Answers: What is the Price?

Example

- Schema\&Data:

$$
\begin{aligned}
& \mathcal{T}=\{\forall x, y . \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Node}(x), \\
& \forall x, y \cdot \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Colour}(y) \\
& D=\left\{\text { Edge }=\left\{\left(n_{i}, n_{j}\right)\right\}, \text { Node }=\left\{n_{1}, \ldots n_{m}\right\}\right. \\
&\operatorname{Colour}=\{r, g, b\}\}
\end{aligned}
$$

- Query:

$$
\exists x, y, c . E d g e(x, y) \wedge \operatorname{ColNode}(x, c) \wedge \operatorname{ColNode}(y, c)
$$

\Rightarrow the graph (Node, Edge) is NOT 3-colourable.
coNP-complete for all DLs between $\mathcal{A L}$ and $\mathcal{S H I \mathcal { Q }}$

Certain Answers: What is the Price?

Example

- Schema\&Data:

$$
\left.\left.\begin{array}{rl}
\mathcal{T}= & \{\forall x, y \cdot \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Node}(x), \\
\forall x, y . \operatorname{ColNode}(x, y) \leftrightarrow \operatorname{Colour}(y)
\end{array}\right\}, \quad\left\{\text { Edge }=\left\{\left(n_{i}, n_{j}\right)\right\}, \text { Node }=\left\{n_{1}, \ldots n_{m}\right\}, \text { Colour }=\{r, g, b\}\right\}\right\}
$$

- Query:

$$
\exists x, y, c . E d g e(x, y) \wedge \operatorname{ColNode}(x, c) \wedge \operatorname{ColNode}(y, c)
$$

\Rightarrow the graph (Node, Edge) is NOT 3-colourable.
coNP-complete for all DLs between $\mathcal{A L}$ and $\mathcal{S H I \mathcal { Q }}$ (DATA complexity!)

Can this be Done Efficiently at all?

Question

Can there be a non-trivial schema language for which query answering (under certain answer semantics) is tractable?

Can this be Done Efficiently at all?

Question

Can there be a non-trivial schema language for which query answering (under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and certain (dialects of) Description Logics (or OWL profiles):
(1) The DL-Lite family
\Rightarrow conjunction, \perp, domain/range, unqualified \exists, role inverse, UNA
\Rightarrow certain answers in $A C_{0}$ for data complexity (i.e., maps to SQL)
(2) The $\mathcal{E L}$ family
\Rightarrow conjunction, qualified \exists
\Rightarrow certain answers PTIME-complete for data complexity

Can this be Done Efficiently at all?

Question

Can there be a non-trivial schema language for which query answering (under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and certain (dialects of) Description Logics (or OWL profiles):
(1) The DL-Lite family
\Rightarrow conjunction, \perp, domain/range, unqualified \exists, role inverse, UNA
\Rightarrow certain answers in $A C_{0}$ for data complexity (i.e., maps to SQL)
(2) The $\mathcal{E L}$ family
\Rightarrow conjunction, qualified \exists
\Rightarrow certain answers PTIME-complete for data complexity
...schemas are weak on purpose: queries must not be definable.

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)

(1) Roles R and concepts C as follows:

$$
R::=P\left|P^{-} \quad C::=\perp\right| A \mid \exists R
$$

(2) Schemas are represented as TBoxes: a finite set \mathcal{T} of constraints

$$
C_{1} \sqcap \cdots \sqcap C_{n} \sqsubseteq C \quad R_{1} \sqsubseteq R_{2}
$$

Definition (DL-Lite family: Data and ABoxes)
ABox \mathcal{A} is a finite set of concept $A(a)$ and role assertions $P(a, b)$.
\Rightarrow OWA here: ABox does NOT say "these are all the tuples"!

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)
(1) Roles R and concepts C as follows:

$$
R::=P\left|P^{-} \quad C::=\perp\right| A \mid \exists R
$$

(2) Schemas are represented as TBoxes: a finite set \mathcal{T} of constraints

$$
C_{1} \sqcap \cdots \sqcap C_{n} \sqsubseteq C \quad R_{1} \sqsubseteq R_{2}
$$

Definition (DL-Lite family: Data and ABoxes)
ABox \mathcal{A} is a finite set of concept $A(a)$ and role assertions $P(a, b)$.
\Rightarrow OWA here: ABox does NOT say "these are all the tuples"!

How to compute answers to CQs?
 IDEA: incorporate schematic knowledge into the query.

Example

TBox (Schema):	Employee $\sqsubseteq \exists$ Works
	\exists Works $^{-} \sqsubseteq$ Project

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$

Example

TBox (Schema): Employee $\sqsubseteq \exists$ Works \exists Works ${ }^{-} \sqsubseteq$ Project

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$

Rewriting:

$$
\begin{aligned}
Q^{\dagger}= & (\exists y \cdot \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)) \vee \\
& (\exists y, z . \operatorname{Works}(x, y) \wedge \operatorname{Works}(z, y)) \vee \\
& (\exists y \cdot \operatorname{Works}(x, y)) \vee \\
& (\text { Employee }(x))
\end{aligned}
$$

Example

TBox (Schema): Employee $\sqsubseteq \exists$ Works

$$
\exists \text { Works }^{-} \sqsubseteq \text { Project }
$$

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$

Rewriting:

$$
\begin{aligned}
Q^{\dagger}= & (\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)) \vee \\
& (\exists y, z . \operatorname{Works}(x, y) \wedge \operatorname{Works}(z, y)) \vee \\
& (\exists y \cdot \operatorname{Works}(x, y)) \vee \\
& (\text { Employee }(x))
\end{aligned}
$$

Query Execution:

$$
Q^{\dagger}\binom{\{\text { Employee(bob), }}{\text { Works }(\text { sue, slides })\}}
$$

Example

TBox (Schema): Employee $\sqsubseteq \exists$ Works

$$
\exists \text { Works }^{-} \sqsubseteq \text { Project }
$$

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$

Rewriting:

$$
\begin{aligned}
Q^{\dagger}= & (\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)) \vee \\
& (\exists y, z . \operatorname{Works}(x, y) \wedge \operatorname{Works}(z, y)) \vee \\
& (\exists y \cdot \operatorname{Works}(x, y)) \vee \\
& (\text { Employee }(x))
\end{aligned}
$$

Query Execution:

$$
Q^{\dagger}\binom{\{\text { Employee }(\text { bob }),}{\text { Works(sue, slides })\}}=\{\text { bob, sue }\}
$$

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox \mathcal{T}
$R=\{Q\}$;

repeat

foreach query $Q^{\prime} \in R$ do
foreach axiom $\alpha \in \mathcal{T}$ do
if α is applicable to Q^{\prime} then $R=R \cup\left\{Q^{\prime}[\operatorname{lns}(\alpha) / \operatorname{rhs}(\alpha)]\right\}$
foreach two atoms D_{1}, D_{2} in Q^{\prime} do
if D_{1} and D_{2} unify then

$$
\sigma=M G U\left(D_{1}, D_{2}\right) ; R=R \cup\left\{\lambda\left(Q^{\prime}, \sigma\right)\right\} ;
$$

until no query unique up to variable renaming can be added to R; return $Q^{\dagger}:=(\bigvee R)$

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox \mathcal{T}
$R=\{Q\}$;
repeat
foreach query $Q^{\prime} \in R$ do
foreach axiom $\alpha \in \mathcal{T}$ do
if α is applicable to Q^{\prime} then $R=R \cup\left\{Q^{\prime}[\operatorname{lns}(\alpha) / \operatorname{rhs}(\alpha)]\right\}$
foreach two atoms D_{1}, D_{2} in Q^{\prime} do if D_{1} and D_{2} unify then

$$
\sigma=M G U\left(D_{1}, D_{2}\right) ; R=R \cup\left\{\lambda\left(Q^{\prime}, \sigma\right)\right\} ;
$$

until no query unique up to variable renaming can be added to R; return $Q^{\dagger}:=(\bigvee R)$

Theorem

$\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $\mathcal{A}, \vec{a} \models Q^{\dagger}$

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox \mathcal{T}
$R=\{Q\}$;
repeat
foreach query $Q^{\prime} \in R$ do
foreach axiom $\alpha \in \mathcal{T}$ do
if α is applicable to Q^{\prime} then $R=R \cup\left\{Q^{\prime}[\operatorname{lhs}(\alpha) / \operatorname{rhs}(\alpha)]\right\}$
foreach two atoms D_{1}, D_{2} in Q^{\prime} do if D_{1} and D_{2} unify then

$$
\sigma=M G U\left(D_{1}, D_{2}\right) ; R=R \cup\left\{\lambda\left(Q^{\prime}, \sigma\right)\right\} ;
$$

until no query unique up to variable renaming can be added to R; return $Q^{\dagger}:=(\bigvee R)$

Theorem

$\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $\mathcal{A}, \vec{a}=Q^{\dagger} \Leftarrow$ can be VERY large

$\mathcal{E} \mathcal{L}$ Family of DLs

Definition ($\mathcal{E L}$-Lite family: Schemata and TBoxes)

(1) Concepts C as follows:

$$
C::=A|\top| \perp|C \sqcap C| \exists R . C
$$

(2) Schemas are represented as TBoxes: a finite set \mathcal{T} of constraints

$$
C_{1} \sqsubseteq C_{2} \quad R_{1} \sqsubseteq R_{2}
$$

Definition ($\mathcal{E L}$-Lite family: Data and ABoxes)
ABox \mathcal{A} is a finite set of concept $A(a)$ and role assertions $P(a, b)$.
\Rightarrow OWA again: ABox does NOT say "these are all the tuples"!

$\mathcal{E L}$ Family of DLs

Definition ($\mathcal{E L}$-Lite family: Schemata and TBoxes)
(1) Concepts C as follows:

$$
C::=A|\top| \perp|C \sqcap C| \exists R . C
$$

(2) Schemas are represented as TBoxes: a finite set \mathcal{T} of constraints

$$
C_{1} \sqsubseteq C_{2} \quad R_{1} \sqsubseteq R_{2}
$$

Definition ($\mathcal{E L}$-Lite family: Data and ABoxes)
ABox \mathcal{A} is a finite set of concept $A(a)$ and role assertions $P(a, b)$.
\Rightarrow OWA again: ABox does NOT say "these are all the tuples"!

How to compute answers to CQs?
 IDEA: incorporate schematic knowledge into the data.

Combined Approach

Can an approach based on rewriting be used for $\mathcal{E} \mathcal{L}$?

Combined Approach

Can an approach based on rewriting be used for $\mathcal{E} \mathcal{L}$? NO: $\mathcal{E L}$ is PTIME-complete for data complexity.

Combined Approach

Can an approach based on rewriting be used for $\mathcal{E L}$? NO: $\mathcal{E L}$ is PTIME-complete for data complexity.

Combined Approach

We effectively transform
(1) the ABox \mathcal{A} to a relational database $D_{\mathcal{A}}$ using constraints in \mathcal{T},
(2) the conjunctive query Q to a relational query Q^{\ddagger}.

> . . . both polynomial in the input(s)

Combined Approach

Can an approach based on rewriting be used for $\mathcal{E L}$? NO: $\mathcal{E L}$ is PTIME-complete for data complexity.

Combined Approach

We effectively transform
(1) the ABox \mathcal{A} to a relational database $D_{\mathcal{A}}$ using constraints in \mathcal{T},
(2) the conjunctive query Q to a relational query Q^{\ddagger}.

> . . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAl'09)

$$
\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q \text { if and only if } D_{\mathcal{A}}, \vec{a} \models Q^{\ddagger}
$$

Example (with DL-Lite schema)

TBox (Schema): Employee $\sqsubseteq \exists$ Works \exists Works.T $\sqsubseteq \exists$ Works.Project

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$
Data:
\{Employee(bob), Works(sue, slides)

Example (with DL-Lite schema)

TBox (Schema): Employee $\sqsubseteq \exists$ Works \exists Works. $\top \sqsubseteq \exists$ Works.Project

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$
Data: \quad Employee (bob), Works(sue, slides) $\}$

Rewriting:

(1) $D_{\mathcal{A}}=\left\{\right.$ Employee(bob), Works(bob, $\left.c_{\text {Works }}\right)$, Works(sue, slides), Project($\left.\left.c_{\text {Works }}\right), \operatorname{Project(slides)~}\right\}$
(2) $Q^{\ddagger}=Q \wedge\left(x \neq c_{w}\right)$

Example (with DL-Lite schema)

TBox (Schema): Employee $\sqsubseteq \exists$ Works \exists Works. $\top \sqsubseteq \exists$ Works.Project

Conjunctive Query: $\exists y . \operatorname{Works}(x, y) \wedge \operatorname{Project}(y)$
Data: \quad Employee (bob), Works(sue, slides) $\}$

Rewriting:

(1) $D_{\mathcal{A}}=\left\{\right.$ Employee(bob), Works(bob, $c_{\text {Works }}$), Works(sue, slides), Project($\left.\left.c_{\text {Works }}\right), \operatorname{Project(slides)~}\right\}$
(2) $Q^{\ddagger}=Q \wedge\left(x \neq c_{w}\right)$

Query Execution:

$$
Q^{\ddagger}\left(D_{\mathcal{A}}\right)=\{\text { bob, sue }\}
$$

Summary

(1) Answering queries over databases with respect to schema constraints/ontologies is hard.
(2) Choice between:

Query Definability:
\Rightarrow expressive schema languages and queries
\Rightarrow rewritten queries in $A C_{0}$ (\sim efficient)
\Rightarrow but rewriting is hard to find and may not exist
Certain Answers:
\Rightarrow weak schema languages and positive queries only
\Rightarrow rewritten queries still complex (data complexity)
\Rightarrow but certain answers are always defined

