
Query Processing for Non-traditional Applications

CS848 Spring 2013

Cheriton School of CS

Updating Data

CS848 Spring 2013 (Cheriton School of CS) Advanced Physical Design Updating Data 1 / 15

Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
updates and logical relations
updates and constraints
updates and access paths

3 Difficulties on the way
sequencing updates
value invention

CS848 Spring 2013 (Cheriton School of CS) Outline Updating Data 2 / 15

Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?

updates and logical relations
updates and constraints
updates and access paths

3 Difficulties on the way
sequencing updates
value invention

CS848 Spring 2013 (Cheriton School of CS) Outline Updating Data 2 / 15

Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
updates and logical relations
updates and constraints
updates and access paths

3 Difficulties on the way
sequencing updates
value invention

CS848 Spring 2013 (Cheriton School of CS) Outline Updating Data 2 / 15

Plan

1 What are updates (how to understand dynamic aspects of instances)?

2 How do we understand updates in our framework?
updates and logical relations
updates and constraints
updates and access paths

3 Difficulties on the way
sequencing updates
value invention

CS848 Spring 2013 (Cheriton School of CS) Outline Updating Data 2 / 15

Physical Design and Query Compilation: Overview

ΣL SL QLoo

ΣLP (query compilation)

��
ΣP SP QPoo

CS848 Spring 2013 (Cheriton School of CS) Outline Updating Data 3 / 15

UPDATES IN NUTSHELL

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 4 / 15

Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL
�������������������!

j
(compile to)

#

physical update UP
�������������������!

ΣL SL

ΣLP

ΣP SP

old instance new instance

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 5 / 15

Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL
�������������������!

j
(compile to)

#

physical update UP
�������������������!

ΣL SL

ΣLP

ΣP SP

old instance new instance

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 5 / 15

Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL
�������������������!

j
(compile to)

#

physical update UP
�������������������!

ΣL SL

ΣLP

ΣP SP

old instance new instance

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 5 / 15

Physical Design and Updates: Overview

ΣL SL

ΣLP

ΣP SP

user update UL
�������������������!

j
(compile to)

#

physical update UP
�������������������!

ΣL SL

ΣLP

ΣP SP

old instance new instance

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 5 / 15

Update Schema

Σ

o

L S

o

L

Σ

o

LP

Σ

o

P S

o

P

user update UL
�������������������!

physical update UP
�������������������!

Σ

n

L S

n

L

Σ

n

LP

Σ

n

P S

n

P

o(ld instance) n(ew instance)

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

user update UL
�������������������!

physical update UP
�������������������!

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S�L ; Σ�L ������������������!

physical update UP
�������������������!

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

S�L = fP+; P� j P 2 SLg;

Σ�L = f8x̄ :(Po(x̄) _ P+(x̄))$ (Pn(x̄) _ P�(x̄)) j P 2 SLg

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S�L ; Σ�L ������������������!

S�P ; Σ�P�������������������!

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

S�L = fP+; P� j P 2 SAg;

Σ�L = f8x̄ :(Po(x̄) _ P+(x̄))$ (Pn(x̄) _ P�(x̄)) j P 2 SAg

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S�L ; Σ�L ������������������!

S�P ; Σ�P�������������������!

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Update Schema

Σo
L So

L

Σo
LP

Σo
P So

P

S�L ; Σ�L ������������������!

S�P :=Q(So
P;S�L);Σ�P

�������������������!

Σn
L Sn

L

Σn
LP

Σn
P Sn

P

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 6 / 15

Physical Design and Update Compilation

Σ So
L; Sn

L; Sn
P; S�P ULoo

Σ (update compilation)

��
Σ So

P; S�L UPoo

UL is a user query P+(x̄) (P�(x̄)) for P 2 SA;
UP is a plan for the user query P+(x̄) (P�(x̄)) for P 2 SA
) w.r.t. the access paths SA [S�L , and
) aux code that inserts (deletes) the result of the plan into (from) P.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 7 / 15

Physical Design and Update Compilation

Σ So
L; Sn

L; Sn
P; S�P ULoo

Σ (update compilation)

��
Σ So

P; S�L UPoo

UL is a user query P+(x̄) (P�(x̄)) for P 2 SA;
UP is a plan for the user query P+(x̄) (P�(x̄)) for P 2 SA
) w.r.t. the access paths SA [S�L , and
) aux code that inserts (deletes) the result of the plan into (from) P.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 7 / 15

Physical Design and Update Compilation

Σ So
L; Sn

L; Sn
P; S�P ULoo

Σ (update compilation)

��
Σ So

P; S�L UPoo

UL is a user query P+(x̄) (P�(x̄)) for P 2 SA;

UP is a plan for the user query P+(x̄) (P�(x̄)) for P 2 SA
) w.r.t. the access paths SA [S�L , and
) aux code that inserts (deletes) the result of the plan into (from) P.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 7 / 15

Physical Design and Update Compilation

Σ So
L; Sn

L; Sn
P; S�P ULoo

Σ (update compilation)

��
Σ So

P; S�L UPoo

UL is a user query P+(x̄) (P�(x̄)) for P 2 SA;
UP is a plan for the user query P+(x̄) (P�(x̄)) for P 2 SA
) w.r.t. the access paths SA [S�L , and
) aux code that inserts (deletes) the result of the plan into (from) P.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 7 / 15

Example

Setup: standard relational design for Employee(id,name,salary)
A base file empfile of emp records (organized by id)
An emp-name index on employee names (links name to id)

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 8 / 15

Example

Setup: standard relational design for Employee(id,name,salary)
A base file empfile of emp records (organized by id)
An emp-name index on employee names (links name to id)

Logical Schema:
SL = fEmployee=3g; ΣL = f“id is a key”g

Physical Schema:
SP = SA = fempfile=3=0;emp-id=3=1;emp-name=2=1g
ΣLP = f 8x ; y ; z:Employee(x ; y ; z)$ empfile(x ; y ; z)

8x ; y ; z:Employee(x ; y ; z)$ emp-id(x ; y ; z)
8x ; y ; z:Employee(x ; y ; z)$ emp-name(y ; x) g

Logical Update Schema: (just the signature)
SL = fempfile+=3;empfile�=3;emp-name+=2;emp-name�=2g

Physical Update Schema:
SP = fEmployee+=3;Employee�=3;empfileo=3;empfileo=3; : : :g

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 8 / 15

Example

Setup: standard relational design for Employee(id,name,salary)
A base file empfile of emp records (organized by id)
An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = fempfile+=3;empfile�=3;emp-name+=2;emp-name�=2g

Physical Update Schema:
SP = fEmployee+=3;Employee�=3;empfileo=3;empfileo=3; : : :g

ΣLP = f8x ; y ; z:(empfileo(x ; y ; z) _ empfile+(x ; y ; z))
$ (empfilen(x ; y ; z) _ empfile�(x ; y ; z)) ; : : :g

ΣP = f8x ; y ; z:Employee+(x ; y ; z) ^ Employee�(x ; y ; z)! ?; : : :g

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)

compiles
�����! Employee�(x ; y ; z) ^ empfileo(x ; y ; z)

. . . similar for emp-name, no-op for emp-id (why?)

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 8 / 15

Example

Setup: standard relational design for Employee(id,name,salary)
A base file empfile of emp records (organized by id)
An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = fempfile+=3;empfile�=3;emp-name+=2;emp-name�=2g

Physical Update Schema:
SP = fEmployee+=3;Employee�=3;empfileo=3;empfileo=3; : : :g

ΣLP = f8x ; y ; z:(empfileo(x ; y ; z) _ empfile+(x ; y ; z))
$ (empfilen(x ; y ; z) _ empfile�(x ; y ; z)) ; : : :g

ΣP = f8x ; y ; z:Employee+(x ; y ; z) ^ Employee�(x ; y ; z)! ?; : : :g

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z) ^ empfileo(x ; y ; z)

. . . similar for emp-name, no-op for emp-id (why?)

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 8 / 15

Example

Setup: standard relational design for Employee(id,name,salary)
A base file empfile of emp records (organized by id)
An emp-name index on employee names (links name to id)

Logical Update Schema: (just the signature)
SL = fempfile+=3;empfile�=3;emp-name+=2;emp-name�=2g

Physical Update Schema:
SP = fEmployee+=3;Employee�=3;empfileo=3;empfileo=3; : : :g

ΣLP = f8x ; y ; z:(empfileo(x ; y ; z) _ empfile+(x ; y ; z))
$ (empfilen(x ; y ; z) _ empfile�(x ; y ; z)) ; : : :g

ΣP = f8x ; y ; z:Employee+(x ; y ; z) ^ Employee�(x ; y ; z)! ?; : : :g

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z) ^ empfileo(x ; y ; z)

. . . similar for emp-name, no-op for emp-id (why?)

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 8 / 15

Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information) additional constraints:
1 P� = ; for the “insert-only” relation P,
2 P+ = P� = ; for unmodified relations.
3 . . .

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 9 / 15

Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information) additional constraints:
1 P� = ; for the “insert-only” relation P,
2 P+ = P� = ; for unmodified relations.
3 . . .

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 9 / 15

Transaction Types

Transactions
A user update (expressed as diffs on logical symbols) that transforms an
consistent instance to another consistent instance.

Additional information about transaction behaviour?
1 transaction only adds tuples to a certain relation,
2 transaction only modifies certain relations,
3 . . .

Additional information) additional constraints:
1 P� = ; for the “insert-only” relation P,
2 P+ = P� = ; for unmodified relations.
3 . . .

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 9 / 15

The View Update Problem

Classical View Update Problem
Given a relational view

8x̄ :V (x̄)$ Q(x̄)

with Q expressed over SL, is it possible to update the content of V by
appropriately modifying the interpretation of the SL symbols?

) insertable, deletable, and updatable views

Answer
Define update schema for V and SL (where every symbol is also an access
path). Then V is

insertable if Pn is definable w.r.t. the update design with V� = ;,
deletable if Pn is definable w.r.t. the update design with V + = ;, and
updatable if Pn and V� are definable w.r.t. the update design

for all P 2 SL.
) when the answer is positive, we construct a corresponding update queries.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 10 / 15

The View Update Problem

Classical View Update Problem
Given a relational view

8x̄ :V (x̄)$ Q(x̄)

with Q expressed over SL, is it possible to update the content of V by
appropriately modifying the interpretation of the SL symbols?

) insertable, deletable, and updatable views

Answer
Define update schema for V and SL (where every symbol is also an access
path). Then V is

insertable if Pn is definable w.r.t. the update design with V� = ;,
deletable if Pn is definable w.r.t. the update design with V + = ;, and
updatable if Pn and V� are definable w.r.t. the update design

for all P 2 SL.
) when the answer is positive, we construct a corresponding update queries.

CS848 Spring 2013 (Cheriton School of CS) Update in a Nutshell Updating Data 10 / 15

ADVANCED ISSUES

IN UPDATE COMPILATION

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 11 / 15

Progressive Updates

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z)^empfileo(x ; y ; z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

) compute all deltas and store results in temporary storage,
) only then apply all deltas to SA;

2 using independent deltas:
) add constraints to avoid the problem (e.g., P� � Po);

3 evolving physical schema one AP at a time
) sequence of update schemas with a subset of SA “updated”,
) subsequent updates compiled w.r.t. partially updated schema.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 12 / 15

Progressive Updates

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z)^empfileo(x ; y ; z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

) compute all deltas and store results in temporary storage,
) only then apply all deltas to SA;

2 using independent deltas:
) add constraints to avoid the problem (e.g., P� � Po);

3 evolving physical schema one AP at a time
) sequence of update schemas with a subset of SA “updated”,
) subsequent updates compiled w.r.t. partially updated schema.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 12 / 15

Progressive Updates

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z)^empfileo(x ; y ; z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

) compute all deltas and store results in temporary storage,
) only then apply all deltas to SA;

2 using independent deltas:
) add constraints to avoid the problem (e.g., P� � Po);

3 evolving physical schema one AP at a time
) sequence of update schemas with a subset of SA “updated”,
) subsequent updates compiled w.r.t. partially updated schema.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 12 / 15

Progressive Updates

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z)^empfileo(x ; y ; z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

) compute all deltas and store results in temporary storage,
) only then apply all deltas to SA;

2 using independent deltas:
) add constraints to avoid the problem (e.g., P� � Po);

3 evolving physical schema one AP at a time
) sequence of update schemas with a subset of SA “updated”,
) subsequent updates compiled w.r.t. partially updated schema.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 12 / 15

Progressive Updates

Update Queries:
empfile+(x ; y ; z)

compiles
�����! Employee+(x ; y ; z) ^ :empfileo(x ; y ; z)

empfile�(x ; y ; z)
compiles
�����! Employee�(x ; y ; z)^empfileo(x ; y ; z)

This doesn’t quite work:
after executing the 1st update query we no longer have empfileo!

Possible Solutions:
1 simultaneous relational assignment:

) compute all deltas and store results in temporary storage,
) only then apply all deltas to SA;

2 using independent deltas:
) add constraints to avoid the problem (e.g., P� � Po);

3 evolving physical schema one AP at a time
) sequence of update schemas with a subset of SA “updated”,
) subsequent updates compiled w.r.t. partially updated schema.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 12 / 15

Value Invention

Setup: advanced relational design for Employee(id,name,salary)
A base file empfile(r ; x ; y ; z) of emp records with RIds “r ”
An emp-name(y ; r) index on employee names (links name to RIds)

) no update query, e.g., for empfile+(r ; x ; y ; z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

a separate access path (may need to “remember” all allocated records!)
a part of the record insertion code (AP+ doesn’t have the attribute)

) update query for emp-name+ must execute after empfile+.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 13 / 15

Value Invention

Setup: advanced relational design for Employee(id,name,salary)
A base file empfile(r ; x ; y ; z) of emp records with RIds “r ”
An emp-name(y ; r) index on employee names (links name to RIds)

) no update query, e.g., for empfile+(r ; x ; y ; z): no “source” of RIds!
(due to: 8x ; y ; z:Employee(x ; y ; z)$ (9r :empfile(r ; x ; y ; z))

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

a separate access path (may need to “remember” all allocated records!)
a part of the record insertion code (AP+ doesn’t have the attribute)

) update query for emp-name+ must execute after empfile+.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 13 / 15

Value Invention

Setup: advanced relational design for Employee(id,name,salary)
A base file empfile(r ; x ; y ; z) of emp records with RIds “r ”
An emp-name(y ; r) index on employee names (links name to RIds)

) no update query, e.g., for empfile+(r ; x ; y ; z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

a separate access path (may need to “remember” all allocated records!)
a part of the record insertion code (AP+ doesn’t have the attribute)

) update query for emp-name+ must execute after empfile+.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 13 / 15

Value Invention

Setup: advanced relational design for Employee(id,name,salary)
A base file empfile(r ; x ; y ; z) of emp records with RIds “r ”
An emp-name(y ; r) index on employee names (links name to RIds)

) no update query, e.g., for empfile+(r ; x ; y ; z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

a separate access path (may need to “remember” all allocated records!)
a part of the record insertion code (AP+ doesn’t have the attribute)

) update query for emp-name+ must execute after empfile+.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 13 / 15

Value Invention

Setup: advanced relational design for Employee(id,name,salary)
A base file empfile(r ; x ; y ; z) of emp records with RIds “r ”
An emp-name(y ; r) index on employee names (links name to RIds)

) no update query, e.g., for empfile+(r ; x ; y ; z): no “source” of RIds!

IDEA (Constant Complement [Bancilhon and Spyratos])
An oracle access path that provides the required value

given the values of remaining attributes as parameters.

In practice: a record allocation mechanism
(e.g., malloc+code that initializes fields of the allocated record)

a separate access path (may need to “remember” all allocated records!)
a part of the record insertion code (AP+ doesn’t have the attribute)

) update query for emp-name+ must execute after empfile+.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 13 / 15

Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?

NO: recall our Employee-Works-Department physical schema in which
emp records have a pointer to a dept record (for the Works relationship),
dept records have a pointer to an emp record (to the “manager”).

) impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 14 / 15

Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which

emp records have a pointer to a dept record (for the Works relationship),
dept records have a pointer to an emp record (to the “manager”).

) impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 14 / 15

Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which

emp records have a pointer to a dept record (for the Works relationship),
dept records have a pointer to an emp record (to the “manager”).

) impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 14 / 15

Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which

emp records have a pointer to a dept record (for the Works relationship),
dept records have a pointer to an emp record (to the “manager”).

) impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 14 / 15

Value Invention and Schematic Cycles

Can we always schedule the updates of record IDs before using
these as values (e.g., in an index)?
NO: recall our Employee-Works-Department physical schema in which

emp records have a pointer to a dept record (for the Works relationship),
dept records have a pointer to an emp record (to the “manager”).

) impossible to insert the 1st employee and 1st department!

IDEA: reify (one of) the AP (we have done that already in our example) and
then interleave updates to the reified relations.

1 insert an employee’s Id into emp-id AP (yields address of emp);
2 insert department record (the above value used for the manager field;

yields address of dept);
3 insert the same employee into emp-dept AP using the dept address.

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 14 / 15

Additional Issues

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?

How to identify when reification is needed?

How to determine if the user update preserves consistency?

) guaranteed by the user (e.g., extra user queries to make sure)
) system-generated checks—HARD!

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 15 / 15

Additional Issues

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?

How to identify when reification is needed?

How to determine if the user update preserves consistency?

) guaranteed by the user (e.g., extra user queries to make sure)
) system-generated checks—HARD!

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 15 / 15

Additional Issues

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?

How to identify when reification is needed?

How to determine if the user update preserves consistency?

) guaranteed by the user (e.g., extra user queries to make sure)
) system-generated checks—HARD!

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 15 / 15

Additional Issues

How to know when an constant complement is needed?

How to determine the ordering of the individual AP updates?

How to identify when reification is needed?

How to determine if the user update preserves consistency?

) guaranteed by the user (e.g., extra user queries to make sure)
) system-generated checks—HARD!

CS848 Spring 2013 (Cheriton School of CS) Advanced Updates Updating Data 15 / 15

