
Query Processing for Non-traditional Applications

CS848 Spring 2013

Cheriton School of CS

The Chase and Duplicates

CS848 Spring 2013 (Cheriton School of CS) Advanced Physical Design The Chase and Duplicates 1 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.

2 Post-processing to consider assignments and comparisons, duplicate
elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.

Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.

Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.

Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.

First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.

Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Outline

Consider how to find query plans for user queries.

One can find query plans by doing the following.
1 Finding a rewriting over access paths of the user query that satisfies

binding pattern requirements.
2 Post-processing to consider assignments and comparisons, duplicate

elimination, and cut insertion.

Topics
Beth definability.
Conjunctive queries and the chase.
Post-processing.
Positive queries and the chase.
First-order queries and interpolation.
Examples relating to ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Outline The Chase and Duplicates 2 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?

Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.

1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.

2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

A necessary condition for the existence of a query plan underlies the following
(equivalent) problems.

Is the data represented by the available access paths sufficient to answer
the user query?
Is the answer to the query entirely determined by the interpretation of the
available access paths?

The problems correspond to a determination of Beth definability if
interpretations of access paths can be infinite.

Assume hSL [SP;Σi is a physical design with access paths SA, and Q is a
user query over SL.

Q is (Beth) definable in hSL [SP;Σi if the following condition is satisfied:

Q(I1) = Q(I2) for all interpretations I1 and I2 for which the following hold.
1 Both I1 and I2 satisfy Σ.
2 (R)I1 = (R)I2 for all non-logical parameters R=m=n 2 SA.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 3 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed. (E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

(E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed. (E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed. (E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed. (E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

Existence of Query Plans

Definability of user queries with respect to a physical design can be tested
syntactically in an important case.

Assume Q is a user query, SA is a set of access paths, and Σ is a set of
constraints for which each 2 Σ is domain independent when considered to
be user query with no parameters.

Also assume Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed. (E.g., each
R 2 S� SA is replaced by R�.)

Q is Beth definable if and only if (Σ [Σ�) j= (Q ! Q�).

Definability can therefore serve as an approximate test to determine if the
data stored in instances of access paths in a given physical design is
sufficient, in principle, to answer the user query.

Failing this condition is strong evidence that the physical design has
insufficient material capability to answer the user query.

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 4 / 29

ACME Case: Compiling with emp-array0

Recall our basic physical design for PAYROLL.

Σ = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z)) g

SA = f emp-array0=3=0g

The left-hand-side of our syntactic test is therefore as follows.

(Σ [Σ�) = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z));
8x ; y ; z:(employee�(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee�(x ; y ; z)) g

... and, for the user query employee(x ; y ; z), the following holds.

(Σ [Σ�) j= employee(x ; y ; z)! employee�(x ; y ; z)

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 5 / 29

ACME Case: Compiling with emp-array0

Recall our basic physical design for PAYROLL.

Σ = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z)) g

SA = f emp-array0=3=0g

The left-hand-side of our syntactic test is therefore as follows.

(Σ [Σ�) = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z));
8x ; y ; z:(employee�(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee�(x ; y ; z)) g

... and, for the user query employee(x ; y ; z), the following holds.

(Σ [Σ�) j= employee(x ; y ; z)! employee�(x ; y ; z)

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 5 / 29

ACME Case: Compiling with emp-array0

Recall our basic physical design for PAYROLL.

Σ = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z)) g

SA = f emp-array0=3=0g

The left-hand-side of our syntactic test is therefore as follows.

(Σ [Σ�) = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z));
8x ; y ; z:(employee�(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee�(x ; y ; z)) g

... and, for the user query employee(x ; y ; z), the following holds.

(Σ [Σ�) j= employee(x ; y ; z)! employee�(x ; y ; z)

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 5 / 29

ACME Case: Compiling with emp-array2

Conversely, Beth definability does not take into account the binding pattern
restrictions on access paths in terms of mandatory input parameters. Hence,
a plan may still not exist.

The same reasoning leads to the conclusion that the following query plan is
another candidate plan for user query employee(x ; y ; z).

emp-array2(z; x ; y)

In this case, the input variables of the plan do not correspond to the user
query parameters (and the plan therefore fails to qualify as an implementation
of the user query).

The opposite holds for the following user query in which the plan input
variables now match the query parameters.

employee(x ; y ; z)fx ; zg

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 6 / 29

ACME Case: Compiling with emp-array2

Conversely, Beth definability does not take into account the binding pattern
restrictions on access paths in terms of mandatory input parameters. Hence,
a plan may still not exist.

The same reasoning leads to the conclusion that the following query plan is
another candidate plan for user query employee(x ; y ; z).

emp-array2(z; x ; y)

In this case, the input variables of the plan do not correspond to the user
query parameters (and the plan therefore fails to qualify as an implementation
of the user query).

The opposite holds for the following user query in which the plan input
variables now match the query parameters.

employee(x ; y ; z)fx ; zg

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 6 / 29

ACME Case: Compiling with emp-array2

Conversely, Beth definability does not take into account the binding pattern
restrictions on access paths in terms of mandatory input parameters. Hence,
a plan may still not exist.

The same reasoning leads to the conclusion that the following query plan is
another candidate plan for user query employee(x ; y ; z).

emp-array2(z; x ; y)

In this case, the input variables of the plan do not correspond to the user
query parameters (and the plan therefore fails to qualify as an implementation
of the user query).

The opposite holds for the following user query in which the plan input
variables now match the query parameters.

employee(x ; y ; z)fx ; zg

CS848 Spring 2013 (Cheriton School of CS) Beth Definability The Chase and Duplicates 6 / 29

Substitution in FOL

Assume � 2WFF is a formula, x is a variable and t is a term such that Fv(t)
does not contain variables quantified in �.

A substitution of t for x in � is the WFF obtained from � by syntactically
replacing all free occurrences of x by t and is written as follows.

�[t=x]

Substitutions can be composed yielding simultaneous substitutions, denoted
�, for multiple variables in a formula.

The simultaneous application of all substitutions in � to the formula � is written
in the same way.

��

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 7 / 29

Substitution in FOL

Assume � 2WFF is a formula, x is a variable and t is a term such that Fv(t)
does not contain variables quantified in �.

A substitution of t for x in � is the WFF obtained from � by syntactically
replacing all free occurrences of x by t

and is written as follows.

�[t=x]

Substitutions can be composed yielding simultaneous substitutions, denoted
�, for multiple variables in a formula.

The simultaneous application of all substitutions in � to the formula � is written
in the same way.

��

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 7 / 29

Substitution in FOL

Assume � 2WFF is a formula, x is a variable and t is a term such that Fv(t)
does not contain variables quantified in �.

A substitution of t for x in � is the WFF obtained from � by syntactically
replacing all free occurrences of x by t and is written as follows.

�[t=x]

Substitutions can be composed yielding simultaneous substitutions, denoted
�, for multiple variables in a formula.

The simultaneous application of all substitutions in � to the formula � is written
in the same way.

��

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 7 / 29

Substitution in FOL

Assume � 2WFF is a formula, x is a variable and t is a term such that Fv(t)
does not contain variables quantified in �.

A substitution of t for x in � is the WFF obtained from � by syntactically
replacing all free occurrences of x by t and is written as follows.

�[t=x]

Substitutions can be composed yielding simultaneous substitutions, denoted
�, for multiple variables in a formula.

The simultaneous application of all substitutions in � to the formula � is written
in the same way.

��

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 7 / 29

Substitution in FOL

Assume � 2WFF is a formula, x is a variable and t is a term such that Fv(t)
does not contain variables quantified in �.

A substitution of t for x in � is the WFF obtained from � by syntactically
replacing all free occurrences of x by t and is written as follows.

�[t=x]

Substitutions can be composed yielding simultaneous substitutions, denoted
�, for multiple variables in a formula.

The simultaneous application of all substitutions in � to the formula � is written
in the same way.

��

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 7 / 29

A Chase Step

Chase procedures are an algorithmic technique for synthesizing query plans
for conjunctive queries.

The main idea is given by the following theorem.

Assume Σ is a given theory in FOL, and also that we are given the following.
1 A conjunctive query free of equality atoms.

9x1: � � � :9xm:'

2 A tuple generating dependency (TGD) in Σ.

8x1: � � � :8xi :(9xi+1: � � � :9xj :�! 9xj+1: � � � :9xk :)

3 A substitution � such that, for each atom �i in �, �i� is an atom in '.

Then the following holds.

Σ j= (9x1: � � � :9xm:') � (9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 8 / 29

A Chase Step

Chase procedures are an algorithmic technique for synthesizing query plans
for conjunctive queries. The main idea is given by the following theorem.

Assume Σ is a given theory in FOL, and also that we are given the following.
1 A conjunctive query free of equality atoms.

9x1: � � � :9xm:'

2 A tuple generating dependency (TGD) in Σ.

8x1: � � � :8xi :(9xi+1: � � � :9xj :�! 9xj+1: � � � :9xk :)

3 A substitution � such that, for each atom �i in �, �i� is an atom in '.

Then the following holds.

Σ j= (9x1: � � � :9xm:') � (9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 8 / 29

A Chase Step

Chase procedures are an algorithmic technique for synthesizing query plans
for conjunctive queries. The main idea is given by the following theorem.

Assume Σ is a given theory in FOL, and also that we are given the following.
1 A conjunctive query free of equality atoms.

9x1: � � � :9xm:'

2 A tuple generating dependency (TGD) in Σ.

8x1: � � � :8xi :(9xi+1: � � � :9xj :�! 9xj+1: � � � :9xk :)

3 A substitution � such that, for each atom �i in �, �i� is an atom in '.

Then the following holds.

Σ j= (9x1: � � � :9xm:') � (9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 8 / 29

A Chase Step

Chase procedures are an algorithmic technique for synthesizing query plans
for conjunctive queries. The main idea is given by the following theorem.

Assume Σ is a given theory in FOL, and also that we are given the following.
1 A conjunctive query free of equality atoms.

9x1: � � � :9xm:'

2 A tuple generating dependency (TGD) in Σ.

8x1: � � � :8xi :(9xi+1: � � � :9xj :�! 9xj+1: � � � :9xk :)

3 A substitution � such that, for each atom �i in �, �i� is an atom in '.

Then the following holds.

Σ j= (9x1: � � � :9xm:') � (9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 8 / 29

A Chase Step

Chase procedures are an algorithmic technique for synthesizing query plans
for conjunctive queries. The main idea is given by the following theorem.

Assume Σ is a given theory in FOL, and also that we are given the following.
1 A conjunctive query free of equality atoms.

9x1: � � � :9xm:'

2 A tuple generating dependency (TGD) in Σ.

8x1: � � � :8xi :(9xi+1: � � � :9xj :�! 9xj+1: � � � :9xk :)

3 A substitution � such that, for each atom �i in �, �i� is an atom in '.

Then the following holds.

Σ j= (9x1: � � � :9xm:') � (9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 8 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query. (Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query.

(Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query. (Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query. (Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query. (Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

Conjunctive User Queries as Atom Sets

Recall the formula resulting from a chase step.

9x1: � � � :9xm:' ^ (9xj+1: � � � :9xk :)�

The formula is easily converted to a conjunctive query. (Use a standard
equivalence for FO formulae that allows existential quantification to commute
with conjunction after renaming the bound variable if necessary.)

This allows syntactically equating conjunctive queries with sets of their atoms
in which parameters and remaining free variables are distinguished.

The PAYROLL query to obtain the employee numbers x of all employees with a
given salary z is given as follows with this alternative syntax.

femployee(x ; y ; z)g

Two applications of a chase step obtains the following.

femployee(x ; y ; z);employee0(z; x ; y);employee�(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 9 / 29

The Chase

Assume a set of TGDs is given by Σ, and that Q is a conjunctive user query
given in the alternative syntax.

A repeated application of chase steps over all dependencies in Σ is called the
chase of Q with Σ, and is written ChaseΣ(Q).

Observation: The application of chase steps is confluent (up to renaming of
variables).

This implies any fair sequence of applying the individual chase steps for TGDs
in Σ leads to the same (in the limit possibly infinite) expansion of the original
conjunctive query.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 10 / 29

The Chase

Assume a set of TGDs is given by Σ, and that Q is a conjunctive user query
given in the alternative syntax.

A repeated application of chase steps over all dependencies in Σ is called the
chase of Q with Σ, and is written ChaseΣ(Q).

Observation: The application of chase steps is confluent (up to renaming of
variables).

This implies any fair sequence of applying the individual chase steps for TGDs
in Σ leads to the same (in the limit possibly infinite) expansion of the original
conjunctive query.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 10 / 29

The Chase

Assume a set of TGDs is given by Σ, and that Q is a conjunctive user query
given in the alternative syntax.

A repeated application of chase steps over all dependencies in Σ is called the
chase of Q with Σ, and is written ChaseΣ(Q).

Observation: The application of chase steps is confluent (up to renaming of
variables).

This implies any fair sequence of applying the individual chase steps for TGDs
in Σ leads to the same (in the limit possibly infinite) expansion of the original
conjunctive query.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 10 / 29

The Chase

Assume a set of TGDs is given by Σ, and that Q is a conjunctive user query
given in the alternative syntax.

A repeated application of chase steps over all dependencies in Σ is called the
chase of Q with Σ, and is written ChaseΣ(Q).

Observation: The application of chase steps is confluent (up to renaming of
variables).

This implies any fair sequence of applying the individual chase steps for TGDs
in Σ leads to the same (in the limit possibly infinite) expansion of the original
conjunctive query.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 10 / 29

An Abstraction of Conjunctive Plans

Assume hSL [SP;Σi is a physical design.

Also assume f i1 ; : : : ; ing is a
conjunctive user query Q given in our alternative syntax.

If there exists a sequence

(1(= P1(x1;1; : : : ; x1;n1)); : : : ; n(= Pn(xn;1; : : : ; xn;mn)))

for which each Pi occurs in SA and either of the following conditions hold for
each xij occurring in a parameter position:

1 xi;j is a parameter of Q and
2 xi;j occurs in a non-parameter position of some Pk where k < i ,

then there is a procedure, denoted Qp(�), for obtaining a query plan from
(1; : : : ; n) where Σ j= Q C Qp((1; : : : ; n))

.

1

1Defining this procedure is an easy but worthwhile exercise.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 11 / 29

An Abstraction of Conjunctive Plans

Assume hSL [SP;Σi is a physical design. Also assume f i1 ; : : : ; ing is a
conjunctive user query Q given in our alternative syntax.

If there exists a sequence

(1(= P1(x1;1; : : : ; x1;n1)); : : : ; n(= Pn(xn;1; : : : ; xn;mn)))

for which each Pi occurs in SA and either of the following conditions hold for
each xij occurring in a parameter position:

1 xi;j is a parameter of Q and
2 xi;j occurs in a non-parameter position of some Pk where k < i ,

then there is a procedure, denoted Qp(�), for obtaining a query plan from
(1; : : : ; n) where Σ j= Q C Qp((1; : : : ; n))

.

1

1Defining this procedure is an easy but worthwhile exercise.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 11 / 29

An Abstraction of Conjunctive Plans

Assume hSL [SP;Σi is a physical design. Also assume f i1 ; : : : ; ing is a
conjunctive user query Q given in our alternative syntax.

If there exists a sequence

(1(= P1(x1;1; : : : ; x1;n1)); : : : ; n(= Pn(xn;1; : : : ; xn;mn)))

for which each Pi occurs in SA and either of the following conditions hold for
each xij occurring in a parameter position:

1 xi;j is a parameter of Q and
2 xi;j occurs in a non-parameter position of some Pk where k < i ,

then there is a procedure, denoted Qp(�), for obtaining a query plan from
(1; : : : ; n) where Σ j= Q C Qp((1; : : : ; n))

.

1

1Defining this procedure is an easy but worthwhile exercise.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 11 / 29

An Abstraction of Conjunctive Plans

Assume hSL [SP;Σi is a physical design. Also assume f i1 ; : : : ; ing is a
conjunctive user query Q given in our alternative syntax.

If there exists a sequence

(1(= P1(x1;1; : : : ; x1;n1)); : : : ; n(= Pn(xn;1; : : : ; xn;mn)))

for which each Pi occurs in SA and either of the following conditions hold for
each xij occurring in a parameter position:

1 xi;j is a parameter of Q and
2 xi;j occurs in a non-parameter position of some Pk where k < i ,

then there is a procedure, denoted Qp(�), for obtaining a query plan from
(1; : : : ; n) where Σ j= Q C Qp((1; : : : ; n)).

1

1Defining this procedure is an easy but worthwhile exercise.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 11 / 29

An Abstraction of Conjunctive Plans

Assume hSL [SP;Σi is a physical design. Also assume f i1 ; : : : ; ing is a
conjunctive user query Q given in our alternative syntax.

If there exists a sequence

(1(= P1(x1;1; : : : ; x1;n1)); : : : ; n(= Pn(xn;1; : : : ; xn;mn)))

for which each Pi occurs in SA and either of the following conditions hold for
each xij occurring in a parameter position:

1 xi;j is a parameter of Q and
2 xi;j occurs in a non-parameter position of some Pk where k < i ,

then there is a procedure, denoted Qp(�), for obtaining a query plan from
(1; : : : ; n) where Σ j= Q C Qp((1; : : : ; n)).1

1Defining this procedure is an easy but worthwhile exercise.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 11 / 29

A Chase Procedure for Plan Synthesis

Input: A conjunctive user query Q(= f'1; : : : ; 'kg) and a set Σ of TGDs.

Result: A (possibly infinite) sequence S = (1; 2; : : :) satisfying binding
pattern requirements, and such that

Σ j= Q C Qp((1; : : : ; `))

for all finite prefixes (1; : : : ; `) of S where n � ` if success.
1 Initialize: S (); G ChaseΣ(S); n 0; success false.
2 If there exists 2 G for which S j () satisfies binding pattern

requirements, then S S j ().
3 If there exists � over the existential variables of Q for which

Q� � (ChaseΣ(Setof(S)) \G), then success true. Otherwise
n n + 1.

4 Resume at Step 2.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 12 / 29

A Chase Procedure for Plan Synthesis (cont’d)

Assuming (1; : : : ; `) satisfies binding pattern requirements.

'1; : : : ; 'k

...

 1; : : : ; `

...

'1�; : : : ; 'k�

ChaseΣ(Q) ChaseΣ(f 1; : : : ; `g) ChaseΣ(Q)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 13 / 29

ACME Case: A Plan Using emp-array0

Assume our basic physical design for PAYROLL.

Σ = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z)) g

SA = f emp-array0=3=0g

Also assume Q is the above user query to obtain the employee numbers x of
all employees with a given salary z.

femployee(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 14 / 29

ACME Case: A Plan Using emp-array0

Assume our basic physical design for PAYROLL.

Σ = f 8x ; y ; z:(employee(x ; y ; z)! emp-array0(z; x ; y));
8x ; y ; z:(emp-array0(z; x ; y)! employee(x ; y ; z)) g

SA = f emp-array0=3=0g

Also assume Q is the above user query to obtain the employee numbers x of
all employees with a given salary z.

femployee(x ; y ; z)g

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 14 / 29

ACME Case: A Plan Using emp-array0 (cont’d)

An execution of the chase procedure is successful where n = 1 and with other
results as follows.

Q = femployee(x ; y ; z)g

S = (employee0(z; x ; y))

G = femployee(x ; y ; z);employee0(z; x ; y)g

The successful result is a consequence of the following.
1 (ChaseΣ(Setof(S)) \G) = femployee(x ; y ; z);employee0(z; x ; y)g.
2 Q� � (ChaseΣ(Setof(S)) \G), where � = [y=y].

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 15 / 29

ACME Case: A Plan Using emp-array0 (cont’d)

An execution of the chase procedure is successful where n = 1 and with other
results as follows.

Q = femployee(x ; y ; z)g

S = (employee0(z; x ; y))

G = femployee(x ; y ; z);employee0(z; x ; y)g

The successful result is a consequence of the following.
1 (ChaseΣ(Setof(S)) \G) = femployee(x ; y ; z);employee0(z; x ; y)g.

2 Q� � (ChaseΣ(Setof(S)) \G), where � = [y=y].

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 15 / 29

ACME Case: A Plan Using emp-array0 (cont’d)

An execution of the chase procedure is successful where n = 1 and with other
results as follows.

Q = femployee(x ; y ; z)g

S = (employee0(z; x ; y))

G = femployee(x ; y ; z);employee0(z; x ; y)g

The successful result is a consequence of the following.
1 (ChaseΣ(Setof(S)) \G) = femployee(x ; y ; z);employee0(z; x ; y)g.
2 Q� � (ChaseΣ(Setof(S)) \G), where � = [y=y].

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 15 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g)

,
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements

, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Successful Chase and Backchase

Assume a set of TGDs is given by Σ, that Q is a conjunctive user query, and
that S = (1; 2; : : :) is a sequence computed by the chase procedure.

The following hold for any ` � n if the procedure is successful.

(plan synthesis) Σ j= Q C Qp((1; : : : ; `)).

(backchase) If
1 Fv(Q) = Fv(f 1; : : : ; i�1; i+1; : : : `g),
2 (1; : : : ; i�1; i+1; : : : `) satisfies binding pattern requirements, and
3 Σ j= (1 ^ � � � ^ i�1 ^ i+1 ^ � � � ^ `)! i

then Σ j= Q C Qp((1; : : : ; i�1; i+1; : : : `)).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 16 / 29

Equality Generating Dependencies (EGDs)

Recall that an EGD has the following form.

8x1: � � � :8xk :�! xi � xj

Such a dependency can also be used in a chase step provided the formula Q
resulting from such a step is immediately transformed as follows.

For all equality atoms of the form xi � xj in Q, repeatedly perform the following
steps until none changes Q.

1 If xj occurs prior to xi in a lexicographic ordering, then replace xi � xj by
xj � xi in Q.

2 If xj is bound in Q, replace xj by xi in Q and remove both the equality
atom and the existential quantifier for xj from Q.

3 If xi is bound in Q, replace xi by xj in Q and remove both the equality
atom and the existential quantifier for xi from Q.

4 If both xi and xj are free in Q, replace xj by xi in Q except in the equality
atom xi � xj , and keep this atom in Q if not already there.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive Queries and the Chase The Chase and Duplicates 17 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds. We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds. We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds.

We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds. We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds. We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Eliminating Duplicate Elimination

Consider a query plan Q0 obtained by composing Qp(�) with the result of a
successful chase of a user query Q.

Q0 will in general require a top-level duplicate elimination operation to ensure
that the query plan implements Q.

Adding duplicate elimination unconditionally to any query plan is clearly
unacceptable on performance grounds. We now consider how to rewrite
query plans to reduce and possibly avoid the overhead that this entails.

Assume hSL [SP;Σi is a physical design, and that Q1 and Q2 are a pair of
query plans over the design.

A rewrite rule is written as Q1 $ Q2 and is correct if the following holds for all
user queries Q over the design.

Σ j= Q C Q1 iff Σ j= Q C Q2

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 18 / 29

Query Context

Assume Q1 is a query plan that contains a subplan Q2.

Write Qc
1 to denote a

query context in which Q2 has been replace by a placeholder “[]”. Also write
Qc [Q0] to denote a substitution of the placeholder “[]” in query context Qc with
Q0 (either a query or a query context).

Observation: Contexts can be composed: if Qc
1 and Qc

2 are contexts, then
Qc

1 [Qc
2] is a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) �

8>>>>><
>>>>>:

> Qc = “[]”

Uq(Q2) ^ Uqp(Qc
1) Qc = “Qc

1 [Q2 ^ []]” or “Qc
1 [[] ^Q2]”

9x : Uqp(Qc
1) Qc = “Qc

1 [9x :[]]”

Uqp(Qc
1) Qc = “Qc

1 [f[]g]”; “Qc
1 [:[]]”; “Qc

1 [Q2 _ []]”
or “Qc

1 [[] _Q2]”

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 19 / 29

Query Context

Assume Q1 is a query plan that contains a subplan Q2. Write Qc
1 to denote a

query context in which Q2 has been replace by a placeholder “[]”. Also write
Qc [Q0] to denote a substitution of the placeholder “[]” in query context Qc with
Q0 (either a query or a query context).

Observation: Contexts can be composed: if Qc
1 and Qc

2 are contexts, then
Qc

1 [Qc
2] is a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) �

8>>>>><
>>>>>:

> Qc = “[]”

Uq(Q2) ^ Uqp(Qc
1) Qc = “Qc

1 [Q2 ^ []]” or “Qc
1 [[] ^Q2]”

9x : Uqp(Qc
1) Qc = “Qc

1 [9x :[]]”

Uqp(Qc
1) Qc = “Qc

1 [f[]g]”; “Qc
1 [:[]]”; “Qc

1 [Q2 _ []]”
or “Qc

1 [[] _Q2]”

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 19 / 29

Query Context

Assume Q1 is a query plan that contains a subplan Q2. Write Qc
1 to denote a

query context in which Q2 has been replace by a placeholder “[]”. Also write
Qc [Q0] to denote a substitution of the placeholder “[]” in query context Qc with
Q0 (either a query or a query context).

Observation: Contexts can be composed: if Qc
1 and Qc

2 are contexts, then
Qc

1 [Qc
2] is a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) �

8>>>>><
>>>>>:

> Qc = “[]”

Uq(Q2) ^ Uqp(Qc
1) Qc = “Qc

1 [Q2 ^ []]” or “Qc
1 [[] ^Q2]”

9x : Uqp(Qc
1) Qc = “Qc

1 [9x :[]]”

Uqp(Qc
1) Qc = “Qc

1 [f[]g]”; “Qc
1 [:[]]”; “Qc

1 [Q2 _ []]”
or “Qc

1 [[] _Q2]”

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 19 / 29

Query Context

Assume Q1 is a query plan that contains a subplan Q2. Write Qc
1 to denote a

query context in which Q2 has been replace by a placeholder “[]”. Also write
Qc [Q0] to denote a substitution of the placeholder “[]” in query context Qc with
Q0 (either a query or a query context).

Observation: Contexts can be composed: if Qc
1 and Qc

2 are contexts, then
Qc

1 [Qc
2] is a context.

Given a context Qc , a user query Uqp(Qc) abstracting properties of variables
within the context is defined as follows.

Uqp(Qc) �

8>>>>><
>>>>>:

> Qc = “[]”

Uq(Q2) ^ Uqp(Qc
1) Qc = “Qc

1 [Q2 ^ []]” or “Qc
1 [[] ^Q2]”

9x : Uqp(Qc
1) Qc = “Qc

1 [9x :[]]”

Uqp(Qc
1) Qc = “Qc

1 [f[]g]”; “Qc
1 [:[]]”; “Qc

1 [Q2 _ []]”
or “Qc

1 [[] _Q2]”

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 19 / 29

Eliminating Duplicate Elimination (cont’d)

Assume hSL [SP;Σi is a physical design and Qc [Q0] a query plan. Then the
following rewrite rules hold.

Qc [fR(x1; : : : ; xk)g] $ Qc [R(x1; : : : ; xk)]

Qc [fQ1 ^Q2g] $ Qc [fQ1g ^ fQ2g]

Qc [f9x :Q1g] $
C1

Qc [9x :fQ1g]

Qc [f:Q1g] $ Qc [:Q1]

Qc [:fQ1g] $ Qc [:Q1]

Qc [fQ1 _Q2g] $
C2

Qc [fQ1g _ fQ2g]

C1 and C2 correspond to the following respective conditions, where y1 and y2
in the former are fresh variable names not occurring in Q or Q1.

Σ [fUqp(Qc) ^ Uq(Q1)[y1=x] ^ Uq(Q1)[y2=x]g j= (y1 � y2)

Σ [fUqp(Qc)g j= (Q1 ^Q2) ! ?

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 20 / 29

Eliminating Duplicate Elimination (cont’d)

Assume hSL [SP;Σi is a physical design and Qc [Q0] a query plan. Then the
following rewrite rules hold.

Qc [fR(x1; : : : ; xk)g] $ Qc [R(x1; : : : ; xk)]

Qc [fQ1 ^Q2g] $ Qc [fQ1g ^ fQ2g]

Qc [f9x :Q1g] $
C1

Qc [9x :fQ1g]

Qc [f:Q1g] $ Qc [:Q1]

Qc [:fQ1g] $ Qc [:Q1]

Qc [fQ1 _Q2g] $
C2

Qc [fQ1g _ fQ2g]

C1 and C2 correspond to the following respective conditions, where y1 and y2
in the former are fresh variable names not occurring in Q or Q1.

Σ [fUqp(Qc) ^ Uq(Q1)[y1=x] ^ Uq(Q1)[y2=x]g j= (y1 � y2)

Σ [fUqp(Qc)g j= (Q1 ^Q2) ! ?

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 20 / 29

Incremental Query Context

Given a context Qc , a user query Uqip(Qc) abstracting incremental properties
of variables within the context is defined as follows.

Uqip(Qc) �

8>>>>><
>>>>>:

> Qc = “[]”

Uq(Q2) ^ Uqip(Qc
1) Qc = “Qc

1 [Q2 ^ []]”

9x : Uqip(Qc
1) Qc = “Qc

1 [9x :[]]”

Uqip(Qc
1) Qc = “Qc

1 [f[]g]”; “Qc
1 [:[]]”; “Qc

1 [Q2 _ []]”;
“Qc

1 [[] _Q2]” or “Qc
1 [[] ^Q2]”

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 21 / 29

Cut Insertion

Observe that the rewrite rules for duplicate elimination are bidirectional, and can
therefore determine situations in which such operators can be added to a query plan.

This is useful when formulating additional rewrite rules that determine when cut
operators can be inserted in query plans without any impact on their ability to
implement user queries.

Assume hSL [SP; Σi is a physical design and Qc [fQ1g ^Q2] a query plan. Then the
following rewrite rule holds.

Qc [fQ1g ^Q2] $
C

Qc [[fQ1g]` ^ (Q2^ !`)]

C1 corresponds to the following condition, where Out(Q1) = fx1; : : : ; xkg and where
each yi and zj are fresh variable names not occurring in Qc , Q1 or Q2.

Σ [fUqip(Qc) ^ Uq((Q1 ^Q2)[y1=x1; : : : ; yk=xk]) ^ Uq((Q1 ^Q2)[z1=x1; : : : ; zk=xk])g
j= (y1 � z1) ^ � � � ^ (yk � zk)

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 22 / 29

Cut Insertion

Observe that the rewrite rules for duplicate elimination are bidirectional, and can
therefore determine situations in which such operators can be added to a query plan.

This is useful when formulating additional rewrite rules that determine when cut
operators can be inserted in query plans without any impact on their ability to
implement user queries.

Assume hSL [SP; Σi is a physical design and Qc [fQ1g ^Q2] a query plan. Then the
following rewrite rule holds.

Qc [fQ1g ^Q2] $
C

Qc [[fQ1g]` ^ (Q2^ !`)]

C1 corresponds to the following condition, where Out(Q1) = fx1; : : : ; xkg and where
each yi and zj are fresh variable names not occurring in Qc , Q1 or Q2.

Σ [fUqip(Qc) ^ Uq((Q1 ^Q2)[y1=x1; : : : ; yk=xk]) ^ Uq((Q1 ^Q2)[z1=x1; : : : ; zk=xk])g
j= (y1 � z1) ^ � � � ^ (yk � zk)

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 22 / 29

Cut Insertion

Observe that the rewrite rules for duplicate elimination are bidirectional, and can
therefore determine situations in which such operators can be added to a query plan.

This is useful when formulating additional rewrite rules that determine when cut
operators can be inserted in query plans without any impact on their ability to
implement user queries.

Assume hSL [SP; Σi is a physical design and Qc [fQ1g ^Q2] a query plan. Then the
following rewrite rule holds.

Qc [fQ1g ^Q2] $
C

Qc [[fQ1g]` ^ (Q2^ !`)]

C1 corresponds to the following condition, where Out(Q1) = fx1; : : : ; xkg and where
each yi and zj are fresh variable names not occurring in Qc , Q1 or Q2.

Σ [fUqip(Qc) ^ Uq((Q1 ^Q2)[y1=x1; : : : ; yk=xk]) ^ Uq((Q1 ^Q2)[z1=x1; : : : ; zk=xk])g
j= (y1 � z1) ^ � � � ^ (yk � zk)

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 22 / 29

Cut Insertion

Observe that the rewrite rules for duplicate elimination are bidirectional, and can
therefore determine situations in which such operators can be added to a query plan.

This is useful when formulating additional rewrite rules that determine when cut
operators can be inserted in query plans without any impact on their ability to
implement user queries.

Assume hSL [SP; Σi is a physical design and Qc [fQ1g ^Q2] a query plan. Then the
following rewrite rule holds.

Qc [fQ1g ^Q2] $
C

Qc [[fQ1g]` ^ (Q2^ !`)]

C1 corresponds to the following condition, where Out(Q1) = fx1; : : : ; xkg and where
each yi and zj are fresh variable names not occurring in Qc , Q1 or Q2.

Σ [fUqip(Qc) ^ Uq((Q1 ^Q2)[y1=x1; : : : ; yk=xk]) ^ Uq((Q1 ^Q2)[z1=x1; : : : ; zk=xk])g
j= (y1 � z1) ^ � � � ^ (yk � zk)

CS848 Spring 2013 (Cheriton School of CS) Post-processing The Chase and Duplicates 22 / 29

Sets of Conjunctive Queries

It is straightforward to expand the family of dependencies beyond TGDs and
EGDs with a straightforward generalization of the chase procedure.

The additional varieties of dependencies that become possible with this
generalization are as follows.

Coverage Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9x`:�)!
((9y1;1: � � � :9y1;m1 : 1) _ : : : _ (9yn;1: � � � :9xn;mn : n))

Denial Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9xn:�)! ?

where ? stands for an unsatisfiable formula, e.g., p ^ :p.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 23 / 29

Sets of Conjunctive Queries

It is straightforward to expand the family of dependencies beyond TGDs and
EGDs with a straightforward generalization of the chase procedure.

The additional varieties of dependencies that become possible with this
generalization are as follows.

Coverage Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9x`:�)!
((9y1;1: � � � :9y1;m1 : 1) _ : : : _ (9yn;1: � � � :9xn;mn : n))

Denial Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9xn:�)! ?

where ? stands for an unsatisfiable formula, e.g., p ^ :p.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 23 / 29

Sets of Conjunctive Queries

It is straightforward to expand the family of dependencies beyond TGDs and
EGDs with a straightforward generalization of the chase procedure.

The additional varieties of dependencies that become possible with this
generalization are as follows.

Coverage Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9x`:�)!
((9y1;1: � � � :9y1;m1 : 1) _ : : : _ (9yn;1: � � � :9xn;mn : n))

Denial Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9xn:�)! ?

where ? stands for an unsatisfiable formula, e.g., p ^ :p.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 23 / 29

Sets of Conjunctive Queries

It is straightforward to expand the family of dependencies beyond TGDs and
EGDs with a straightforward generalization of the chase procedure.

The additional varieties of dependencies that become possible with this
generalization are as follows.

Coverage Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9x`:�)!
((9y1;1: � � � :9y1;m1 : 1) _ : : : _ (9yn;1: � � � :9xn;mn : n))

Denial Dependencies

8x1: � � � :8xk :(9xk+1: � � � :9xn:�)! ?

where ? stands for an unsatisfiable formula, e.g., p ^ :p.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 23 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Sets of Conjunctive Queries

A more general chase procedure now maps sets of conjunctive queries to
sets of conjunctive queries.

This assumes that the sets denote disjunctions of member conjunctive
queries, and that the implicit disjunctions are eventually replaced with
concatenation operations.

The new chase works by incorporating the following.
1 Disjunctions in the result of the chase step are distributed over

conjunctions and existential quantifiers in order to obtain a disjunction of
conjunctive queries.

2 All disjuncts in which the atom false appears are then deleted.

Note: These steps predispose the expanded query to further applications of
chase on each of the disjuncts individually.

The remainder of the procedure proceeds as in the original chase: each
sub-chases must imply the user query, and the resulting subplans are then
combined with concatenation operators to obtain a query plan.

CS848 Spring 2013 (Cheriton School of CS) Positive Queries and the Chase The Chase and Duplicates 24 / 29

Beyond Chasing: the Nash Case

Assume hSL [SP;Σi is the following physical design.

SL � fR=2g

SP(= SA) � fV1=2=0;V2=2=0;V3=2=0g

Σ � f 8x ; y :(V1(x ; y) � 9u;w :(R(u; x) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V2(x ; y) � 9u;w :(R(x ;u) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V3(x ; y) � 9u:(R(x ;u) ^ R(u; y))) g

Also let Q denote the following (conjunctive) user query.

9u; v ;w :(R(u; x) ^ R(u;w) ^ R(w ; v) ^ R(v ; y))

An equivalent user query to Q can be formulated in terms of the three
predicates that are access paths, V1, V2 and V3.

9u:(V1(x ;u) ^ 8w :(V3(w ;u)! V2(w ; y))):

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 25 / 29

Beyond Chasing: the Nash Case

Assume hSL [SP;Σi is the following physical design.

SL � fR=2g

SP(= SA) � fV1=2=0;V2=2=0;V3=2=0g

Σ � f 8x ; y :(V1(x ; y) � 9u;w :(R(u; x) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V2(x ; y) � 9u;w :(R(x ;u) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V3(x ; y) � 9u:(R(x ;u) ^ R(u; y))) g

Also let Q denote the following (conjunctive) user query.

9u; v ;w :(R(u; x) ^ R(u;w) ^ R(w ; v) ^ R(v ; y))

An equivalent user query to Q can be formulated in terms of the three
predicates that are access paths, V1, V2 and V3.

9u:(V1(x ;u) ^ 8w :(V3(w ;u)! V2(w ; y))):

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 25 / 29

Beyond Chasing: the Nash Case

Assume hSL [SP;Σi is the following physical design.

SL � fR=2g

SP(= SA) � fV1=2=0;V2=2=0;V3=2=0g

Σ � f 8x ; y :(V1(x ; y) � 9u;w :(R(u; x) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V2(x ; y) � 9u;w :(R(x ;u) ^ R(u;w) ^ R(w ; y)));

8x ; y :(V3(x ; y) � 9u:(R(x ;u) ^ R(u; y))) g

Also let Q denote the following (conjunctive) user query.

9u; v ;w :(R(u; x) ^ R(u;w) ^ R(w ; v) ^ R(v ; y))

An equivalent user query to Q can be formulated in terms of the three
predicates that are access paths, V1, V2 and V3.

9u:(V1(x ;u) ^ 8w :(V3(w ;u)! V2(w ; y))):

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 25 / 29

Beyond Chasing (cont’d)

Another equivalent user query to Q can be formulated that leads directly to a
query plan, again, only with non-logical parameters that are access paths.

9u; v :(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ 8w :(V3(w ;u)! V2(w ; y)))

In particular, standard equivalences in FOL can then be applied to this to
obtain a query plan that implements Q.

9u; v :f(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ :9w :(V3(w ;u) ^ :V2(w ; y)))g

In general, it is known that there does not exist a positive user query
equivalent to Q, that is, a user query with no occurrences of either negation or
universal quantification.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 26 / 29

Beyond Chasing (cont’d)

Another equivalent user query to Q can be formulated that leads directly to a
query plan, again, only with non-logical parameters that are access paths.

9u; v :(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ 8w :(V3(w ;u)! V2(w ; y)))

In particular, standard equivalences in FOL can then be applied to this to
obtain a query plan that implements Q.

9u; v :f(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ :9w :(V3(w ;u) ^ :V2(w ; y)))g

In general, it is known that there does not exist a positive user query
equivalent to Q, that is, a user query with no occurrences of either negation or
universal quantification.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 26 / 29

Beyond Chasing (cont’d)

Another equivalent user query to Q can be formulated that leads directly to a
query plan, again, only with non-logical parameters that are access paths.

9u; v :(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ 8w :(V3(w ;u)! V2(w ; y)))

In particular, standard equivalences in FOL can then be applied to this to
obtain a query plan that implements Q.

9u; v :f(V1(x ;u) ^ V3(v ;u) ^ V2(v ; y) ^ :9w :(V3(w ;u) ^ :V2(w ; y)))g

In general, it is known that there does not exist a positive user query
equivalent to Q, that is, a user query with no occurrences of either negation or
universal quantification.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 26 / 29

Interpolation and Craig’s Theorem

Assume hSL [SP;Σi is a physical design and Q a user query.

Recall that Q is Beth definable if and only if the following holds.1

(Σ [Σ�) j= (Q ! Q�)

The condition can be reformulated to the form “j= '! ”.

j= ((
^

Σ) ^Q)! ((
^

Σ�)! Q�)

(Craig’s Theorem) Let ' and be WFFs. Then j= '! implies that there is
a WFF � that contains only non-logical symbols common to both ' and ,
called the interpolant, such that j= '! (�!).

——————–

1Recall that Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 27 / 29

Interpolation and Craig’s Theorem

Assume hSL [SP;Σi is a physical design and Q a user query.

Recall that Q is Beth definable if and only if the following holds.

1

(Σ [Σ�) j= (Q ! Q�)

The condition can be reformulated to the form “j= '! ”.

j= ((
^

Σ) ^Q)! ((
^

Σ�)! Q�)

(Craig’s Theorem) Let ' and be WFFs. Then j= '! implies that there is
a WFF � that contains only non-logical symbols common to both ' and ,
called the interpolant, such that j= '! (�!).

——————–

1Recall that Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 27 / 29

Interpolation and Craig’s Theorem

Assume hSL [SP;Σi is a physical design and Q a user query.

Recall that Q is Beth definable if and only if the following holds.1

(Σ [Σ�) j= (Q ! Q�)

The condition can be reformulated to the form “j= '! ”.

j= ((
^

Σ) ^Q)! ((
^

Σ�)! Q�)

(Craig’s Theorem) Let ' and be WFFs. Then j= '! implies that there is
a WFF � that contains only non-logical symbols common to both ' and ,
called the interpolant, such that j= '! (�!).

——————–

1Recall that Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 27 / 29

Interpolation and Craig’s Theorem

Assume hSL [SP;Σi is a physical design and Q a user query.

Recall that Q is Beth definable if and only if the following holds.1

(Σ [Σ�) j= (Q ! Q�)

The condition can be reformulated to the form “j= '! ”.

j= ((
^

Σ) ^Q)! ((
^

Σ�)! Q�)

(Craig’s Theorem) Let ' and be WFFs. Then j= '! implies that there is
a WFF � that contains only non-logical symbols common to both ' and ,
called the interpolant, such that j= '! (�!).

——————–

1Recall that Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 27 / 29

Interpolation and Craig’s Theorem

Assume hSL [SP;Σi is a physical design and Q a user query.

Recall that Q is Beth definable if and only if the following holds.1

(Σ [Σ�) j= (Q ! Q�)

The condition can be reformulated to the form “j= '! ”.

j= ((
^

Σ) ^Q)! ((
^

Σ�)! Q�)

(Craig’s Theorem) Let ' and be WFFs. Then j= '! implies that there is
a WFF � that contains only non-logical symbols common to both ' and ,
called the interpolant, such that j= '! (�!).

——————–

1Recall that Σ� and Q� are respective copies of Σ and Q in which all
non-logical parameters not present in SA are uniformly renamed.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 27 / 29

A Revised Chase Procedure for Plan Synthesis

Input: A conjunctive user query Q(= f'1; : : : ; 'kg) and a set Σ of TGDs.

Result: A (possibly infinite) sequence S = (1; 2; : : :) satisfying binding
pattern requirements, and such that

Σ j= Q C Qp((1; : : : ; `))

for all finite prefixes (1; : : : ; `) of S where n � ` if success.
1 Initialize: S (); G ChaseΣ(S); n 0; success false.
2 If there exists 2 G for which S j () satisfies binding pattern

requirements, then S S j ().
3 If

(
^

Σ) ^ (
^

Σ�) ^ 1 ^ � � � ^ ` ^ (:Q�)

is not satisfiable, then success true. Otherwise n n + 1.
4 Resume at Step 2.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 28 / 29

General Plan Synthesis by Interpolation

Input: A user query Q and a set Σ of constraints.

Result: An enumeration of possible (first order) query plans Q0 of Q.
1 Enumerate interpolants Q00 of the following that lead to a query plan Q0.

(
^

Σ) ^ (
^

Σ�) ^Q ^ (:Q�)

The Nash case can be solved by this procedure.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 29 / 29

General Plan Synthesis by Interpolation

Input: A user query Q and a set Σ of constraints.

Result: An enumeration of possible (first order) query plans Q0 of Q.
1 Enumerate interpolants Q00 of the following that lead to a query plan Q0.

(
^

Σ) ^ (
^

Σ�) ^Q ^ (:Q�)

The Nash case can be solved by this procedure.

CS848 Spring 2013 (Cheriton School of CS) First-Order Queries and Interpolation The Chase and Duplicates 29 / 29

