
Query Processing for Non-traditional Applications

CS848 Spring 2013

Cheriton School of CS

Advanced Physical Designs

CS848 Spring 2013 (Cheriton School of CS) Advanced Physical Design Advanced Physical Designs 1 / 32



Outline

Consider how practical physical design can be accomplished.

One obtains a practical physical design by doing the following.
1 Adding/declaring new predicate symbols and access paths.
2 Adding new constraints.

Topics
References, pointers and linked structures.
Nulls, partitions and run-time typing.
Built-in functions and hashing.
Two-level store.
Examples relating to ACME’s PAYROLL system.

1

——————–

1In particular, an extension of the OPTION 1 logical design.

CS848 Spring 2013 (Cheriton School of CS) Outline Advanced Physical Designs 2 / 32



Outline

Consider how practical physical design can be accomplished.

One obtains a practical physical design by doing the following.
1 Adding/declaring new predicate symbols and access paths.

2 Adding new constraints.

Topics
References, pointers and linked structures.
Nulls, partitions and run-time typing.
Built-in functions and hashing.
Two-level store.
Examples relating to ACME’s PAYROLL system.

1

——————–

1In particular, an extension of the OPTION 1 logical design.

CS848 Spring 2013 (Cheriton School of CS) Outline Advanced Physical Designs 2 / 32



Outline

Consider how practical physical design can be accomplished.

One obtains a practical physical design by doing the following.
1 Adding/declaring new predicate symbols and access paths.
2 Adding new constraints.

Topics
References, pointers and linked structures.
Nulls, partitions and run-time typing.
Built-in functions and hashing.
Two-level store.
Examples relating to ACME’s PAYROLL system.

1

——————–

1In particular, an extension of the OPTION 1 logical design.

CS848 Spring 2013 (Cheriton School of CS) Outline Advanced Physical Designs 2 / 32



Outline

Consider how practical physical design can be accomplished.

One obtains a practical physical design by doing the following.
1 Adding/declaring new predicate symbols and access paths.
2 Adding new constraints.

Topics
References, pointers and linked structures.
Nulls, partitions and run-time typing.
Built-in functions and hashing.
Two-level store.
Examples relating to ACME’s PAYROLL system.

1

——————–

1In particular, an extension of the OPTION 1 logical design.

CS848 Spring 2013 (Cheriton School of CS) Outline Advanced Physical Designs 2 / 32



Outline

Consider how practical physical design can be accomplished.

One obtains a practical physical design by doing the following.
1 Adding/declaring new predicate symbols and access paths.
2 Adding new constraints.

Topics
References, pointers and linked structures.
Nulls, partitions and run-time typing.
Built-in functions and hashing.
Two-level store.
Examples relating to ACME’s PAYROLL system.1

——————–

1In particular, an extension of the OPTION 1 logical design.

CS848 Spring 2013 (Cheriton School of CS) Outline Advanced Physical Designs 2 / 32



ACME Case: Extending OPTION 1

Assume the APS department extends the logical signature SL for PAYROLL
given by OPTION 1 with two additional predicate symbols to record
information about how employees relate to departments.

SP
L = femployee=3;department=3;works=2g, and

SF
L = ;.

Also assume the APS department decides on the logical design illustrated
above. Note: Arguments are given attribute names; attributes that are primary
keys are listed first; arrows correspond to foreign keys.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 3 / 32



ACME Case: Extending OPTION 1

Assume the APS department extends the logical signature SL for PAYROLL
given by OPTION 1 with two additional predicate symbols to record
information about how employees relate to departments.

SP
L = femployee=3;department=3;works=2g, and

SF
L = ;.

Also assume the APS department decides on the logical design illustrated
above.

Note: Arguments are given attribute names; attributes that are primary
keys are listed first; arrows correspond to foreign keys.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 3 / 32



ACME Case: Extending OPTION 1

Assume the APS department extends the logical signature SL for PAYROLL
given by OPTION 1 with two additional predicate symbols to record
information about how employees relate to departments.

SP
L = femployee=3;department=3;works=2g, and

SF
L = ;.

Also assume the APS department decides on the logical design illustrated
above. Note: Arguments are given attribute names; attributes that are primary
keys are listed first; arrows correspond to foreign keys.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 3 / 32



ACME Case: Extended OPTION 1

Logical Constraints Σ

1 Employees can be identified by their number.

8x1; x2; y1; y2:(9z:(employee(z; x1; x2) ^ employee(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

2 Departments can also be identified by their number.

8x1; x2; y1; y2:(9z:(department(z; x1; x2) ^ department(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

3 At most one working relationship to a department can exist for a given employee.

8x; y :(9z:(works(z; x) ^ works(z; y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 4 / 32



ACME Case: Extended OPTION 1

Logical Constraints Σ

1 Employees can be identified by their number.

8x1; x2; y1; y2:(9z:(employee(z; x1; x2) ^ employee(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

2 Departments can also be identified by their number.

8x1; x2; y1; y2:(9z:(department(z; x1; x2) ^ department(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

3 At most one working relationship to a department can exist for a given employee.

8x; y :(9z:(works(z; x) ^ works(z; y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 4 / 32



ACME Case: Extended OPTION 1

Logical Constraints Σ

1 Employees can be identified by their number.

8x1; x2; y1; y2:(9z:(employee(z; x1; x2) ^ employee(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

2 Departments can also be identified by their number.

8x1; x2; y1; y2:(9z:(department(z; x1; x2) ^ department(z; y1; y2))
! ((x1 � y1) ^ (x2 � y2)))

3 At most one working relationship to a department can exist for a given employee.

8x; y :(9z:(works(z; x) ^ works(z; y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 4 / 32



ACME Case: Extended OPTION 1

4 Only employees can be the manager of a department.

8x:(9y ; z:department(y ; z; x) ! 9u; v :employee(x; u; v))

5 Working relationships can only exists between employees and departments.

8x; y :(works(x; y) ! 9u1; u2; v1; v2:(employee(x; u1; v1) ^ department(y ; u2; v2)))

6 Every employee must work.

8x:(9y ; z:employee(x; y ; z) ! 9u:works(x; u))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 5 / 32



ACME Case: Extended OPTION 1

4 Only employees can be the manager of a department.

8x:(9y ; z:department(y ; z; x) ! 9u; v :employee(x; u; v))

5 Working relationships can only exists between employees and departments.

8x; y :(works(x; y) ! 9u1; u2; v1; v2:(employee(x; u1; v1) ^ department(y ; u2; v2)))

6 Every employee must work.

8x:(9y ; z:employee(x; y ; z) ! 9u:works(x; u))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 5 / 32



ACME Case: Extended OPTION 1

4 Only employees can be the manager of a department.

8x:(9y ; z:department(y ; z; x) ! 9u; v :employee(x; u; v))

5 Working relationships can only exists between employees and departments.

8x; y :(works(x; y) ! 9u1; u2; v1; v2:(employee(x; u1; v1) ^ department(y ; u2; v2)))

6 Every employee must work.

8x:(9y ; z:employee(x; y ; z) ! 9u:works(x; u))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 5 / 32



References, Pointers and Linked Structures

One of the most powerful idioms of physical design derives from underlying
data store based on the RAM model.

Access to records located in RAM requires constant time when search keys
correspond to pointer values that address or reference the store.1

Idiom applies in several circumstances.
Main memory data.
Data stored on external devices that provide close to random access:
magnetic discs, flash memory, etc.

——————–

1Dereferencing a pointer value is the ultimate means of data access in the
RAM model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 6 / 32



References, Pointers and Linked Structures

One of the most powerful idioms of physical design derives from underlying
data store based on the RAM model.

Access to records located in RAM requires constant time when search keys
correspond to pointer values that address or reference the store.

1

Idiom applies in several circumstances.
Main memory data.
Data stored on external devices that provide close to random access:
magnetic discs, flash memory, etc.

——————–

1Dereferencing a pointer value is the ultimate means of data access in the
RAM model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 6 / 32



References, Pointers and Linked Structures

One of the most powerful idioms of physical design derives from underlying
data store based on the RAM model.

Access to records located in RAM requires constant time when search keys
correspond to pointer values that address or reference the store.1

Idiom applies in several circumstances.
Main memory data.
Data stored on external devices that provide close to random access:
magnetic discs, flash memory, etc.

——————–

1Dereferencing a pointer value is the ultimate means of data access in the
RAM model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 6 / 32



References, Pointers and Linked Structures

One of the most powerful idioms of physical design derives from underlying
data store based on the RAM model.

Access to records located in RAM requires constant time when search keys
correspond to pointer values that address or reference the store.1

Idiom applies in several circumstances.
Main memory data.

Data stored on external devices that provide close to random access:
magnetic discs, flash memory, etc.

——————–

1Dereferencing a pointer value is the ultimate means of data access in the
RAM model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 6 / 32



References, Pointers and Linked Structures

One of the most powerful idioms of physical design derives from underlying
data store based on the RAM model.

Access to records located in RAM requires constant time when search keys
correspond to pointer values that address or reference the store.1

Idiom applies in several circumstances.
Main memory data.
Data stored on external devices that provide close to random access:
magnetic discs, flash memory, etc.

——————–

1Dereferencing a pointer value is the ultimate means of data access in the
RAM model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 6 / 32



References, Pointers and Linked Structures

Model this idiom as follows: assume data is organized in records of the
following form that are located at a particular address in the RAM storage.

record r of
field-type1 f1

...
field-typek fk

Field types can the following.
1 Atomic values, e.g., integers and strings.
2 Reference or pointer values, called addresses, that encode locations of

records in RAM store.
Records are captured by a collection of access paths.

fr-f1=2=1; : : : ;r-fk=2=1g

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 7 / 32



References, Pointers and Linked Structures

Model this idiom as follows: assume data is organized in records of the
following form that are located at a particular address in the RAM storage.

record r of
field-type1 f1

...
field-typek fk

Field types can the following.
1 Atomic values, e.g., integers and strings.

2 Reference or pointer values, called addresses, that encode locations of
records in RAM store.

Records are captured by a collection of access paths.

fr-f1=2=1; : : : ;r-fk=2=1g

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 7 / 32



References, Pointers and Linked Structures

Model this idiom as follows: assume data is organized in records of the
following form that are located at a particular address in the RAM storage.

record r of
field-type1 f1

...
field-typek fk

Field types can the following.
1 Atomic values, e.g., integers and strings.
2 Reference or pointer values, called addresses, that encode locations of

records in RAM store.

Records are captured by a collection of access paths.

fr-f1=2=1; : : : ;r-fk=2=1g

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 7 / 32



References, Pointers and Linked Structures

Model this idiom as follows: assume data is organized in records of the
following form that are located at a particular address in the RAM storage.

record r of
field-type1 f1

...
field-typek fk

Field types can the following.
1 Atomic values, e.g., integers and strings.
2 Reference or pointer values, called addresses, that encode locations of

records in RAM store.
Records are captured by a collection of access paths.

fr-f1=2=1; : : : ;r-fk=2=1g

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 7 / 32



References, Pointers and Linked Structures

Intended meaning of the following atomic query plan is to interpret the binding
for variable x1 as an address of an “r” record.

r-fi (x1; x2)

When executed, RAM store is accessed using this address to retrieve the
value of field fi into variable x2.

With respect to our first/next protocol, pseudocode that reflects this
intended meaning is given as follows.

function r-fi-first
x2 := x1 -> fi
return true

function r-fi-next
return false

Also assume each access path is associated with a constraint ensuring the
operation of extracting a field from a record is a function.

8x ; y1; y2:((r-fi (x ; y1) ^ r-fi (x ; y2)) ! (y1 � y2))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 8 / 32



References, Pointers and Linked Structures

Intended meaning of the following atomic query plan is to interpret the binding
for variable x1 as an address of an “r” record.

r-fi (x1; x2)

When executed, RAM store is accessed using this address to retrieve the
value of field fi into variable x2.

With respect to our first/next protocol, pseudocode that reflects this
intended meaning is given as follows.

function r-fi-first
x2 := x1 -> fi
return true

function r-fi-next
return false

Also assume each access path is associated with a constraint ensuring the
operation of extracting a field from a record is a function.

8x ; y1; y2:((r-fi (x ; y1) ^ r-fi (x ; y2)) ! (y1 � y2))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 8 / 32



References, Pointers and Linked Structures

Intended meaning of the following atomic query plan is to interpret the binding
for variable x1 as an address of an “r” record.

r-fi (x1; x2)

When executed, RAM store is accessed using this address to retrieve the
value of field fi into variable x2.

With respect to our first/next protocol, pseudocode that reflects this
intended meaning is given as follows.

function r-fi-first
x2 := x1 -> fi
return true

function r-fi-next
return false

Also assume each access path is associated with a constraint ensuring the
operation of extracting a field from a record is a function.

8x ; y1; y2:((r-fi (x ; y1) ^ r-fi (x ; y2)) ! (y1 � y2))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 8 / 32



References, Pointers and Linked Structures

Intended meaning of the following atomic query plan is to interpret the binding
for variable x1 as an address of an “r” record.

r-fi (x1; x2)

When executed, RAM store is accessed using this address to retrieve the
value of field fi into variable x2.

With respect to our first/next protocol, pseudocode that reflects this
intended meaning is given as follows.

function r-fi-first
x2 := x1 -> fi
return true

function r-fi-next
return false

Also assume each access path is associated with a constraint ensuring the
operation of extracting a field from a record is a function.

8x ; y1; y2:((r-fi (x ; y1) ^ r-fi (x ; y2)) ! (y1 � y2))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 8 / 32



ACME Case: Extended Option 1 Physical Design

Represent individual employee and department entities as records
conforming to the following emp and dept declarations.

record emp of
integer num
string name
integer salary
reference dept

record dept of
integer num
string name
reference manager

Then organize the emp records in a collection data structure (such as array or
linked list) called empfile.1

——————–

1These data structures allow us to scan the addresses of all emp records that
represent employee entities.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 9 / 32



ACME Case: Extended Option 1 Physical Design

Represent individual employee and department entities as records
conforming to the following emp and dept declarations.

record emp of
integer num
string name
integer salary
reference dept

record dept of
integer num
string name
reference manager

Then organize the emp records in a collection data structure (such as array or
linked list) called empfile.

1

——————–

1These data structures allow us to scan the addresses of all emp records that
represent employee entities.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 9 / 32



ACME Case: Extended Option 1 Physical Design

Represent individual employee and department entities as records
conforming to the following emp and dept declarations.

record emp of
integer num
string name
integer salary
reference dept

record dept of
integer num
string name
reference manager

Then organize the emp records in a collection data structure (such as array or
linked list) called empfile.1

——————–

1These data structures allow us to scan the addresses of all emp records that
represent employee entities.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 9 / 32



ACME Case: Extended Option 1 Physical Design

A physical design for this data encoding is given as follows.
Physical Signature

SA = f empfile=1=0;
emp-num=2=1; emp-name=2=1; emp-salary=2=1; emp-dept=2=1;
dept-num=2=1; dept-name=2=1; dept-manager=2=1 g

Physical Constraints Σ0 (a selection)

1 Every emp record has all its fields.

(a) 8x:(empfile(x) ! 9y :emp-num(x; y))
(b) 8x:(empfile(x) ! 9y :emp-name(x; y))
(c) 8x:(empfile(x) ! 9y :emp-salary(x; y))
(d) 8x:(empfile(x) ! 9y :emp-dept(x; y))

2 The range of emp-dept is a dept record in deptfile.

8x; y :(emp-dept(x; y) ! deptfile(y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 10 / 32



ACME Case: Extended Option 1 Physical Design

A physical design for this data encoding is given as follows.
Physical Signature

SA = f empfile=1=0;
emp-num=2=1; emp-name=2=1; emp-salary=2=1; emp-dept=2=1;
dept-num=2=1; dept-name=2=1; dept-manager=2=1 g

Physical Constraints Σ0 (a selection)

1 Every emp record has all its fields.

(a) 8x:(empfile(x) ! 9y :emp-num(x; y))
(b) 8x:(empfile(x) ! 9y :emp-name(x; y))
(c) 8x:(empfile(x) ! 9y :emp-salary(x; y))
(d) 8x:(empfile(x) ! 9y :emp-dept(x; y))

2 The range of emp-dept is a dept record in deptfile.

8x; y :(emp-dept(x; y) ! deptfile(y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 10 / 32



ACME Case: Extended Option 1 Physical Design

A physical design for this data encoding is given as follows.
Physical Signature

SA = f empfile=1=0;
emp-num=2=1; emp-name=2=1; emp-salary=2=1; emp-dept=2=1;
dept-num=2=1; dept-name=2=1; dept-manager=2=1 g

Physical Constraints Σ0 (a selection)

1 Every emp record has all its fields.

(a) 8x:(empfile(x) ! 9y :emp-num(x; y))
(b) 8x:(empfile(x) ! 9y :emp-name(x; y))
(c) 8x:(empfile(x) ! 9y :emp-salary(x; y))
(d) 8x:(empfile(x) ! 9y :emp-dept(x; y))

2 The range of emp-dept is a dept record in deptfile.

8x; y :(emp-dept(x; y) ! deptfile(y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 10 / 32



ACME Case: Extended Option 1 Physical Design

3 Every dept record has all its fields.

(a) 8x:(deptfile(x) ! 9y :dept-num(x; y))
(b) 8x:(deptfile(x) ! 9y :dept-name(x; y))
(c) 8x:(deptfile(x) ! 9y :dept-manager(x; y))

4 The range of dept-manager is an emp record in empfile.

8x; y :(dept-manager(x; y) ! empfile(y))

Mapping Constraints Σ00 (a selection)

1 For every employee there is an emp record.

8x:y ; z:(employee(x; y ; z) ! 9w :(empfile(w) ^ emp-num(w ; x)))

2 The contents of the name field of an emp record corresponding to a particular employee contains this
employee’s name.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-name(w ; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 11 / 32



ACME Case: Extended Option 1 Physical Design

3 Every dept record has all its fields.

(a) 8x:(deptfile(x) ! 9y :dept-num(x; y))
(b) 8x:(deptfile(x) ! 9y :dept-name(x; y))
(c) 8x:(deptfile(x) ! 9y :dept-manager(x; y))

4 The range of dept-manager is an emp record in empfile.

8x; y :(dept-manager(x; y) ! empfile(y))

Mapping Constraints Σ00 (a selection)

1 For every employee there is an emp record.

8x:y ; z:(employee(x; y ; z) ! 9w :(empfile(w) ^ emp-num(w ; x)))

2 The contents of the name field of an emp record corresponding to a particular employee contains this
employee’s name.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-name(w ; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 11 / 32



ACME Case: Extended Option 1 Physical Design

3 Every dept record has all its fields.

(a) 8x:(deptfile(x) ! 9y :dept-num(x; y))
(b) 8x:(deptfile(x) ! 9y :dept-name(x; y))
(c) 8x:(deptfile(x) ! 9y :dept-manager(x; y))

4 The range of dept-manager is an emp record in empfile.

8x; y :(dept-manager(x; y) ! empfile(y))

Mapping Constraints Σ00 (a selection)

1 For every employee there is an emp record.

8x:y ; z:(employee(x; y ; z) ! 9w :(empfile(w) ^ emp-num(w ; x)))

2 The contents of the name field of an emp record corresponding to a particular employee contains this
employee’s name.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-name(w ; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 11 / 32



ACME Case: Extended Option 1 Physical Design

3 Every dept record has all its fields.

(a) 8x:(deptfile(x) ! 9y :dept-num(x; y))
(b) 8x:(deptfile(x) ! 9y :dept-name(x; y))
(c) 8x:(deptfile(x) ! 9y :dept-manager(x; y))

4 The range of dept-manager is an emp record in empfile.

8x; y :(dept-manager(x; y) ! empfile(y))

Mapping Constraints Σ00 (a selection)

1 For every employee there is an emp record.

8x:y ; z:(employee(x; y ; z) ! 9w :(empfile(w) ^ emp-num(w ; x)))

2 The contents of the name field of an emp record corresponding to a particular employee contains this
employee’s name.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-name(w ; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 11 / 32



ACME Case: Extended Option 1 Physical Design

3 Same for the salary field.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-salary(w ; z))

4 The contents of the dept field of an emp record is a reference to the dept record that represents the
department for which this employee works.

8x; y ; z;w ; u; v :((employee(x; y ; z) ^ emp-num(w ; x) ^ works(x; u) ^ dept-num(v ; u))
! emp-dept(w ; v))

5 Every emp record in empfile represents an employee.

8x; y ; z;w :((empfile(w) ^ emp-num(w ; x) ^ emp-name(w ; y) ^ emp-salary(w ; z))
! employee(x; y ; z))

6 Every emp record and the associated dept record referenced by the dept field represents a works
relationship.

8x; y ; v ;w :((empfile(w) ^ emp-num(w ; x) ^ emp-dept(w ; v) ^ dept-num(v ; y))
! works(x; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 12 / 32



ACME Case: Extended Option 1 Physical Design

3 Same for the salary field.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-salary(w ; z))

4 The contents of the dept field of an emp record is a reference to the dept record that represents the
department for which this employee works.

8x; y ; z;w ; u; v :((employee(x; y ; z) ^ emp-num(w ; x) ^ works(x; u) ^ dept-num(v ; u))
! emp-dept(w ; v))

5 Every emp record in empfile represents an employee.

8x; y ; z;w :((empfile(w) ^ emp-num(w ; x) ^ emp-name(w ; y) ^ emp-salary(w ; z))
! employee(x; y ; z))

6 Every emp record and the associated dept record referenced by the dept field represents a works
relationship.

8x; y ; v ;w :((empfile(w) ^ emp-num(w ; x) ^ emp-dept(w ; v) ^ dept-num(v ; y))
! works(x; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 12 / 32



ACME Case: Extended Option 1 Physical Design

3 Same for the salary field.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-salary(w ; z))

4 The contents of the dept field of an emp record is a reference to the dept record that represents the
department for which this employee works.

8x; y ; z;w ; u; v :((employee(x; y ; z) ^ emp-num(w ; x) ^ works(x; u) ^ dept-num(v ; u))
! emp-dept(w ; v))

5 Every emp record in empfile represents an employee.

8x; y ; z;w :((empfile(w) ^ emp-num(w ; x) ^ emp-name(w ; y) ^ emp-salary(w ; z))
! employee(x; y ; z))

6 Every emp record and the associated dept record referenced by the dept field represents a works
relationship.

8x; y ; v ;w :((empfile(w) ^ emp-num(w ; x) ^ emp-dept(w ; v) ^ dept-num(v ; y))
! works(x; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 12 / 32



ACME Case: Extended Option 1 Physical Design

3 Same for the salary field.

8x; y ; z;w :((employee(x; y ; z) ^ emp-num(w ; x)) ! emp-salary(w ; z))

4 The contents of the dept field of an emp record is a reference to the dept record that represents the
department for which this employee works.

8x; y ; z;w ; u; v :((employee(x; y ; z) ^ emp-num(w ; x) ^ works(x; u) ^ dept-num(v ; u))
! emp-dept(w ; v))

5 Every emp record in empfile represents an employee.

8x; y ; z;w :((empfile(w) ^ emp-num(w ; x) ^ emp-name(w ; y) ^ emp-salary(w ; z))
! employee(x; y ; z))

6 Every emp record and the associated dept record referenced by the dept field represents a works
relationship.

8x; y ; v ;w :((empfile(w) ^ emp-num(w ; x) ^ emp-dept(w ; v) ^ dept-num(v ; y))
! works(x; y))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 12 / 32



ACME Case: Extended Option 1 Physical Design

7 For every department there is a dept record.

8x; y ; z:(department(x; y ; z) ! 9w :(deptfile(w) ^ dept-num(w ; x)))

8 Every dept record has the proper contents for its name field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x)) ! dept-name(w ; y))

9 Same for its manager field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x))
! 9v :(dept-manager(w ; v) ^ emp-num(v ; z)))

10 Every dept record in the deptfile represents a department.

8x; y ; z;w ; v :((dept-num(w ; x) ^ dept-name(w ; y) ^ dept-manager(w ; v) ^ emp-num(v ; z))
! department(x; y ; z))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 13 / 32



ACME Case: Extended Option 1 Physical Design

7 For every department there is a dept record.

8x; y ; z:(department(x; y ; z) ! 9w :(deptfile(w) ^ dept-num(w ; x)))

8 Every dept record has the proper contents for its name field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x)) ! dept-name(w ; y))

9 Same for its manager field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x))
! 9v :(dept-manager(w ; v) ^ emp-num(v ; z)))

10 Every dept record in the deptfile represents a department.

8x; y ; z;w ; v :((dept-num(w ; x) ^ dept-name(w ; y) ^ dept-manager(w ; v) ^ emp-num(v ; z))
! department(x; y ; z))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 13 / 32



ACME Case: Extended Option 1 Physical Design

7 For every department there is a dept record.

8x; y ; z:(department(x; y ; z) ! 9w :(deptfile(w) ^ dept-num(w ; x)))

8 Every dept record has the proper contents for its name field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x)) ! dept-name(w ; y))

9 Same for its manager field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x))
! 9v :(dept-manager(w ; v) ^ emp-num(v ; z)))

10 Every dept record in the deptfile represents a department.

8x; y ; z;w ; v :((dept-num(w ; x) ^ dept-name(w ; y) ^ dept-manager(w ; v) ^ emp-num(v ; z))
! department(x; y ; z))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 13 / 32



ACME Case: Extended Option 1 Physical Design

7 For every department there is a dept record.

8x; y ; z:(department(x; y ; z) ! 9w :(deptfile(w) ^ dept-num(w ; x)))

8 Every dept record has the proper contents for its name field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x)) ! dept-name(w ; y))

9 Same for its manager field.

8x; y ; z;w :((department(x; y ; z) ^ dept-num(w ; x))
! 9v :(dept-manager(w ; v) ^ emp-num(v ; z)))

10 Every dept record in the deptfile represents a department.

8x; y ; z;w ; v :((dept-num(w ; x) ^ dept-name(w ; y) ^ dept-manager(w ; v) ^ emp-num(v ; z))
! department(x; y ; z))

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 13 / 32



ACME Case: Extended Option 1 Queries and Plans

ACME’s APS department specifies a user query Q to list employee numbers,
names and department names for all employees.

9y ; v ;w :(employee(x1; x2; y) ^ works(x1; v) ^ department(v ; x3;w))

A query plan Q0 that implements this user query with respect to the above
physical design is defined as follows.

f9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))g

Observations
1 Σ j= Q C Q0, where Σ consists of the above physical design.
2 Nested loops joins combined with the pseudocode for the field extraction

access paths yield the desired plan.
3 Once a reference to an employee record is obtained, all emaining

operations are dereferencing operations that run in O(1) in the RAM
model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 14 / 32



ACME Case: Extended Option 1 Queries and Plans

ACME’s APS department specifies a user query Q to list employee numbers,
names and department names for all employees.

9y ; v ;w :(employee(x1; x2; y) ^ works(x1; v) ^ department(v ; x3;w))

A query plan Q0 that implements this user query with respect to the above
physical design is defined as follows.

f9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))g

Observations
1 Σ j= Q C Q0, where Σ consists of the above physical design.
2 Nested loops joins combined with the pseudocode for the field extraction

access paths yield the desired plan.
3 Once a reference to an employee record is obtained, all emaining

operations are dereferencing operations that run in O(1) in the RAM
model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 14 / 32



ACME Case: Extended Option 1 Queries and Plans

ACME’s APS department specifies a user query Q to list employee numbers,
names and department names for all employees.

9y ; v ;w :(employee(x1; x2; y) ^ works(x1; v) ^ department(v ; x3;w))

A query plan Q0 that implements this user query with respect to the above
physical design is defined as follows.

f9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))g

Observations
1 Σ j= Q C Q0, where Σ consists of the above physical design.

2 Nested loops joins combined with the pseudocode for the field extraction
access paths yield the desired plan.

3 Once a reference to an employee record is obtained, all emaining
operations are dereferencing operations that run in O(1) in the RAM
model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 14 / 32



ACME Case: Extended Option 1 Queries and Plans

ACME’s APS department specifies a user query Q to list employee numbers,
names and department names for all employees.

9y ; v ;w :(employee(x1; x2; y) ^ works(x1; v) ^ department(v ; x3;w))

A query plan Q0 that implements this user query with respect to the above
physical design is defined as follows.

f9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))g

Observations
1 Σ j= Q C Q0, where Σ consists of the above physical design.
2 Nested loops joins combined with the pseudocode for the field extraction

access paths yield the desired plan.

3 Once a reference to an employee record is obtained, all emaining
operations are dereferencing operations that run in O(1) in the RAM
model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 14 / 32



ACME Case: Extended Option 1 Queries and Plans

ACME’s APS department specifies a user query Q to list employee numbers,
names and department names for all employees.

9y ; v ;w :(employee(x1; x2; y) ^ works(x1; v) ^ department(v ; x3;w))

A query plan Q0 that implements this user query with respect to the above
physical design is defined as follows.

f9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))g

Observations
1 Σ j= Q C Q0, where Σ consists of the above physical design.
2 Nested loops joins combined with the pseudocode for the field extraction

access paths yield the desired plan.
3 Once a reference to an employee record is obtained, all emaining

operations are dereferencing operations that run in O(1) in the RAM
model.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 14 / 32



ACME Case: Extended Option 1 Queries and Plans

Consider the following.
A functional constraint in the physical design stating that the emp records
correspond one-to-one to employee entities.

8x; y1; y2:(emp-num(y1; x) ^ emp-num(y2; x)) ! (y1 � y2)

Constraints expressing the functionality of field access.

Altogether implies that the following query plan also implements the query.

9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))

Observations
1 The final duplicate elimination operation has been omitted.
2 The plan runs in O(n) time, where n is the number of employee entities

(recall that the underlying data structure with emp records is an array or
linked list.)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 15 / 32



ACME Case: Extended Option 1 Queries and Plans

Consider the following.
A functional constraint in the physical design stating that the emp records
correspond one-to-one to employee entities.

8x; y1; y2:(emp-num(y1; x) ^ emp-num(y2; x)) ! (y1 � y2)

Constraints expressing the functionality of field access.

Altogether implies that the following query plan also implements the query.

9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))

Observations
1 The final duplicate elimination operation has been omitted.
2 The plan runs in O(n) time, where n is the number of employee entities

(recall that the underlying data structure with emp records is an array or
linked list.)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 15 / 32



ACME Case: Extended Option 1 Queries and Plans

Consider the following.
A functional constraint in the physical design stating that the emp records
correspond one-to-one to employee entities.

8x; y1; y2:(emp-num(y1; x) ^ emp-num(y2; x)) ! (y1 � y2)

Constraints expressing the functionality of field access.

Altogether implies that the following query plan also implements the query.

9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))

Observations
1 The final duplicate elimination operation has been omitted.

2 The plan runs in O(n) time, where n is the number of employee entities
(recall that the underlying data structure with emp records is an array or
linked list.)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 15 / 32



ACME Case: Extended Option 1 Queries and Plans

Consider the following.
A functional constraint in the physical design stating that the emp records
correspond one-to-one to employee entities.

8x; y1; y2:(emp-num(y1; x) ^ emp-num(y2; x)) ! (y1 � y2)

Constraints expressing the functionality of field access.

Altogether implies that the following query plan also implements the query.

9e; d:(empfile(e) ^ emp-num(e; x1) ^ emp-name(e; x2)
^ emp-dept(e; d) ^ dept-name(d; x3))

Observations
1 The final duplicate elimination operation has been omitted.
2 The plan runs in O(n) time, where n is the number of employee entities

(recall that the underlying data structure with emp records is an array or
linked list.)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 15 / 32



Exercise: Listing Departments

another user query: department(x ; y ; z)

) remember that we do not have an access path that scans departments

) can we find a plan? NO

add a constraint “every boss works for his/her department”:

8x ; y ; z:department(x ; y ; z)! works(z; x)

Attempt 1:

f9e; d ; m:empfile(e) ^
emp-dept(e; d) ^ dept-num(d ; x) ^ dept-name(d ; y) ^
dept-manager(d ; m) ^ emp-num(m; z) g

Attempt 2:

9e; d ; m:empfile(e) ^ emp-num(e; z) ^
emp-dept(e; d) ^ dept-name(d ; y) ^ dept-num(d ; x) ^
dept-manager(d ; m) ^ compare(e; m)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 16 / 32



Exercise: Listing Departments

another user query: department(x ; y ; z)

) remember that we do not have an access path that scans departments
) can we find a plan?

NO

add a constraint “every boss works for his/her department”:

8x ; y ; z:department(x ; y ; z)! works(z; x)

Attempt 1:

f9e; d ; m:empfile(e) ^
emp-dept(e; d) ^ dept-num(d ; x) ^ dept-name(d ; y) ^
dept-manager(d ; m) ^ emp-num(m; z) g

Attempt 2:

9e; d ; m:empfile(e) ^ emp-num(e; z) ^
emp-dept(e; d) ^ dept-name(d ; y) ^ dept-num(d ; x) ^
dept-manager(d ; m) ^ compare(e; m)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 16 / 32



Exercise: Listing Departments

another user query: department(x ; y ; z)

) remember that we do not have an access path that scans departments
) can we find a plan? NO

add a constraint “every boss works for his/her department”:

8x ; y ; z:department(x ; y ; z)! works(z; x)

Attempt 1:

f9e; d ; m:empfile(e) ^
emp-dept(e; d) ^ dept-num(d ; x) ^ dept-name(d ; y) ^
dept-manager(d ; m) ^ emp-num(m; z) g

Attempt 2:

9e; d ; m:empfile(e) ^ emp-num(e; z) ^
emp-dept(e; d) ^ dept-name(d ; y) ^ dept-num(d ; x) ^
dept-manager(d ; m) ^ compare(e; m)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 16 / 32



Exercise: Listing Departments

another user query: department(x ; y ; z)

) remember that we do not have an access path that scans departments
) can we find a plan? NO

add a constraint “every boss works for his/her department”:

8x ; y ; z:department(x ; y ; z)! works(z; x)

Attempt 1:

f9e; d ; m:empfile(e) ^
emp-dept(e; d) ^ dept-num(d ; x) ^ dept-name(d ; y) ^
dept-manager(d ; m) ^ emp-num(m; z) g

Attempt 2:

9e; d ; m:empfile(e) ^ emp-num(e; z) ^
emp-dept(e; d) ^ dept-name(d ; y) ^ dept-num(d ; x) ^
dept-manager(d ; m) ^ compare(e; m)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 16 / 32



Exercise: Listing Departments

another user query: department(x ; y ; z)

) remember that we do not have an access path that scans departments
) can we find a plan? NO

add a constraint “every boss works for his/her department”:

8x ; y ; z:department(x ; y ; z)! works(z; x)

Attempt 1:

f9e; d ; m:empfile(e) ^
emp-dept(e; d) ^ dept-num(d ; x) ^ dept-name(d ; y) ^
dept-manager(d ; m) ^ emp-num(m; z) g

Attempt 2:

9e; d ; m:empfile(e) ^ emp-num(e; z) ^
emp-dept(e; d) ^ dept-name(d ; y) ^ dept-num(d ; x) ^
dept-manager(d ; m) ^ compare(e; m)

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 16 / 32



ACME Case: Nested Loops and Secondary Indices

Assume ACME’s APP department specifies a user query that list pairs of
employee numbers of employees with the same name.

9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

The following is a query plan implementing the query.

9y ; z;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empfile(w) ^ emp-num(w ; x2) ^ emp-name(w ; z)
^ compare(y ; z))

The plan is not desirable since it considers all pairs of employees and then
selects those with the same name.1

——————–

1An additional access path that allows us to efficiently find references to
employee records given an employee name would enable plans for the query
that avoid this.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 17 / 32



ACME Case: Nested Loops and Secondary Indices

Assume ACME’s APP department specifies a user query that list pairs of
employee numbers of employees with the same name.

9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

The following is a query plan implementing the query.

9y ; z;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empfile(w) ^ emp-num(w ; x2) ^ emp-name(w ; z)
^ compare(y ; z))

The plan is not desirable since it considers all pairs of employees and then
selects those with the same name.1

——————–

1An additional access path that allows us to efficiently find references to
employee records given an employee name would enable plans for the query
that avoid this.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 17 / 32



ACME Case: Nested Loops and Secondary Indices

Assume ACME’s APP department specifies a user query that list pairs of
employee numbers of employees with the same name.

9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

The following is a query plan implementing the query.

9y ; z;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empfile(w) ^ emp-num(w ; x2) ^ emp-name(w ; z)
^ compare(y ; z))

The plan is not desirable since it considers all pairs of employees and then
selects those with the same name.

1

——————–

1An additional access path that allows us to efficiently find references to
employee records given an employee name would enable plans for the query
that avoid this.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 17 / 32



ACME Case: Nested Loops and Secondary Indices

Assume ACME’s APP department specifies a user query that list pairs of
employee numbers of employees with the same name.

9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

The following is a query plan implementing the query.

9y ; z;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empfile(w) ^ emp-num(w ; x2) ^ emp-name(w ; z)
^ compare(y ; z))

The plan is not desirable since it considers all pairs of employees and then
selects those with the same name.1

——————–

1An additional access path that allows us to efficiently find references to
employee records given an employee name would enable plans for the query
that avoid this.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 17 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.
2 Could also have embedded emp records in the search structure.

This difference is the basis for classifying indexes as primary or secondary.
Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.
2 Could also have embedded emp records in the search structure.

This difference is the basis for classifying indexes as primary or secondary.
Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.

2 Could also have embedded emp records in the search structure.
This difference is the basis for classifying indexes as primary or secondary.
Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.
2 Could also have embedded emp records in the search structure.

This difference is the basis for classifying indexes as primary or secondary.
Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.
2 Could also have embedded emp records in the search structure.

This difference is the basis for classifying indexes as primary or secondary.

Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Nested Loops and Secondary Indices

Consider adding the following access path and constraint.

empidx-name=2=1

8x; y :(eidx-name(x; y) � (empfile(y) ^ emp-name(y ; x)))

An alternative plan implementing the query that avoids the need to compare
all pairs of employees is now possible.

9y ;w ; v :(empfile(v) ^ emp-num(v ; x1) ^ emp-name(v ; y)
^ empidx-name(y ;w) ^ emp-num(w ; x2))

Observations
1 Have stored references to records in the search structure.
2 Could also have embedded emp records in the search structure.

This difference is the basis for classifying indexes as primary or secondary.
Allowing references to be first-class citizens in the physical design removes
any need for the latter notion.

CS848 Spring 2013 (Cheriton School of CS) References, Pointers and Linked Structures Advanced Physical Designs 18 / 32



ACME Case: Optional Department Assignments

Consider removing the following constraint from the extended OPTION 1
design of PAYROLL.

8x ; y ; z:(employee(x ; y ; z) ! 9u:works(x ;u))

The change means that employees may not be associated with any
department, a relaxed design in which each employee now works for at most
one department.

Goal: To accommodate this change in requirements without the need for a
major modification of the physical design.

1 Employees and departments continue to be represented by the emp and
dept records.

2 Signal that an employee is not associated with a department by filling the
dept field of the associated emp record with some null value.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 19 / 32



ACME Case: Optional Department Assignments

Consider removing the following constraint from the extended OPTION 1
design of PAYROLL.

8x ; y ; z:(employee(x ; y ; z) ! 9u:works(x ;u))

The change means that employees may not be associated with any
department, a relaxed design in which each employee now works for at most
one department.

Goal: To accommodate this change in requirements without the need for a
major modification of the physical design.

1 Employees and departments continue to be represented by the emp and
dept records.

2 Signal that an employee is not associated with a department by filling the
dept field of the associated emp record with some null value.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 19 / 32



ACME Case: Optional Department Assignments

Consider removing the following constraint from the extended OPTION 1
design of PAYROLL.

8x ; y ; z:(employee(x ; y ; z) ! 9u:works(x ;u))

The change means that employees may not be associated with any
department, a relaxed design in which each employee now works for at most
one department.

Goal: To accommodate this change in requirements without the need for a
major modification of the physical design.

1 Employees and departments continue to be represented by the emp and
dept records.

2 Signal that an employee is not associated with a department by filling the
dept field of the associated emp record with some null value.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 19 / 32



ACME Case: Optional Department Assignments

Consider removing the following constraint from the extended OPTION 1
design of PAYROLL.

8x ; y ; z:(employee(x ; y ; z) ! 9u:works(x ;u))

The change means that employees may not be associated with any
department, a relaxed design in which each employee now works for at most
one department.

Goal: To accommodate this change in requirements without the need for a
major modification of the physical design.

1 Employees and departments continue to be represented by the emp and
dept records.

2 Signal that an employee is not associated with a department by filling the
dept field of the associated emp record with some null value.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 19 / 32



ACME Case: Optional Department Assignments

To model this situation, we alter the physical design with constraints relating to
this null value.

Modified Physical Constraints

1 The dept field of an emp record either contains a null value or a
non-null reference to a dept record representing a department.

8x ; y :(emp-dept(x ; y) ! (null(y) _ 9z:notnull(y ; z)))

8x ; y ; z:((emp-dept(x ; y) ^ notnull(y ; z)) ! deptfile(z))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 20 / 32



Nulls Indicating Value Inapplicable

It is a common idiom in a physical design to model missing optional
information using a default null value.

The following access path implements a generic test for a null reference.

null=1=1

Assumes following pseudocode.

function null-first
if (x1 == NULL) return true
return false

function null-next
return false

Also assume any physical design includes the following constraint ensuring
there is at most one NULL value.

8x ; y :((null(x) ^ null(y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 21 / 32



Nulls Indicating Value Inapplicable

It is a common idiom in a physical design to model missing optional
information using a default null value.

The following access path implements a generic test for a null reference.

null=1=1

Assumes following pseudocode.

function null-first
if (x1 == NULL) return true
return false

function null-next
return false

Also assume any physical design includes the following constraint ensuring
there is at most one NULL value.

8x ; y :((null(x) ^ null(y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 21 / 32



Nulls Indicating Value Inapplicable

It is a common idiom in a physical design to model missing optional
information using a default null value.

The following access path implements a generic test for a null reference.

null=1=1

Assumes following pseudocode.

function null-first
if (x1 == NULL) return true
return false

function null-next
return false

Also assume any physical design includes the following constraint ensuring
there is at most one NULL value.

8x ; y :((null(x) ^ null(y)) ! (x � y))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 21 / 32



ACME Case: Checking for Nulls

Assume ACME’s APP department specifies a user query that lists numbers
and names of all employees that do not work for any department.

9y :(employee(x1; x2; y) ^ :9z:works(x1; z))

The following is a query plan implementing the query with respect to the
modified physical design.

9y ; z:(empfile(y) ^ emp-num(y ; x1) ^ emp-name(y ; x2)
^ emp-dept(y ; z) ^ null(z))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 22 / 32



ACME Case: Checking for Nulls

Assume ACME’s APP department specifies a user query that lists numbers
and names of all employees that do not work for any department.

9y :(employee(x1; x2; y) ^ :9z:works(x1; z))

The following is a query plan implementing the query with respect to the
modified physical design.

9y ; z:(empfile(y) ^ emp-num(y ; x1) ^ emp-name(y ; x2)
^ emp-dept(y ; z) ^ null(z))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 22 / 32



Non-Null Type Casting

The following access path implements a generic type casting for non-null
values.

notnull=2=1

Assumes following pseudocode.

function notnull-first
if (x1 <> NULL)

x2 := x1
return true

return false

function notnull-next
return false

Also assume any physical design includes the following constraints.

8x ; y ; z:((notnull(x ; y) ^ notnull(x ; z)) ! (y � z))

8x :((9y :notnull(x ; y)) � :null(x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 23 / 32



Non-Null Type Casting

The following access path implements a generic type casting for non-null
values.

notnull=2=1

Assumes following pseudocode.

function notnull-first
if (x1 <> NULL)

x2 := x1
return true

return false

function notnull-next
return false

Also assume any physical design includes the following constraints.

8x ; y ; z:((notnull(x ; y) ^ notnull(x ; z)) ! (y � z))

8x :((9y :notnull(x ; y)) � :null(x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 23 / 32



Non-Null Type Casting

The following access path implements a generic type casting for non-null
values.

notnull=2=1

Assumes following pseudocode.

function notnull-first
if (x1 <> NULL)

x2 := x1
return true

return false

function notnull-next
return false

Also assume any physical design includes the following constraints.

8x ; y ; z:((notnull(x ; y) ^ notnull(x ; z)) ! (y � z))

8x :((9y :notnull(x ; y)) � :null(x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 23 / 32



ACME Case: Ensuring Non-Nulls

Assume ACME’s APP department specifies a user query that lists employee
numbers, names and department names for all employees (who must now
work for a department).

9y ; z;w :(employee(x1; x2; y) ^ works(x1; z) ^ department(z; x3;w))

The following is a query plan implementing the query with respect to the
modified physical design.

9y ; z;w :(empfile(y) ^ emp-num(y ; x1) ^ emp-name(y ; x2)
^ emp-dept(y ; z) ^ notnull(z;w) ^ dept-name(w ; x3))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 24 / 32



ACME Case: Ensuring Non-Nulls

Assume ACME’s APP department specifies a user query that lists employee
numbers, names and department names for all employees (who must now
work for a department).

9y ; z;w :(employee(x1; x2; y) ^ works(x1; z) ^ department(z; x3;w))

The following is a query plan implementing the query with respect to the
modified physical design.

9y ; z;w :(empfile(y) ^ emp-num(y ; x1) ^ emp-name(y ; x2)
^ emp-dept(y ; z) ^ notnull(z;w) ^ dept-name(w ; x3))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 24 / 32



ACME Case: Partitioning Employee Records

Consider the following three constraints.

8x:(empfile-low(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y � 30k)))

8x:(empfile-mid(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (30k < y) ^ (y � 130k)))

8x:(empfile-high(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y < 130k)))

The constraints partition emp records into three disjoint subsets based on the
value of the emp-sal field.

Assumes constants and that integer values come with predicates denoting a
linear order “�” and a strict linear order “<” interpreted in the standard way.1

——————–

1This is a violation of our assumption that signatures are free of constant and
function symbols that is easily rectified.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 25 / 32



ACME Case: Partitioning Employee Records

Consider the following three constraints.

8x:(empfile-low(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y � 30k)))

8x:(empfile-mid(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (30k < y) ^ (y � 130k)))

8x:(empfile-high(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y < 130k)))

The constraints partition emp records into three disjoint subsets based on the
value of the emp-sal field.

Assumes constants and that integer values come with predicates denoting a
linear order “�” and a strict linear order “<” interpreted in the standard way.1

——————–

1This is a violation of our assumption that signatures are free of constant and
function symbols that is easily rectified.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 25 / 32



ACME Case: Partitioning Employee Records

Consider the following three constraints.

8x:(empfile-low(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y � 30k)))

8x:(empfile-mid(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (30k < y) ^ (y � 130k)))

8x:(empfile-high(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y < 130k)))

The constraints partition emp records into three disjoint subsets based on the
value of the emp-sal field.

Assumes constants and that integer values come with predicates denoting a
linear order “�” and a strict linear order “<” interpreted in the standard way.

1

——————–

1This is a violation of our assumption that signatures are free of constant and
function symbols that is easily rectified.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 25 / 32



ACME Case: Partitioning Employee Records

Consider the following three constraints.

8x:(empfile-low(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y � 30k)))

8x:(empfile-mid(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (30k < y) ^ (y � 130k)))

8x:(empfile-high(x) � 9y :(empfile(x) ^ emp-sal(x; y) ^ (y < 130k)))

The constraints partition emp records into three disjoint subsets based on the
value of the emp-sal field.

Assumes constants and that integer values come with predicates denoting a
linear order “�” and a strict linear order “<” interpreted in the standard way.1

——————–

1This is a violation of our assumption that signatures are free of constant and
function symbols that is easily rectified.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 25 / 32



ACME Case: Partitioning Employee Records

Assume the APS department wishes to list employee numbers for employees
making at most 130k .

9y ; z:(employee(x1; y ; z) ^ (z � 130k))

Also assume the physical signature for PAYROLL is revised as follows.
fempfile=1g � (SP � SA).
fempfile-low=1=0;empfile-mid=1=0;empfile-high=1=0g � SA.

The following plan using concatenation then implements this query.

9y :((empfile-low(y) _ empfile-mid(y)) ^ emp-num(y ; x1))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 26 / 32



ACME Case: Partitioning Employee Records

Assume the APS department wishes to list employee numbers for employees
making at most 130k .

9y ; z:(employee(x1; y ; z) ^ (z � 130k))

Also assume the physical signature for PAYROLL is revised as follows.
fempfile=1g � (SP � SA).
fempfile-low=1=0;empfile-mid=1=0;empfile-high=1=0g � SA.

The following plan using concatenation then implements this query.

9y :((empfile-low(y) _ empfile-mid(y)) ^ emp-num(y ; x1))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 26 / 32



ACME Case: Partitioning Employee Records

Assume the APS department wishes to list employee numbers for employees
making at most 130k .

9y ; z:(employee(x1; y ; z) ^ (z � 130k))

Also assume the physical signature for PAYROLL is revised as follows.
fempfile=1g � (SP � SA).
fempfile-low=1=0;empfile-mid=1=0;empfile-high=1=0g � SA.

The following plan using concatenation then implements this query.

9y :((empfile-low(y) _ empfile-mid(y)) ^ emp-num(y ; x1))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 26 / 32



ACME Case: Partitioning Employee Records

An alternative plan using simple complement becomes possible if empfile is
again made an access path.

fempfile=1=0g � SA.

This alternative plan is then given as follows.

9y :(empfile(y) ^ :empfile-high(y) ^ emp-num(y ; x1))

This plan assumes that the partition covers all employee records and that
constraints such as

8x :((x � 130k) ! (x � 30k))

can also be deduced.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 27 / 32



ACME Case: Partitioning Employee Records

An alternative plan using simple complement becomes possible if empfile is
again made an access path.

fempfile=1=0g � SA.

This alternative plan is then given as follows.

9y :(empfile(y) ^ :empfile-high(y) ^ emp-num(y ; x1))

This plan assumes that the partition covers all employee records and that
constraints such as

8x :((x � 130k) ! (x � 30k))

can also be deduced.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 27 / 32



ACME Case: Partitioning Employee Records

An alternative plan using simple complement becomes possible if empfile is
again made an access path.

fempfile=1=0g � SA.

This alternative plan is then given as follows.

9y :(empfile(y) ^ :empfile-high(y) ^ emp-num(y ; x1))

This plan assumes that the partition covers all employee records and that
constraints such as

8x :((x � 130k) ! (x � 30k))

can also be deduced.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 27 / 32



Run-time Typing

Run-time typing allows membership in a subclass to be tested at runtime
when given a reference to an object in a superclass.

A common feature of object-oriented databases that support the definition of
elaborate taxonomic knowledge.

We illustrate how this is accommodated by introducing a notion of ACME
employees with high salaries

Assume the signature of PAYROLL is revised as follows.
fhigh-employee=1g � SL.
femp-high=1=1g � SA.

The revision modifies the logical design of PAYROLL.
1 Adds a “subclass” of employee called high-employee.
2 Introduces the access path emp-high to enable checking at run-time for

membership in high-employee.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 28 / 32



Run-time Typing

Run-time typing allows membership in a subclass to be tested at runtime
when given a reference to an object in a superclass.

A common feature of object-oriented databases that support the definition of
elaborate taxonomic knowledge.

We illustrate how this is accommodated by introducing a notion of ACME
employees with high salaries

Assume the signature of PAYROLL is revised as follows.
fhigh-employee=1g � SL.
femp-high=1=1g � SA.

The revision modifies the logical design of PAYROLL.
1 Adds a “subclass” of employee called high-employee.
2 Introduces the access path emp-high to enable checking at run-time for

membership in high-employee.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 28 / 32



Run-time Typing

Run-time typing allows membership in a subclass to be tested at runtime
when given a reference to an object in a superclass.

A common feature of object-oriented databases that support the definition of
elaborate taxonomic knowledge.

We illustrate how this is accommodated by introducing a notion of ACME
employees with high salaries

Assume the signature of PAYROLL is revised as follows.
fhigh-employee=1g � SL.
femp-high=1=1g � SA.

The revision modifies the logical design of PAYROLL.
1 Adds a “subclass” of employee called high-employee.
2 Introduces the access path emp-high to enable checking at run-time for

membership in high-employee.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 28 / 32



Run-time Typing

Run-time typing allows membership in a subclass to be tested at runtime
when given a reference to an object in a superclass.

A common feature of object-oriented databases that support the definition of
elaborate taxonomic knowledge.

We illustrate how this is accommodated by introducing a notion of ACME
employees with high salaries

Assume the signature of PAYROLL is revised as follows.
fhigh-employee=1g � SL.
femp-high=1=1g � SA.

The revision modifies the logical design of PAYROLL.
1 Adds a “subclass” of employee called high-employee.
2 Introduces the access path emp-high to enable checking at run-time for

membership in high-employee.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 28 / 32



Run-time Typing

Run-time typing allows membership in a subclass to be tested at runtime
when given a reference to an object in a superclass.

A common feature of object-oriented databases that support the definition of
elaborate taxonomic knowledge.

We illustrate how this is accommodated by introducing a notion of ACME
employees with high salaries

Assume the signature of PAYROLL is revised as follows.
fhigh-employee=1g � SL.
femp-high=1=1g � SA.

The revision modifies the logical design of PAYROLL.
1 Adds a “subclass” of employee called high-employee.
2 Introduces the access path emp-high to enable checking at run-time for

membership in high-employee.

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 28 / 32



ACME Case: Highly Paid Employees

Must also add the following constraints are added to Σ.

1 Highly paid employees are a subset of employees.

8x:(high-employee(x) ! 9y ; z:employee(x; y ; z))

2 A reference to an emp record for an employee is also a reference to emp
record for a highly paid employee whenever the reference also qualifies
as emp-high.

8x; y :((empfile(y) ^ emp-high(y) ^ emp-num(y ; x)) � high-employee(x))

E.g.: A user query to list employee numbers for employees that are highly
paid.

high-employee(x)

A query plan that implements this query is given as follows.

9y :(empfile(y) ^ emp-high(y) ^ emp-num(y ; x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 29 / 32



ACME Case: Highly Paid Employees

Must also add the following constraints are added to Σ.
1 Highly paid employees are a subset of employees.

8x:(high-employee(x) ! 9y ; z:employee(x; y ; z))

2 A reference to an emp record for an employee is also a reference to emp
record for a highly paid employee whenever the reference also qualifies
as emp-high.

8x; y :((empfile(y) ^ emp-high(y) ^ emp-num(y ; x)) � high-employee(x))

E.g.: A user query to list employee numbers for employees that are highly
paid.

high-employee(x)

A query plan that implements this query is given as follows.

9y :(empfile(y) ^ emp-high(y) ^ emp-num(y ; x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 29 / 32



ACME Case: Highly Paid Employees

Must also add the following constraints are added to Σ.
1 Highly paid employees are a subset of employees.

8x:(high-employee(x) ! 9y ; z:employee(x; y ; z))

2 A reference to an emp record for an employee is also a reference to emp
record for a highly paid employee whenever the reference also qualifies
as emp-high.

8x; y :((empfile(y) ^ emp-high(y) ^ emp-num(y ; x)) � high-employee(x))

E.g.: A user query to list employee numbers for employees that are highly
paid.

high-employee(x)

A query plan that implements this query is given as follows.

9y :(empfile(y) ^ emp-high(y) ^ emp-num(y ; x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 29 / 32



ACME Case: Highly Paid Employees

Must also add the following constraints are added to Σ.
1 Highly paid employees are a subset of employees.

8x:(high-employee(x) ! 9y ; z:employee(x; y ; z))

2 A reference to an emp record for an employee is also a reference to emp
record for a highly paid employee whenever the reference also qualifies
as emp-high.

8x; y :((empfile(y) ^ emp-high(y) ^ emp-num(y ; x)) � high-employee(x))

E.g.: A user query to list employee numbers for employees that are highly
paid.

high-employee(x)

A query plan that implements this query is given as follows.

9y :(empfile(y) ^ emp-high(y) ^ emp-num(y ; x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 29 / 32



ACME Case: Highly Paid Employees

Must also add the following constraints are added to Σ.
1 Highly paid employees are a subset of employees.

8x:(high-employee(x) ! 9y ; z:employee(x; y ; z))

2 A reference to an emp record for an employee is also a reference to emp
record for a highly paid employee whenever the reference also qualifies
as emp-high.

8x; y :((empfile(y) ^ emp-high(y) ^ emp-num(y ; x)) � high-employee(x))

E.g.: A user query to list employee numbers for employees that are highly
paid.

high-employee(x)

A query plan that implements this query is given as follows.

9y :(empfile(y) ^ emp-high(y) ^ emp-num(y ; x))

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 29 / 32



Pages and Records: Two-level Store

Physical Signature: femp-pgscan=1=0;emp-recscan=2=1g � SA
(empfile=1=0 is no longer an access path).

Constraints:
1 Every reference to an emp record can be obtained by scanning some

page of the two-level employee store:

8x :(empfile(x) � 9y :emp-recscan(y ; x)):

2 Every record belongs to some page of the two level store:

8x ; y :(emp-recscan(y ; x) ! emp-pgscan(y)):

3 Every record belongs to a single page in two level store:

8x ; y1; y2:((emp-recscan(y1; x) ^ emp-recscan(y2; x)) ! (y1 � y2)):

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 30 / 32



Pages and Records: Two-level Store

Physical Signature: femp-pgscan=1=0;emp-recscan=2=1g � SA
(empfile=1=0 is no longer an access path).

Constraints:
1 Every reference to an emp record can be obtained by scanning some

page of the two-level employee store:

8x :(empfile(x) � 9y :emp-recscan(y ; x)):

2 Every record belongs to some page of the two level store:

8x ; y :(emp-recscan(y ; x) ! emp-pgscan(y)):

3 Every record belongs to a single page in two level store:

8x ; y1; y2:((emp-recscan(y1; x) ^ emp-recscan(y2; x)) ! (y1 � y2)):

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 30 / 32



Two-level Store:Queriesand Plans

Query:
9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

Plan:

9y ; z;w ; v ;p;q: (emppgscan(p) ^ emppgscan(q)
^emprecscan(p; y) ^ emp-num(y ; x1) ^ emp-name(y ;w)
^emprecscan(q; z) ^ emp-num(z; x2) ^ emp-name(z; v)
^compare(w ; v)):

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 31 / 32



Two-level Store:Queriesand Plans

Query:
9y ; z;w :(employee(x1; y ; z) ^ employee(x2; y ;w)):

Plan:

9y ; z;w ; v ;p;q: (emppgscan(p) ^ emppgscan(q)
^emprecscan(p; y) ^ emp-num(y ; x1) ^ emp-name(y ;w)
^emprecscan(q; z) ^ emp-num(z; x2) ^ emp-name(z; v)
^compare(w ; v)):

CS848 Spring 2013 (Cheriton School of CS) Nulls, Partitions and Run-time Typing Advanced Physical Designs 31 / 32



Further Topics in Physical Design

The following topics are also discussed in the book.
How to incorporate user defined functions.

Hash-based indexing.
Two-level references.
Disk-based search structures: the ISAM case.
Further examples relating to ACME’s extended PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Build-in Functions, Hashing and Two-Level Store Advanced Physical Designs 32 / 32



Further Topics in Physical Design

The following topics are also discussed in the book.
How to incorporate user defined functions.
Hash-based indexing.

Two-level references.
Disk-based search structures: the ISAM case.
Further examples relating to ACME’s extended PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Build-in Functions, Hashing and Two-Level Store Advanced Physical Designs 32 / 32



Further Topics in Physical Design

The following topics are also discussed in the book.
How to incorporate user defined functions.
Hash-based indexing.
Two-level references.

Disk-based search structures: the ISAM case.
Further examples relating to ACME’s extended PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Build-in Functions, Hashing and Two-Level Store Advanced Physical Designs 32 / 32



Further Topics in Physical Design

The following topics are also discussed in the book.
How to incorporate user defined functions.
Hash-based indexing.
Two-level references.
Disk-based search structures: the ISAM case.

Further examples relating to ACME’s extended PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Build-in Functions, Hashing and Two-Level Store Advanced Physical Designs 32 / 32



Further Topics in Physical Design

The following topics are also discussed in the book.
How to incorporate user defined functions.
Hash-based indexing.
Two-level references.
Disk-based search structures: the ISAM case.
Further examples relating to ACME’s extended PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Build-in Functions, Hashing and Two-Level Store Advanced Physical Designs 32 / 32


