
Query Processing for Non-traditional Applications

CS848 Spring 2013

Cheriton School of CS

Query Plans

CS848 Spring 2013 (Cheriton School of CS) Query Execution Query Plans 1 / 29

Physical Design and Query Compilation: Overview

Σ SL Qoo

Σ = (Σ [Σ0 [Σ00) Σ00 (query compilation)

��
Σ0 SP Q0oo

CS848 Spring 2013 (Cheriton School of CS) Query Execution Query Plans 2 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)
8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)
8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)
8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)
8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)

8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Example Physical Design: Column Store

Logical Design: SL = femployee=3g

8x ; y1; y2; z1; z2:employee(x ; y1; z1) ^ employee(x ; y2; z2)
! (y1 = y2 ^ z1 = z2)

Physical Design: SP = SA = femp-rid-eid=2=1;emp-eid-rid=2=0(=1)
emp-rid-name=2=1;emp-name-rid=2=1
emp-rid-slry=2=1;emp-slry-rid=2=1 g

8x ; y ; z:employee(x ; y ; z) !
9a:emp-rid-eid(a; x) ^ emp-rid-name(a; y) ^ emp-rid-slry(a; z)

8a; x1; x2:emp-rid-eid(a; x1) ^ emp-rid-eid(a; x2) ! x1 = x2

8a; x :emp-rid-eid(a; x) ! 9y ; z:employee(x ; y ; z)

8a; y1; y2:emp-rid-name(a; y1) ^ emp-rid-name(a; y2) ! y1 = y2

8a; y :emp-rid-name(a; y) ! 9x :emp-rid-eid(a; x) (same for -slry)
8a; x :emp-rid-eid(a; x) $ emp-eid-rid(x ; a) (same for -name, -slry)

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 3 / 29

Queries over Column Store Physical Design

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Issues to resolve (today)
Why are the above plans implement the user queries?
What “formulas” do qualify as plans?
) how do we interpret logical connectives as programs?
Are all (desired) plans captured by appropriate formulas?

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 4 / 29

Queries over Column Store Physical Design

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Issues to resolve (today)
Why are the above plans implement the user queries?
What “formulas” do qualify as plans?
) how do we interpret logical connectives as programs?
Are all (desired) plans captured by appropriate formulas?

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 4 / 29

Queries over Column Store Physical Design

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Issues to resolve (today)
Why are the above plans implement the user queries?
What “formulas” do qualify as plans?
) how do we interpret logical connectives as programs?
Are all (desired) plans captured by appropriate formulas?

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 4 / 29

Queries over Column Store Physical Design

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Issues to resolve (today)
Why are the above plans implement the user queries?
What “formulas” do qualify as plans?
) how do we interpret logical connectives as programs?
Are all (desired) plans captured by appropriate formulas?

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 4 / 29

Queries over Column Store Physical Design

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Issues to resolve (today)
Why are the above plans implement the user queries?
What “formulas” do qualify as plans?
) how do we interpret logical connectives as programs?
Are all (desired) plans captured by appropriate formulas?

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 4 / 29

Physical Design and Query Compilation: Plans

Σ SL Qoo

Σ = (Σ [Σ0 [Σ00) Σ00 (query compilation)

��
Σ0 SP Q0oo

We consider the structure of Q0:
what formulas can be interpreted as plans

) how do we deal with SETS in programs?
what additional non-logical operations can be used.

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 5 / 29

Physical Design and Query Compilation: Plans

Σ SL Qoo

Σ = (Σ [Σ0 [Σ00) Σ00 (query compilation)

��
Σ0 SP Q0oo

We consider the structure of Q0:
what formulas can be interpreted as plans

) how do we deal with SETS in programs?
what additional non-logical operations can be used.

CS848 Spring 2013 (Cheriton School of CS) Column Store Query Plans 5 / 29

Outline

1 Iterator Protocols to communicate Sets (review)

2 Atomic Plan Operations: Access Paths (review)

3 Logical Connectives/Quantifiers as Plan Operators

4 Beyond Logical Operators: Dealing with Duplicates

CS848 Spring 2013 (Cheriton School of CS) Outline Query Plans 6 / 29

ACME Case: Access Path Code Templates

Pseudo-code templates realizing a first/next protocol for emp-array0
might be given as follows (variables would be renamed for each occurrence of
emp-array0 in a query plan).

function emp-array0-first
i := 0
return emp-array0-next

function emp-array0-next
i := i + 1
if (i > n) return false
x1 := emp-array[i].emp-salary
x2 := emp-array[i].emp-num
x3 := emp-array[i].emp-name
return true

Assumes a global state recording bindings of (possible copies of) variables.
1 x1, x2 and x3 to communicate the contents of emp-array.
2 i and n to record scanning status and size of emp-array.

Note: Code templates for access paths must be provided by ACME’s DBA
department.

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 7 / 29

ACME Case: Access Path Code Templates

Pseudo-code templates realizing a first/next protocol for emp-array0
might be given as follows (variables would be renamed for each occurrence of
emp-array0 in a query plan).

function emp-array0-first
i := 0
return emp-array0-next

function emp-array0-next
i := i + 1
if (i > n) return false
x1 := emp-array[i].emp-salary
x2 := emp-array[i].emp-num
x3 := emp-array[i].emp-name
return true

Assumes a global state recording bindings of (possible copies of) variables.
1 x1, x2 and x3 to communicate the contents of emp-array.
2 i and n to record scanning status and size of emp-array.

Note: Code templates for access paths must be provided by ACME’s DBA
department.

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 7 / 29

Iterator Execution

Hereon, assume C denotes the following code that prints a line for each result
computed by a query plan Q, where (In(Q) [Out(Q)) = fx1; : : : ; xmg.

if Q-first
repeat

printline("x1" = x1, : : :, "xm" = xm)
until not Q-next

Let Q be a query plan that scans emp-array.

emp-array0(x3; x1; x2)

Running C for a database (given by interpretation) I produces the following
output.

x1 = e1;1, x2 = e1;2, x3 = e1;3
x1 = e2;1, x2 = e2;2, x3 = e2;3

...
x1 = en;1, x2 = en;2, x3 = en;3

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 8 / 29

Iterator Execution

Hereon, assume C denotes the following code that prints a line for each result
computed by a query plan Q, where (In(Q) [Out(Q)) = fx1; : : : ; xmg.

if Q-first
repeat

printline("x1" = x1, : : :, "xm" = xm)
until not Q-next

Let Q be a query plan that scans emp-array.

emp-array0(x3; x1; x2)

Running C for a database (given by interpretation) I produces the following
output.

x1 = e1;1, x2 = e1;2, x3 = e1;3
x1 = e2;1, x2 = e2;2, x3 = e2;3

...
x1 = en;1, x2 = en;2, x3 = en;3

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 8 / 29

Iterator Execution

Hereon, assume C denotes the following code that prints a line for each result
computed by a query plan Q, where (In(Q) [Out(Q)) = fx1; : : : ; xmg.

if Q-first
repeat

printline("x1" = x1, : : :, "xm" = xm)
until not Q-next

Let Q be a query plan that scans emp-array.

emp-array0(x3; x1; x2)

Running C for a database (given by interpretation) I produces the following
output.

x1 = e1;1, x2 = e1;2, x3 = e1;3
x1 = e2;1, x2 = e2;2, x3 = e2;3

...
x1 = en;1, x2 = en;2, x3 = en;3

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 8 / 29

Access Paths

The access paths SA � SP are predicate symbols associated with a physical
capability realized by an iterator implementation.

) some attributes can be designated as parameters
(by convention the left-most ones)

Requirements (for access path AP=k + l=l :
given a fixed values for parameters there are only finitely many answers
(bindings) to the remaining variables, i.e., the set

fa1; : : : ; ak j I;V j= 9x1; : : : ; xl :AP(x1; : : : ; xl ; y1; : : : ; yk) ^ (
^

xi = pi)g

(where V = [y1 = a1; : : : ; yk = ak]) is finite.
the invocation of the iterator protocol outputs all and only the valuations V
that satisfy the condition above.

A plan interpretation I satisfies the above for every access path in SA.

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 9 / 29

Access Paths

The access paths SA � SP are predicate symbols associated with a physical
capability realized by an iterator implementation.

) some attributes can be designated as parameters
(by convention the left-most ones)

Requirements (for access path AP=k + l=l :
given a fixed values for parameters there are only finitely many answers
(bindings) to the remaining variables, i.e., the set

fa1; : : : ; ak j I;V j= 9x1; : : : ; xl :AP(x1; : : : ; xl ; y1; : : : ; yk) ^ (
^

xi = pi)g

(where V = [y1 = a1; : : : ; yk = ak]) is finite.
the invocation of the iterator protocol outputs all and only the valuations V
that satisfy the condition above.

A plan interpretation I satisfies the above for every access path in SA.

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 9 / 29

Access Paths

The access paths SA � SP are predicate symbols associated with a physical
capability realized by an iterator implementation.

) some attributes can be designated as parameters
(by convention the left-most ones)

Requirements (for access path AP=k + l=l :
given a fixed values for parameters there are only finitely many answers
(bindings) to the remaining variables, i.e., the set

fa1; : : : ; ak j I;V j= 9x1; : : : ; xl :AP(x1; : : : ; xl ; y1; : : : ; yk) ^ (
^

xi = pi)g

(where V = [y1 = a1; : : : ; yk = ak]) is finite.
the invocation of the iterator protocol outputs all and only the valuations V
that satisfy the condition above.

A plan interpretation I satisfies the above for every access path in SA.

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 9 / 29

(More Esoteric) Access Paths

1 Built-in “operations”:
arithmetic (plus/3/2, times/3/2, etc.)
string manipulation (concat/3/2, substr/4/3, etc.)
. . .

2 data type tests (is-integer/1/1)

3 pointer dereference and field extraction from records

4 (page) reads from external storage

5 . . .

CS848 Spring 2013 (Cheriton School of CS) Review Query Plans 10 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)

j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)
j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)

j fQg (duplicate elimination)
j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)

j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)
j [Q]i (cut introduction)

j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)
j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)
j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.

2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Conjunctive Query Plans: Syntax

The conjunctive query plans induced by S are as follows:

Q ::= (Q1 ^Q2) (nested loop join)
j 9x :Q; where x 2 V (duplicate preserving projection)
j fQg (duplicate elimination)
j [Q]i (cut introduction)
j !i (named cut)

Also require any query plan to satisfy two conditions.
1 If Q = “(Q1 ^Q2)” then (Fv(Q1) \Out(Q2)) = ;.
2 If Q = “9x :Q1” then x 62 In(Q1).

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 11 / 29

Parameters and User Query Embeddings

Input variables, output variables and user query mapping are as follows,
where Param(Uq(Q)) = In(Q) always holds.

In(Q) =

8<
:

In(Q1) [(In(Q2)� Out(Q1)) if Q = “(Q1 ^ Q2)”,

In(Q1) if Q = “9x :Q1”, “fQ1g”, or “[Q1]i ”, and

; if Q = “ !i ”.

Out(Q) =

8>><
>>:

Out(Q1) [Out(Q2) if Q = “(Q1 ^ Q2)”,

Out(Q1) n fxg if Q = “9x :Q1”,

Out(Q1) if Q = “fQ1g” or “[Q1]i ”, and

; if Q = “ !i ”.

Uq(Q) =

8>><
>>:

(Uq(Q1) ^ Uq(Q2)) if Q = “(Q1 ^ Q2)”,

9x : Uq(Q1) if Q = “9x :Q1”,

Uq(Q1) if Q = “fQ1g” or “[Q1]i ”, and

true if Q = “ !i ”.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 12 / 29

Conjunctive Query Plans: Semantics

function (Q1 ^ Q2)-first
if not Q1-first return false
while not Q2-first do

if not Q1-next return false
return true

function (Q1 ^ Q2)-next
if Q2-next return true
while Q1-next do

if Q2-first return true
return false

function (9x :Q1)-first
return Q1-first

function (9x :Q1)-next
return Q1-next

function fQ1g-first
if not exists store S

create S
if Q1-first

empty S
add hx1; : : : ; xni to S
return true

return false

function fQ1g-next
while Q1-next do

if not hx1; : : : ; xni 2 S
add hx1; : : : ; xni to S
return true

return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 13 / 29

Conjunctive Query Plans: Semantics

function ([Q1]i)-first
cuti := false
return Q1-first

function ([Q1]i)-next
if cuti return false
return Q1-next

function (!i)-first
cuti := true
return true

function (!i)-next
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 14 / 29

Comparing and Assigning

Hereon, we assume a given physical signature includes two additional access
paths.

fcompare=2=2;assign=2=1g � SA

Semantics of compare(x1; x2) and assign(x1; x2) is given as follows.

function compare-first
if x1 = x2 return true
return false

function compare-next
return false

function assign-first
x2 := x1
return true

function assign-next
return false

Also assume any theory Σ includes the following.

8x1; x2:compare(x1; x2) � assign(x1; x2) � (x1 � x2)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 15 / 29

Comparing and Assigning

Hereon, we assume a given physical signature includes two additional access
paths.

fcompare=2=2;assign=2=1g � SA

Semantics of compare(x1; x2) and assign(x1; x2) is given as follows.

function compare-first
if x1 = x2 return true
return false

function compare-next
return false

function assign-first
x2 := x1
return true

function assign-next
return false

Also assume any theory Σ includes the following.

8x1; x2:compare(x1; x2) � assign(x1; x2) � (x1 � x2)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 15 / 29

Comparing and Assigning

Hereon, we assume a given physical signature includes two additional access
paths.

fcompare=2=2;assign=2=1g � SA

Semantics of compare(x1; x2) and assign(x1; x2) is given as follows.

function compare-first
if x1 = x2 return true
return false

function compare-next
return false

function assign-first
x2 := x1
return true

function assign-next
return false

Also assume any theory Σ includes the following.

8x1; x2:compare(x1; x2) � assign(x1; x2) � (x1 � x2)

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 15 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z.

A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).

2 For each element of emp-array returned by this scan, compare the salary field with the
supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution

, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Selection

Consider where the APS department needs a plan that will report the
employee-number x and name y of each employee that has a given
salary z. A query plan using access path emp-array0 can now be
formulated.

9u:(emp-array0(u; x ; y) ^ compare(z; u))

Input and output variables: fzg and fx ; yg, respectively.

Execution proceeds as follows.
1 Use access path emp-array0 to scan emp-array (an atomic query subplan).
2 For each element of emp-array returned by this scan, compare the salary field with the

supplied parameter value z (by using an operator for nested cross product coupled with
another atomic query subplan using access path compare).

3 If this comparison evaluates to true then add the contents of this element to the result.

Note: (a) Duplicate preserving projection has no effect on execution, and (b)
duplicate elimination is not required since employees must have unique
employee numbers.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 16 / 29

ACME Case: Scanning and Cutting

Consider where the APS department needs a plan that will report the name y
of any employee that has a given salary z and employee-number x.

A
query plan Q using access path emp-array0 can also be formulated.

9u; v :(emp-array0(u; v ; y) ^ compare(x ; v) ^ compare(z; u))

Input and output variables: fyg and fx ; zg, respectively. Pseudo-code
templates realizing a first/next protocol for Q is then defined as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

function Q-next
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 17 / 29

ACME Case: Scanning and Cutting

Consider where the APS department needs a plan that will report the name y
of any employee that has a given salary z and employee-number x. A
query plan Q using access path emp-array0 can also be formulated.

9u; v :(emp-array0(u; v ; y) ^ compare(x ; v) ^ compare(z; u))

Input and output variables: fyg and fx ; zg, respectively.

Pseudo-code
templates realizing a first/next protocol for Q is then defined as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

function Q-next
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 17 / 29

ACME Case: Scanning and Cutting

Consider where the APS department needs a plan that will report the name y
of any employee that has a given salary z and employee-number x. A
query plan Q using access path emp-array0 can also be formulated.

9u; v :(emp-array0(u; v ; y) ^ compare(x ; v) ^ compare(z; u))

Input and output variables: fyg and fx ; zg, respectively. Pseudo-code
templates realizing a first/next protocol for Q is then defined as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

function Q-next
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 17 / 29

ACME Case: Scanning and Cutting

Recall that employees have unique employee numbers.

Can therefore add cut
introduction and named cut operators to Q to improve performance.

9u; v :([emp-array0(u; v ; y) ^ compare(x ; v)]1 ^ !1 ^compare(z; u))

Pseudo-code templates realizing a first/next protocol for Q are then
modified as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

return false

function Q-next
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 18 / 29

ACME Case: Scanning and Cutting

Recall that employees have unique employee numbers. Can therefore add cut
introduction and named cut operators to Q to improve performance.

9u; v :([emp-array0(u; v ; y) ^ compare(x ; v)]1 ^ !1 ^compare(z; u))

Pseudo-code templates realizing a first/next protocol for Q are then
modified as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

return false

function Q-next
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 18 / 29

ACME Case: Scanning and Cutting

Recall that employees have unique employee numbers. Can therefore add cut
introduction and named cut operators to Q to improve performance.

9u; v :([emp-array0(u; v ; y) ^ compare(x ; v)]1 ^ !1 ^compare(z; u))

Pseudo-code templates realizing a first/next protocol for Q are then
modified as follows.

function Q-first
i := 0
while i < n do

i := i + 1
u := emp-array[i].emp-salary
v := emp-array[i].emp-num
y := emp-array[i].emp-name
if x = v

if z = u return true
return false

return false

function Q-next
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 18 / 29

ACME Case: Eliminating Duplicates

Consider where the APS department needs a plan that will find integers z that
occur as the salary value for some employee.

A user query that specifies this
requirement for OPTION 1 is as follows.

9x ; y :employee(x ; y ; z)

A query plan using access path emp-array0 implementing this query is as
follows.

f9x ; y :emp-array0(z; x ; y)g

The plan uses a top-level duplicate elimination operation that will use
temporary store to accumulate new salary values as they occur in a scan of
emp-array with access path emp-array0.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 19 / 29

ACME Case: Eliminating Duplicates

Consider where the APS department needs a plan that will find integers z that
occur as the salary value for some employee. A user query that specifies this
requirement for OPTION 1 is as follows.

9x ; y :employee(x ; y ; z)

A query plan using access path emp-array0 implementing this query is as
follows.

f9x ; y :emp-array0(z; x ; y)g

The plan uses a top-level duplicate elimination operation that will use
temporary store to accumulate new salary values as they occur in a scan of
emp-array with access path emp-array0.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 19 / 29

ACME Case: Eliminating Duplicates

Consider where the APS department needs a plan that will find integers z that
occur as the salary value for some employee. A user query that specifies this
requirement for OPTION 1 is as follows.

9x ; y :employee(x ; y ; z)

A query plan using access path emp-array0 implementing this query is as
follows.

f9x ; y :emp-array0(z; x ; y)g

The plan uses a top-level duplicate elimination operation that will use
temporary store to accumulate new salary values as they occur in a scan of
emp-array with access path emp-array0.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 19 / 29

ACME Case: Eliminating Duplicates

Consider where the APS department needs a plan that will find integers z that
occur as the salary value for some employee. A user query that specifies this
requirement for OPTION 1 is as follows.

9x ; y :employee(x ; y ; z)

A query plan using access path emp-array0 implementing this query is as
follows.

f9x ; y :emp-array0(z; x ; y)g

The plan uses a top-level duplicate elimination operation that will use
temporary store to accumulate new salary values as they occur in a scan of
emp-array with access path emp-array0.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 19 / 29

General Query Plans: Syntax

The query plans induced by S add two final productions:

Q ::= (Q1 _Q2) (concatenation)

j :Q (simple complement)

Also require any query plan to satisfy two additional conditions.
1 If Q = “(Q1 _Q2)” then Out(Q1) = Out(Q2).
2 If Q = “:Q1” then Out(Q1) = ;.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 20 / 29

General Query Plans: Syntax

The query plans induced by S add two final productions:

Q ::= (Q1 _Q2) (concatenation)
j :Q (simple complement)

Also require any query plan to satisfy two additional conditions.
1 If Q = “(Q1 _Q2)” then Out(Q1) = Out(Q2).
2 If Q = “:Q1” then Out(Q1) = ;.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 20 / 29

General Query Plans: Syntax

The query plans induced by S add two final productions:

Q ::= (Q1 _Q2) (concatenation)
j :Q (simple complement)

Also require any query plan to satisfy two additional conditions.
1 If Q = “(Q1 _Q2)” then Out(Q1) = Out(Q2).

2 If Q = “:Q1” then Out(Q1) = ;.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 20 / 29

General Query Plans: Syntax

The query plans induced by S add two final productions:

Q ::= (Q1 _Q2) (concatenation)
j :Q (simple complement)

Also require any query plan to satisfy two additional conditions.
1 If Q = “(Q1 _Q2)” then Out(Q1) = Out(Q2).
2 If Q = “:Q1” then Out(Q1) = ;.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 20 / 29

Parameters and User Query Embeddings

Input variables, output variables and user query mapping are extended as
follows, where Param(Uq(Q)) = In(Q) always holds.

In(Q) =

�
In(Q1) [In(Q2) if Q = “(Q1 _ Q2)”, and

In(Q1) if Q = “:Q1”.

Out(Q) =

�
Out(Q1) \ Out(Q2) if Q = “(Q1 _ Q2)”, and

; if Q = “:Q1”.

Uq(Q) =

�
(Uq(Q1) _ Uq(Q2)) if Q = “(Q1 _ Q2)”, and

:Uq(Q1) if Q = “:Q1”.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 21 / 29

General Query Plans: Semantics

function (Q1 _ Q2)-first
(Q1 _ Q2)-flag := true
if Q1-first return true
(Q1 _ Q2)-flag := false
return Q2-first

function (Q1 _ Q2)-next
if (Q1 _ Q2)-flag

if Q1-next return true
(Q1 _ Q2)-flag := false
return Q2-next

function (:Q1)-first
if Q1-first return false
return true

function (:Q1)-next
return false

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 22 / 29

ACME Case: Concatenation

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a salary matching either
the parameter p1 or the parameter p2.

A query plan using access path emp-array0 implementing this query is as
follows.

f(
9y ; z:(emp-array0(z; x ; y) ^ compare(p1; z))

_ 9u; v :(emp-array0(v ; x ; u) ^ compare(p2; v)))
g

An execution proceeds as follows.
1 Scan emp-array and add the employee number of any employee with a

salary given by input parameter p1 to a temporary store S if not already
there.

2 Scan emp-array for a second time and add the employee number of
any employee with a salary given by input parameter p2 to S if not
already there.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 23 / 29

ACME Case: Concatenation

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a salary matching either
the parameter p1 or the parameter p2.

A query plan using access path emp-array0 implementing this query is as
follows.

f(
9y ; z:(emp-array0(z; x ; y) ^ compare(p1; z))

_ 9u; v :(emp-array0(v ; x ; u) ^ compare(p2; v)))
g

An execution proceeds as follows.
1 Scan emp-array and add the employee number of any employee with a

salary given by input parameter p1 to a temporary store S if not already
there.

2 Scan emp-array for a second time and add the employee number of
any employee with a salary given by input parameter p2 to S if not
already there.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 23 / 29

ACME Case: Concatenation

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a salary matching either
the parameter p1 or the parameter p2.

A query plan using access path emp-array0 implementing this query is as
follows.

f(
9y ; z:(emp-array0(z; x ; y) ^ compare(p1; z))

_ 9u; v :(emp-array0(v ; x ; u) ^ compare(p2; v)))
g

An execution proceeds as follows.
1 Scan emp-array and add the employee number of any employee with a

salary given by input parameter p1 to a temporary store S if not already
there.

2 Scan emp-array for a second time and add the employee number of
any employee with a salary given by input parameter p2 to S if not
already there.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 23 / 29

ACME Case: Concatenation

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a salary matching either
the parameter p1 or the parameter p2.

A query plan using access path emp-array0 implementing this query is as
follows.

f(
9y ; z:(emp-array0(z; x ; y) ^ compare(p1; z))

_ 9u; v :(emp-array0(v ; x ; u) ^ compare(p2; v)))
g

An execution proceeds as follows.
1 Scan emp-array and add the employee number of any employee with a

salary given by input parameter p1 to a temporary store S if not already
there.

2 Scan emp-array for a second time and add the employee number of
any employee with a salary given by input parameter p2 to S if not
already there.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 23 / 29

ACME Case: Concatenation

Note: The user query mapping of the plan is a positive query (since it is a
union of two conjunctive queries).

An alternative plan can be formulated that avoids the need for two scans of
emp-array.

f9y ; z:(emp-array0(z; x ; y) ^ (compare(p1; z) _ compare(p2; z)))g

The plan illustrates a common plan idiom for determining if a given value
occurs in a given small fixed set of values.

Two possible reasons for requiring top-level duplicate elimination.
1 Individual employee numbers may be related to more than one salary or

employee name.
2 Parameters p1 and p2 may not be distinct.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 24 / 29

ACME Case: Concatenation

Note: The user query mapping of the plan is a positive query (since it is a
union of two conjunctive queries).

An alternative plan can be formulated that avoids the need for two scans of
emp-array.

f9y ; z:(emp-array0(z; x ; y) ^ (compare(p1; z) _ compare(p2; z)))g

The plan illustrates a common plan idiom for determining if a given value
occurs in a given small fixed set of values.

Two possible reasons for requiring top-level duplicate elimination.
1 Individual employee numbers may be related to more than one salary or

employee name.
2 Parameters p1 and p2 may not be distinct.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 24 / 29

ACME Case: Concatenation

Note: The user query mapping of the plan is a positive query (since it is a
union of two conjunctive queries).

An alternative plan can be formulated that avoids the need for two scans of
emp-array.

f9y ; z:(emp-array0(z; x ; y) ^ (compare(p1; z) _ compare(p2; z)))g

The plan illustrates a common plan idiom for determining if a given value
occurs in a given small fixed set of values.

Two possible reasons for requiring top-level duplicate elimination.
1 Individual employee numbers may be related to more than one salary or

employee name.

2 Parameters p1 and p2 may not be distinct.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 24 / 29

ACME Case: Concatenation

Note: The user query mapping of the plan is a positive query (since it is a
union of two conjunctive queries).

An alternative plan can be formulated that avoids the need for two scans of
emp-array.

f9y ; z:(emp-array0(z; x ; y) ^ (compare(p1; z) _ compare(p2; z)))g

The plan illustrates a common plan idiom for determining if a given value
occurs in a given small fixed set of values.

Two possible reasons for requiring top-level duplicate elimination.
1 Individual employee numbers may be related to more than one salary or

employee name.
2 Parameters p1 and p2 may not be distinct.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 24 / 29

ACME Case: Concatenation

The first reason is ruled out by the logical design of payroll.

The second reason can be ruled out by modifying the plan to ensure the
second subplan for the concatenation operator will only return additional
results when p1 and p2 are distinct.

9y ; z:(emp-array0(z; x ; y)
^ (compare(p1; z) _ (:compare(p1; p2) ^ compare(p2; z))))

Note that the query mapping for this plan is no longer a positive query.

An alternative plan avoids simple complement by using a cut.

9y ; z:(emp-array0(z; x ; y) ^ [(compare(p1; z) _ compare(p2; z))]1^ !1))

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 25 / 29

ACME Case: Concatenation

The first reason is ruled out by the logical design of payroll.

The second reason can be ruled out by modifying the plan to ensure the
second subplan for the concatenation operator will only return additional
results when p1 and p2 are distinct.

9y ; z:(emp-array0(z; x ; y)
^ (compare(p1; z) _ (:compare(p1; p2) ^ compare(p2; z))))

Note that the query mapping for this plan is no longer a positive query.

An alternative plan avoids simple complement by using a cut.

9y ; z:(emp-array0(z; x ; y) ^ [(compare(p1; z) _ compare(p2; z))]1^ !1))

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 25 / 29

ACME Case: Concatenation

The first reason is ruled out by the logical design of payroll.

The second reason can be ruled out by modifying the plan to ensure the
second subplan for the concatenation operator will only return additional
results when p1 and p2 are distinct.

9y ; z:(emp-array0(z; x ; y)
^ (compare(p1; z) _ (:compare(p1; p2) ^ compare(p2; z))))

Note that the query mapping for this plan is no longer a positive query.

An alternative plan avoids simple complement by using a cut.

9y ; z:(emp-array0(z; x ; y) ^ [(compare(p1; z) _ compare(p2; z))]1^ !1))

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 25 / 29

ACME Case: Concatenation

The first reason is ruled out by the logical design of payroll.

The second reason can be ruled out by modifying the plan to ensure the
second subplan for the concatenation operator will only return additional
results when p1 and p2 are distinct.

9y ; z:(emp-array0(z; x ; y)
^ (compare(p1; z) _ (:compare(p1; p2) ^ compare(p2; z))))

Note that the query mapping for this plan is no longer a positive query.

An alternative plan avoids simple complement by using a cut.

9y ; z:(emp-array0(z; x ; y) ^ [(compare(p1; z) _ compare(p2; z))]1^ !1))

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 25 / 29

ACME Case: Simple Complement

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a name that is also unique.

Two plans using access path emp-array0 and a simple complement
operator are as follows.

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :(emp-array0(u; v ; w)

^ compare(y ; w)
^ :compare(x ; v)))

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :([emp-array0(u; v ; w)]1

^ compare(y ; w)
^ :compare(x ; v))
^ !1)

Question: Which is more efficient?

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 26 / 29

ACME Case: Simple Complement

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a name that is also unique.

Two plans using access path emp-array0 and a simple complement
operator are as follows.

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :(emp-array0(u; v ; w)

^ compare(y ; w)
^ :compare(x ; v)))

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :([emp-array0(u; v ; w)]1

^ compare(y ; w)
^ :compare(x ; v))
^ !1)

Question: Which is more efficient?

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 26 / 29

ACME Case: Simple Complement

Consider where the APS department needs a plan that will find the
employee-number x for any employee that has a name that is also unique.

Two plans using access path emp-array0 and a simple complement
operator are as follows.

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :(emp-array0(u; v ; w)

^ compare(y ; w)
^ :compare(x ; v)))

9y ; z:(emp-array0(z; x ; y)
^ :9u; v ; w :([emp-array0(u; v ; w)]1

^ compare(y ; w)
^ :compare(x ; v))
^ !1)

Question: Which is more efficient?

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 26 / 29

When do Plans Implement User Queries?

Requirements
Given a plan interpretation I, the plan Q0 (driven by C) outputs exactly the
valuations that make the user query Q true in I.

What can we do with this?

we show how to model many (if not most) features of standard SQL
implementations using the operators introduced today with the help of
creative physical design and selection of access paths (next time).

How do we actually find plans?

1 we search for Q0 that (as a formula) is logically equivalent to Q under the
logical and physical schama constraints Σ, and

2 we improve Q0 by eliminating duplicate elimination operations and by
inserting cuts.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 27 / 29

When do Plans Implement User Queries?

Requirements
Given a plan interpretation I, the plan Q0 (driven by C) outputs exactly the
valuations that make the user query Q true in I.

What can we do with this?

we show how to model many (if not most) features of standard SQL
implementations using the operators introduced today with the help of
creative physical design and selection of access paths (next time).

How do we actually find plans?

1 we search for Q0 that (as a formula) is logically equivalent to Q under the
logical and physical schama constraints Σ, and

2 we improve Q0 by eliminating duplicate elimination operations and by
inserting cuts.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 27 / 29

When do Plans Implement User Queries?

Requirements
Given a plan interpretation I, the plan Q0 (driven by C) outputs exactly the
valuations that make the user query Q true in I.

What can we do with this?

we show how to model many (if not most) features of standard SQL
implementations using the operators introduced today with the help of
creative physical design and selection of access paths (next time).

How do we actually find plans?

1 we search for Q0 that (as a formula) is logically equivalent to Q under the
logical and physical schama constraints Σ, and

2 we improve Q0 by eliminating duplicate elimination operations and by
inserting cuts.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 27 / 29

Queries over Column Store Physical Design Revisited

1 employee(x ; y ; z)

9a:emp-eid-rid(x ; a)^ emp-rid-name(a; y)^ emp-rid-slry(a; z)

2 9y ; z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a)

3 9z:employee(x ; y ; z)

9a:emp-eid-rid(x ; a) ^ emp-rid-name(a; y)

4 9x :employee(x ; y ; z)fyg
f9a:emp-name-rid(y ; a) ^ emp-rid-slry(a; z)g

Results:
Plans for queries 1-4 are logically equivalent to the given user queries.
Plans 1-3 can avoid duplicate eimination operator.

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 28 / 29

Related Issues

Relational Algebra
Domain Independence and Range restricted Queries
Temporary storage
Ordered properties of iterated semantics (merge joins?)
Streaming queries

CS848 Spring 2013 (Cheriton School of CS) Conjunctive and First Order Query Plans Query Plans 29 / 29

