Query Processing for Non-traditional Applications

CS848 Spring 2013
Cheriton School of CS

Logical and Physical Schemas

CS848 Spring 2013 (Cheriton School of CS) Query Processing Logical and Physical Schemas 1/31

Physical Design and Query Compilation: Overview

Y = (XuYXuy’) P (query compilation)

l

Y [Spk------ Q

CS848 Spring 2013 (Cheriton School of CS) Query Processing Logical and Physical Schemas

2/31

Standard Design: Discussion

Standard (relational) Physical Design

CREATE TABLE employee DDL command causes
@ a logical symbol employee to be created;
@ a (disk-based) file of (appropriate) records to be created; and
@ alink between these two objects to be recorded (where?)

@ Multiple indices for the same table
@ Horizontal partitioning
@ Views and Materialized views

Points to consider

@ How are the above options recorded in a RDBMs? (speculation is ok)
@ Is there a uniform and compact way to describe all of the above options?

CS848 Spring 2013 (Cheriton School of CS) Standard Design Logical and Physical Schemas 3/31

Language(s) for Metadata (et al.)

First-order Logic

@ First-order signatures for S| and (most of) Sp,
@ First-order sentences for ¥ (X', "),
@ First order formulae for Q and (most of) Q'.

CS848 Spring 2013 (Cheriton School of CS) Standard Design Logical and Physical Schemas 4/31

Language(s) for Metadata (et al.)

First-order Logic

@ First-order signatures for S| and (most of) Sp,
@ First-order sentences for ¥ (X', "),
@ First order formulae for Q and (most of) Q'.

= we’ll need some additional auxiliary information in the cases of

Sp: which attributes are input parameters?
what are the symbol’s performance characteristics?

Q@': how are formulae mapped to imperative programs?
are there plan features not captured by formula syntax?

CS848 Spring 2013 (Cheriton School of CS) Standard Design Logical and Physical Schemas 4/31

LOGICAL DESIGN

CS848 Spring 2013 (Cheriton School of CS) Logical Design Logical and Physical Schemas 5/31

Syntax of FOL: Signatures

Vocabularies are called signatures in FOL.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 6/31

Syntax of FOL: Signatures

Vocabularies are called signatures in FOL.

The non-logical parameters in FOL consist of infinite disjoint collections
{Py,P>,...} and {f, &, ...} of predicate symbols and function symbols,

respectively.

The arity of each symbol is a non-negative integer n, denoted Ar(P;) or Ar(f;).
@ P/i denotes predicate symbol P where Ar(P) = i.
@ f/j denotes function symbol f where Ar(f) = j.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 6/31

Syntax of FOL: Signatures

Vocabularies are called signatures in FOL.

The non-logical parameters in FOL consist of infinite disjoint collections
{Py,P>,...} and {f, &, ...} of predicate symbols and function symbols,

respectively.

The arity of each symbol is a non-negative integer n, denoted Ar(P;) or Ar(f;).
@ P/i denotes predicate symbol P where Ar(P) = i.
@ f/j denotes function symbol f where Ar(f) = j.

Predicate symbols of arity 0 are also called propositions,
Function symbols of arity 0 are also called constants.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 6/31

Syntax of FOL: Signatures

Vocabularies are called signatures in FOL.

The non-logical parameters in FOL consist of infinite disjoint collections
{Py,P>,...} and {f, &, ...} of predicate symbols and function symbols,

respectively.

The arity of each symbol is a non-negative integer n, denoted Ar(P;) or Ar(f;).
@ P/i denotes predicate symbol P where Ar(P) = i.
@ f/j denotes function symbol f where Ar(f) = j.

Predicate symbols of arity 0 are also called propositions,
Function symbols of arity 0 are also called constants.

A signature S in FOL is a (possibly infinite) selection of non-logical
parameters.

@ SP denotes all predicate symbols in S.

@ SF denotes all function symbols in S.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 6/31

ACME Case: Signatures for PAYROLL

OPTION 1

o S¢ = {employee/3}
oSl =90

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 7/31

ACME Case: Signatures for PAYROLL

OPTION 1
° SE = {employee/3}
oS =0

Fewest non-logical parameters: a single 3-ary predicate symbol.
@ 1st arg: an employee number
@ 2nd arg: an employee name
@ 3rd arg: an employee salary

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 7/31

ACME Case: Signatures for PAYROLL

OPTION 1
° SE = {employee/3}
oS =0

Fewest non-logical parameters: a single 3-ary predicate symbol.
@ 1st arg: an employee number
@ 2nd arg: an employee name

@ 3rd arg: an employee salary
1st arg serves a special role: the set of employee number values is identified
with the set of employees.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 7/31

ACME Case: Signatures for PAYROLL

OPTION 1
° SE = {employee/3}
oS =0

Fewest non-logical parameters: a single 3-ary predicate symbol.
@ 1st arg: an employee number
@ 2nd arg: an employee name
@ 3rd arg: an employee salary
1st arg serves a special role: the set of employee number values is identified
with the set of employees.
Each 3-tuple in (employee)? suggests two things.
@ The employee number is a visible object identifier of some employee.

@ The remaining two components of the 3-tuple express two facts about the
employee.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 7/31

Signatures for PAYROLL

OPTION 2
o S¢ = {employee/1}

° SE = {employee-number/1,name/1,salary/1}

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 8/31

Signatures for PAYROLL

OPTION 2

° SE = {employee/1}

° SE = {employee—-number/1,name/1,salary/1}

Trades the need to remember the role of argument positions with the need to
learn and remember additional non-logical parameters.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 8/31

Signatures for PAYROLL

OPTION 2

° SE = {employee/1}

° SE = {employee—-number/1,name/1,salary/1}

Trades the need to remember the role of argument positions with the need to
learn and remember additional non-logical parameters.

Introduce
@ unary predicates to capture the various kinds of entities, and
@ unary functions to capture entity attributes.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 8/31

Signatures for PAYROLL

OPTION 2

° SE = {employee/1}

° SE = {employee—-number/1,name/1,salary/1}

Trades the need to remember the role of argument positions with the need to
learn and remember additional non-logical parameters.

Introduce
@ unary predicates to capture the various kinds of entities, and

@ unary functions to capture entity attributes.

Advantages:
@ Separates entity classification from entity description: an entity ein a
given interpretation Z is an employee exactly when e € (employee)t.
@ All information about entities, such as a name or salary, is captured by

unary functions.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 8/31

Signatures for PAYROLL

OPTION 1 versus OPTION 2

Latter allows the possibility that more than one employee can have the same
combination of values for attributes employee-number, name and salary.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 9/31

Signatures for PAYROLL

OPTION 1 versus OPTION 2

Latter allows the possibility that more than one employee can have the same
combination of values for attributes employee-number, name and salary.

Replacing an n-ary predicate symbol with one unary predicate symbol and n
unary function symbols is called reification.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 9/31

Signatures for PAYROLL

OPTION 1 versus OPTION 2

Latter allows the possibility that more than one employee can have the same
combination of values for attributes employee-number, name and salary.

Replacing an n-ary predicate symbol with one unary predicate symbol and n
unary function symbols is called reification.

Disadvantages:
@ Requires all entities to have a value for all attributes.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 9/31

Signatures for PAYROLL

OPTION 1 versus OPTION 2

Latter allows the possibility that more than one employee can have the same
combination of values for attributes employee-number, name and salary.

Replacing an n-ary predicate symbol with one unary predicate symbol and n
unary function symbols is called reification.

Disadvantages:
@ Requires all entities to have a value for all attributes.

@ Therefore requires simulating partial functions (e.g., “null inapplicable”
values).

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 9/31

Signatures for PAYROLL

OPTION 3

° SE = {employee/1,employee—number/2,name/2, salary/2}

oS =0

Overcomes disadvantages of OPTION 2: replaces each unary function symbol
with a new binary predicate symbol.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 10/31

Signatures for PAYROLL

OPTION 3
° SE = {employee/1,employee—number/2,name/2, salary/2}
oS =0

Overcomes disadvantages of OPTION 2: replaces each unary function symbol
with a new binary predicate symbol.

Makes it possible for an entity (including employees) to have any number of
employee numbers, names or salaries, including none.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 10/31

Signatures for PAYROLL

OPTION 3
° SE = {employee/1,employee—number/2,name/2, salary/2}
oS =0

Overcomes disadvantages of OPTION 2: replaces each unary function symbol
with a new binary predicate symbol.

Makes it possible for an entity (including employees) to have any number of
employee numbers, names or salaries, including none.

Replacing function symbols with new predicate symbols is always possible
when a function free signature is desired.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 10/31

Variables and Well-Formed Formulae

Denoted V, the variables in FOL are a countably infinite collection of symbols

{X1,X2,...}

disjoint from the set of non-logical parameters.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 11/31

Variables and Well-Formed Formulae

Denoted V, the variables in FOL are a countably infinite collection of symbols

{X1,X2,...}

disjoint from the set of non-logical parameters.

The following grammars define the terms, atoms and well formed formulae
induced by S, denoted TERM(S), ATOM(S) and WFF(S), respectively.

@ Term == x (where x € V) | f(Termy,...,Term,) (where f/n € SF)
@ Atom := Term; =~ Termy | P(Termy,...,Term,) (where P/n € SP)
@ ¢, = Atom | =¢ | (¢AY) | Ix.¢ (Where x € V)

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 11/31

Variables and Well-Formed Formulae

Denoted V, the variables in FOL are a countably infinite collection of symbols

{X1,X2,...}

disjoint from the set of non-logical parameters.

The following grammars define the terms, atoms and well formed formulae
induced by S, denoted TERM(S), ATOM(S) and WFF(S), respectively.

@ Term == x (where x € V) | f(Termy,...,Term,) (where f/n € SF)
@ Atom := Term; =~ Termy | P(Termy,...,Term,) (where P/n € SP)
@ ¢, = Atom | =¢ | (¢AY) | Ix.¢ (Where x € V)

Assumes S denotes an FOL signature; we omit S when clear from context.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 11/31

Variables and Well-Formed Formulae (cont'd)

The logical parameters in FOL:
@ (equality) =~
@ (negation) —
@ (conjunction) A
@ (existential quantification) 3

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial

Logical and Physical Schemas

12/31

Variables and Well-Formed Formulae (cont'd)

The logical parameters in FOL:
@ (equality) =~
@ (negation) —
@ (conjunction) A
@ (existential quantification) 3

Convenient to have additional logical parameters as syntactic shorthand:
@ (disjunction) V: “(¢ V 9)” ~ “=(=¢ A —9)”
@ (implication) —: “(¢ — ¥)” ~ “(=¢ V)"
@ (equivalence) =: (¢ = ¢)" ~ “((¢ = V) A (Y — ¢))”
o (

universal quantification) V: “Vx.¢” ~» “=3dx.—¢”.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 12/31

Variables and Well-Formed Formulae (cont'd)

The logical parameters in FOL:
@ (equality) =~
@ (negation) —
@ (conjunction) A
@ (existential quantification) 3

Convenient to have additional logical parameters as syntactic shorthand:
@ (disjunction) V: “(¢ V 9)” ~ “=(=¢ A —9)”
@ (implication) —: “(¢ — ¥)” ~ “(=¢ V)"
o (equivalence) =: “(¢ = P)" ~ “((¢ = ¥) A (¥ — ¢))"
@ (universal quantification) V: “VX.¢” ~» “=3x.—¢”.

Also common practice to omit parenthesis in well-formed formulae when
intentions are clear, e.g.:

“(¢1 A 2 A ¢3)” instead of “(¢1 A (¢2 A ¢3))”

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 12/31

Free Variables

Given t € TERM or ¢ € WFF: Fv(t) and Fv(¢) denote the free variables of a
term and of a well formed formula, respectively.

{x} if t="x", and
Fv(t) = 5 :
Ui<icn FY(t) whent="f(t;,...,)" otherwise.

Ut<icn FY(1) if o ="“P(ty,...,t)"
Fv(ti)UFv() ifé¢="H =b",

) if ¢ =97,

Fv(1) UFv(eo) if ¢ =“(¢1 Ah2)”, and
Fv(y) — {x} when ¢ = “Jx.4” otherwise.

A well-formed formula ¢ is closed if Fv(¢) = 0. A closed well-formed formula
is also called a sentence.

CS848 Spring 2013 (Cheriton School of CS) FOL Tutorial Logical and Physical Schemas 13/31

Semantics of FOL: Interpretations

Assume S denotes a signature in FOL.

An interpretation Z(S) of S is a pair (AZ(®), (-)Z(S)),
@ AZ®) is a non-empty domain of entities.
Q () is an interpretation function.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 14 /31

Semantics of FOL: Interpretations

Assume S denotes a signature in FOL.
An interpretation Z(S) of S is a pair (AZ(®), (-)Z(S)),

@ AZ®) is a non-empty domain of entities.
Q () is an interpretation function.

For each P/n € Sp, (P/n)*®) is a subset of (AT())n.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 14 /31

Semantics of FOL: Interpretations

Assume S denotes a signature in FOL.
An interpretation Z(S) of S is a pair (AZ(®), (-)Z(S)),

@ AZ®) is a non-empty domain of entities.
Q () is an interpretation function.

For each P/n € Sp, (P/n)*®) is a subset of (AT())n.

For each f/n € Sk, (f/n)*®) is a total function: (AT(®)" — AZES),

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 14 /31

Semantics of FOL: Interpretations

Assume S denotes a signature in FOL.
An interpretation Z(S) of S is a pair (AZ(®), (-)Z(S)),

@ AZ®) is a non-empty domain of entities.
Q () is an interpretation function.

For each P/n € Sp, (P/n)*®) is a subset of (AT())n.
For each f/n € Sk, (f/n)*®) is a total function: (AT(®)" — AZES),

Write (e, ..., e,) to denote an n-tuple, an element of (AZ(S))",

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 14 /31

Valuations

Assume Z is an interpretation of signature S.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 15/31

Valuations

Assume Z is an interpretation of signature S.

A valuation over T is written V(Z) (or as V when Z is clear from context) and is
a total function: V — AZ.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 15/31

Valuations

Assume Z is an interpretation of signature S.

A valuation over T is written V(Z) (or as V when Z is clear from context) and is
a total function: V — AZ.

For a given x € V and e € AZ, the valuation V[x — €] is defined as follows:

e if “x¢4” = “x2”, and
V(x2) otherwise.

VX1 = €e](xe) = {

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 15/31

Valuations

Assume Z is an interpretation of signature S.

A valuation over T is written V(Z) (or as V when Z is clear from context) and is
a total function: V — AZ.

For a given x € V and e € AZ, the valuation V[x — €] is defined as follows:

e if “x¢4” = “x2”, and
V[xs = €](xe) =

V(x2) otherwise.

A valuation V is extended to apply to any ¢ € TERM in the way that satisfies

V() = (HF(V(h), ..., V()

whenever t = “f(ty,...,)"

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 15/31

Models

Assume S is a signature in FOL and also that ¢ € WFF(S).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 16/31

Models

Assume S is a signature in FOL and also that ¢ € WFF(S).

An interpretation Z of S and valuation V over T is a model of ¢, written

I,V ¢,

iff one of the following conditions apply:
@ ¢="P(t,...,t)"and (V(t),...,V(t))) € (P)L,
@ p="f~ b”and V(t) = V(k),
@ ¢="andZ,V [~ 9,
@ d="(Y1 AY2)", L,V E¢1and Z,V = o, or
@ ¢="Ixy”and Z,V[x — €] = ¢ for some e € AZ.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas

16/31

Satisfiability and Logical Consequence

Assume X is a theory (over signature S).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 17 /31

Satisfiability and Logical Consequence

Assume X is a theory (over signature S).

We say the following.
@ ThepairZ,Visa modelof L if Z,V =y forally € T.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 17 /31

Satisfiability and Logical Consequence

Assume X is a theory (over signature S).

We say the following.
@ ThepairZ,Visa modelof L if Z,V =y forally € T.
@ X is satisfiable if it has a model and unsatisfiable otherwise.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 17/31

Satisfiability and Logical Consequence

Assume X is a theory (over signature S).

We say the following.
@ ThepairZ,Visa modelof L if Z,V =y forally € T.
@ X is satisfiable if it has a model and unsatisfiable otherwise.
@ ¢ is a logical consequence of ¥, written

=4

iff Z,V | ¢ for any model Z,V of x.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas

17/31

Satisfiability and Logical Consequence

Assume X is a theory (over signature S).

We say the following.
@ ThepairZ,Visa modelof L if Z,V =y forally € T.
@ X is satisfiable if it has a model and unsatisfiable otherwise.
@ ¢ is a logical consequence of ¥, written

=4

iff Z,V | ¢ for any model Z,V of x.

The fundamental problem of reasoning in a given FOL theory X(S) is the

problem of logical implication: establishing which ¢ € WFF(S) are logical
consequences of X(S).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas

17/31

ACME Case: Logical Constraints for PAYROLL

On identification.

Assume S is given by OPTION 1.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 18/31

ACME Case: Logical Constraints for PAYROLL

On identification.
Assume S is given by OPTION 1.

The condition that employees can be identified by their employee number can
be expressed as the FOL sentence

VX1, X2, Y1, ¥2.(3Z.(employee(z, X1, X2) A employee(Z, y1, y2))
= ((x1 = y1) A (X2 = y2))).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 18/31

ACME Case: Logical Constraints for PAYROLL

On identification.

Assume S is given by OPTION 1.

The condition that employees can be identified by their employee number can
be expressed as the FOL sentence

VX1, X2, Y1, ¥2.(3Z.(employee(z, X1, X2) A employee(Z, y1, y2))
= ((x1 = y1) A (X2 = y2))).

Ensures that each employee is associated with a single 3-tuple in
(employee)? in any interpretation Z for ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 18/31

ACME Case: Logical Constraints for PAYROLL

On identification.

Assume S is given by OPTION 1.

The condition that employees can be identified by their employee number can
be expressed as the FOL sentence

VX1, X2, Y1, ¥2.(3Z.(employee(z, X1, X2) A employee(Z, y1, y2))
= ((x1 = y1) A (X2 = y2))).

Ensures that each employee is associated with a single 3-tuple in
(employee)? in any interpretation Z for ACME’s PAYROLL system.!

"Remember introductory comments: the collection of all data corresponds to
an interpretation Z.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 18/31

ACME Case: Logical Constraints for PAYROLL

On identification.

Assume S is given by OPTION 1.

The condition that employees can be identified by their employee number can
be expressed as the FOL sentence

VX1, X2, Y1, ¥2.(3Z.(employee(z, X1, X2) A employee(Z, y1, y2))
= ((x1 = y1) A (X2 = y2))).

Ensures that each employee is associated with a single 3-tuple in
(employee)? in any interpretation Z for ACME’s PAYROLL system.!

Called a functional dependency in relational schema.

"Remember introductory comments: the collection of all data corresponds to
an interpretation Z.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 18/31

Logical Constraints for PAYROLL (identification cont'd)

For S| given by OPTION 2:

VX, y(
(employee(x) A employee(y)
A employee-number(X) & employee-number(y))
=S XRY).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 19/31

Logical Constraints for PAYROLL (identification cont'd)

For S| given by OPTION 2:

VX, y(
(employee(x) A employee(y)
A employee-number(X) & employee-number(y))
=S XRY).

For S, given by OPTION 3:

VX, y.(
Jz.(employee(X) A employee(y)
A employee-number(X, Z) A employee-number(y, z))
=S XRY).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 19/31

Logical Constraints for PAYROLL (identification cont'd)

For S| given by OPTION 2:

VX, y.(
(employee(x) A employee(y)
A employee-number(X) & employee-number(y))
=S XRY).

For S, given by OPTION 3:

VX, y.(
Jz.(employee(X) A employee(y)
A employee-number(X, Z) A employee-number(y, z))
=S XRY).

More accurately, latter states that: no pair of distinct employees may have any
employee number at all in common (becomes possible in OPTION 3 for
employees to have any number of employee numbers).

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 19/31

Logical Constraints for PAYROLL

On property functionality.

Assume OPTION 3 chosen by ACME’s APS department.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 20/31

Logical Constraints for PAYROLL

On property functionality.

Assume OPTION 3 chosen by ACME’s APS department.

Then necessary to disallow the number of possible values for an

employee—-number, name, Or salary attribute for a given employee to
exceed one.

Must add constraints to the logical constraints X to ensure the attributes are
partial functions.

VX, y.(3z.(employee—number(z, X) A employee—number(z,y))
= (xxYy))

VX, y.(3z.(name(z,x) A name(z,y)) = (x = ¥))
Vx,y.(3z.(salary(z,x) A salary(z,y¥)) = (X = y))

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 20/31

Logical Constraints for PAYROLL
On typing.

The additional unary predicates in the PAYROLL signature can be used to
ensure that attribute values are of appropriate types.

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 21/31

Logical Constraints for PAYROLL
On typing.

The additional unary predicates in the PAYROLL signature can be used to
ensure that attribute values are of appropriate types.
For S| given by OPTION 1:

VX,y,z.(employee(X, Y, 2)
— (integer(x) A string(y) A integer(2)))

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 21/31

Logical Constraints for PAYROLL
On typing.

The additional unary predicates in the PAYROLL signature can be used to
ensure that attribute values are of appropriate types.
For S| given by OPTION 1:
VX,y,z.(employee(X, Y, 2)
— (integer(x) A string(y) A integer(2)))
For S| given by OPTION 2:
Vx.(employee(x) — (integer(employee—number(X))

A string(name(x))
A integer(salary(x))))

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 21/31

Logical Constraints for PAYROLL

For S, given by OPTION 3:

Vx.(employee(x) — 3y, z, w.(employee—number(X, y) A integer(y)
A name(X, Z) A string(z2))
A salary(x,w)A integer(w)))

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 22/31

Logical Constraints for PAYROLL

For S, given by OPTION 3:
Vx.(employee(x) — 3y, z, w.(employee—number(X, y) A integer(y)

A name(X, Z) A string(z2))
A salary(x,w)A integer(w)))

OPTION 3 also makes it possible to say that only employees have employee
numbers.

Vx.(3y.employee—-number(X,y) = employee(X))

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 22/31

PHYSICAL DESIGN

(take 1)

CS848 Spring 2013 (Cheriton School of CS) Semantics of FOL Logical and Physical Schemas 23/31

Access Paths and Simple Scanning

Assume ACME’s DBA department selects a very simple physical design for
PAYROLL: all employee information is recorded in a main-memory array.

array emp-array [l to n] of
integer emp-num
integer emp-salary
string emp-name

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 24/31

Access Paths and Simple Scanning

Assume ACME’s DBA department selects a very simple physical design for
PAYROLL: all employee information is recorded in a main-memory array.

array emp-array [l to n] of
integer emp-num
integer emp-salary
string emp-name

@ The salary, employee-number and name of each employee is
recorded at some position in the array (in corresponding fields).

© DBA ensures array entries are ordered by a major sort on emp—num
values.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 24/31

Access Paths and Simple Scanning

To capture a physical design in FOL, think in terms of capabilities attached to
new predicate symbols (that become part of a physical vocabulary).

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 25/31

Access Paths and Simple Scanning

To capture a physical design in FOL, think in terms of capabilities attached to
new predicate symbols (that become part of a physical vocabulary).

The organization of array emp-array suggests two capabilities in particular.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 25/31

Access Paths and Simple Scanning

To capture a physical design in FOL, think in terms of capabilities attached to
new predicate symbols (that become part of a physical vocabulary).

The organization of array emp-array suggests two capabilities in particular.
@ Scanning all entries: emp-array0/3.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 25/31

Access Paths and Simple Scanning

To capture a physical design in FOL, think in terms of capabilities attached to
new predicate symbols (that become part of a physical vocabulary).

The organization of array emp-array suggests two capabilities in particular.
@ Scanning all entries: emp-array0/3.

@ Scanning all entries with the first field matching a given num value:
emp-arrayl/3.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 25/31

Access Paths and Simple Scanning

To capture a physical design in FOL, think in terms of capabilities attached to
new predicate symbols (that become part of a physical vocabulary).

The organization of array emp-array suggests two capabilities in particular.’
@ Scanning all entries: emp-array0/3.

@ Scanning all entries with the first field matching a given num value:
emp-arrayl/3.

The DBA department must provide the code that implements these
capabilities in a library or at runtime, e.g., code that performs a binary search
of emp-array in the case of emp-array0 and emp—-arrayl.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 25/31

Access Paths and Simple Scanning

The access paths of S are a distinguished subset Sa of the predicate symbols
Sp that comprise the physical vocabulary of S.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 26/31

Access Paths and Simple Scanning

The access paths of S are a distinguished subset Sa of the predicate symbols
Sp that comprise the physical vocabulary of S.

The binding pattern of an access path P € Sy is denoted Bp(P) and is a
non-negative integer satisfying 0 < Bp(P) < Ar(P).

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 26/31

Access Paths and Simple Scanning

The access paths of S are a distinguished subset Sa of the predicate symbols
Sp that comprise the physical vocabulary of S.

The binding pattern of an access path P € Sy is denoted Bp(P) and is a
non-negative integer satisfying 0 < Bp(P) < Ar(P).

Write P/n/m to indicate that P is a predicate symbol with arity n and that P is
also an access path with binding pattern m (and write P/n/m € Sa).

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 26/31

Access Paths and Simple Scanning

The access paths of S are a distinguished subset Sa of the predicate symbols
Sp that comprise the physical vocabulary of S.

The binding pattern of an access path P € Sy is denoted Bp(P) and is a
non-negative integer satisfying 0 < Bp(P) < Ar(P).

Write P/n/m to indicate that P is a predicate symbol with arity n and that P is
also an access path with binding pattern m (and write P/n/m € Sa).

The declaration of emp-array is captured by adding two new predicate
symbols that are also access paths to Sa.

{emp-array0/3/0,emp-arrayl/3/1}

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 26/31

Access Paths and Simple Scanning

The access paths of S are a distinguished subset Sa of the predicate symbols
Sp that comprise the physical vocabulary of S.

The binding pattern of an access path P € Sy is denoted Bp(P) and is a
non-negative integer satisfying 0 < Bp(P) < Ar(P).

Write P/n/m to indicate that P is a predicate symbol with arity n and that P is

also an access path with binding pattern m (and write P/n/m € Sa).

The declaration of emp-array is captured by adding two new predicate

symbols that are also access paths to Sa.
{emp-array0/3/0,emp-arrayl/3/1}

This new set of predicate symbols is now the physical vocabulary Sp of
ACME’s PAYROLL system.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 26/31

ACME Case: Mapping Constraints

How do we know (ensure) that employee is properly represented by

emp-array (and in turn by the access paths emp-array0 and
emp-arrayl)?

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 27/31

ACME Case: Mapping Constraints

How do we know (ensure) that employee is properly represented by

emp-array (and in turn by the access paths emp-array0 and
emp-arrayl)?

ACME’s DBA group must specify mapping or correspondence constraints ¥"
over the signature (S_ U Sp).

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 27/31

ACME Case: Mapping Constraints

How do we know (ensure) that employee is properly represented by
emp-array (and in turn by the access paths emp-array0 and
emp-arrayl)?

ACME’s DBA group must specify mapping or correspondence constraints ¥"
over the signature (S_ U Sp).

Such constraints provide the necessary “connections” for all possible
interpretations Z (encoding factual data) of the logical vocabulary S| and the
physical vocabulary Sp of PAYROLL.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 27/31

ACME Case: Mapping Constraints

How do we know (ensure) that employee is properly represented by
emp-array (and in turn by the access paths emp-array0 and
emp-arrayl)?

ACME’s DBA group must specify mapping or correspondence constraints ¥"
over the signature (S_ U Sp).

Such constraints provide the necessary “connections” for all possible
interpretations Z (encoding factual data) of the logical vocabulary S| and the
physical vocabulary Sp of PAYROLL.
With OPTION 1 for S, DBA can add the following sentences to .

@ Vx,y,z(employee(X,y,Z) = emp-array0(Xx, z,y))

Q Vx,y,z(emp-array0(X, z,y) — employee(x, ¥, 2))

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 27/31

ACME Case: Access Path so far

@ emp-array0/3/0 allows us to scan all employees;
@ emp-arrayl/3/1 allows us to find (all) employees given enumber.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 28/31

ACME Case: Access Path so far

@ emp-array0/3/0 allows us to scan all employees;
@ emp-arrayl/3/1 allows us to find (all) employees given enumber.

What if we also want to find emplouees by their name?
@ use emp-array0 and filter out non-matching employees (“selection”)

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 28/31

ACME Case: Access Path so far

@ emp-array0/3/0 allows us to scan all employees;
@ emp-arrayl/3/1 allows us to find (all) employees given enumber.

What if we also want to find emplouees by their name?
@ use emp-array0 and filter out non-matching employees (“selection”)
@ improve the physical design to allow efficient search = “create index”

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 28/31

ACME Case: Access Path Code Templates

Note: Code templates for access paths must be provided by ACME’s DBA
department.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 29/31

ACME Case: Access Path Code Templates

Note: Code templates for access paths must be provided by ACME’s DBA
department.

E.g., Pseudo-code templates realizing a first/next protocol for
emp-array0 might be given as follows (variables would be renamed for each
occurrence of emp-arrayO0 in a query plan).

function emp-arrayO-first function emp-arrayO-next
i =0 i =10+ 1
return emp-arrayO-next if (i > n) return false
X{ := emp-arrayl[i].emp-salary
Xo := emp-array[f].emp—num
X3 emp-array [/] .emp-name

return true

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 29/31

ACME Case: Access Path Code Templates

Note: Code templates for access paths must be provided by ACME’s DBA
department.

E.g., Pseudo-code templates realizing a £irst/next protocol for

emp-array0 might be given as follows (variables would be renamed for each
occurrence of emp-arrayO0 in a query plan).

function emp-arrayO-first function emp-arrayO-next
i =0 i =10+ 1
return emp-arrayO-next if (i > n) return false
X{ := emp-arrayl[i].emp-salary
Xo := emp-array[f].emp—num
X3 := emp-arrayl[i].emp-name

return true

Assumes a global state recording bindings of (possible copies of) variables.
@ x4, X2 and x3 to communicate the contents of emp-array.
@ i and nto record scanning status and size of emp-array.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 29/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type. Alternatives to an array could also have served the
same purpose: linked lists, simple search trees, and so on.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type. Alternatives to an array could also have served the
same purpose: linked lists, simple search trees, and so on.

It is beyond the scope of this book to consider the synthesis of such basic
data structures as part of the job of query compilation.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type. Alternatives to an array could also have served the
same purpose: linked lists, simple search trees, and so on.

It is beyond the scope of this book to consider the synthesis of such basic
data structures as part of the job of query compilation.

However, we will see how physical design based on more complex data
structures can be usefully decomposed into such basic data structures using
FOL.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type. Alternatives to an array could also have served the
same purpose: linked lists, simple search trees, and so on.

It is beyond the scope of this book to consider the synthesis of such basic
data structures as part of the job of query compilation.

However, we will see how physical design based on more complex data
structures can be usefully decomposed into such basic data structures using
FOL.!

A decomposition of more complex data structures can enable compilation
opportunities that would otherwise not be possible.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Access Path Code Templates

Examples of atomic query plans have so far been based on using an array as
a basic collection type. Alternatives to an array could also have served the
same purpose: linked lists, simple search trees, and so on.

It is beyond the scope of this book to consider the synthesis of such basic
data structures as part of the job of query compilation.

However, we will see how physical design based on more complex data
structures can be usefully decomposed into such basic data structures using
FOL.!

Main point: Once given first/next “black box” code templates for the basic
data structures (such as records, arrays, linked lists and simple search trees)
constraints can then be expressed in FOL that do the rest.

A decomposition of more complex data structures can enable compilation
opportunities that would otherwise not be possible.

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 30/31

Summary: Data vs. Metadata in FOL

Metadata (database schema)
@ Signature S and constranints X for the logical schema,
@ Signature Sp and constranints ¥’ for the physical schema,
@ Constraints ¥ that relate S| to Sp.

Data (database instance)

A first-order structure (interpretation) that
@ interprets symbols in S| and Sp and
Q@ satisfies X UX' U X",

CS848 Spring 2013 (Cheriton School of CS) Access Paths and Scanning Logical and Physical Schemas 31/31

