
Update Semantics of Relational Views
F. BANCILHON and N. SPYRATOS
INRIA, France

A database view is a portion of the data structured in a way suitable to a specific application. Updates
on views must be translated into updates on the underlying database. This paper studies the
translation process in the relational model.

The procedure is as follows: first, a “complete” set of updates is defined such that

(i) together with every update the set contains a “return” update, that is, one that brings the view
back to the original state;

(ii) given two updates in the set, their composition is also in the set.

To translate a complete set, we define a mapping called a “translator,” that associates with each
view update a unique database update called a “translation.” The constraint on a translation is to
take the database to a state mapping onto the updated view. The constraint on the translator is to be
a morphism.

We propose a method for defining translators. Together with the user-defined view, we define a
“complementary” view such that the database could be computed from the view and its complement.
We show that a view can have many different complements and that the choice of a complement
determines an update policy. Thus, we fix a view complement and we define the translation of a given
view update in such a way that the complement remains invariant (“translation under constant
complemen$‘). The main result of the paper states that, given a complete set U of view updates, U
has a translator if and only if U is translatable under constant complement.

Key Words and Phrases: relation, relational model database, data model, data semantics, conceptual
model, database view, view updating, update translation
CR Categories: 3.70,4.33,4.34

1. INTRODUCTION
In database systems the amount of data to be stored and its structure are decided
by the database administrator. Individual users, however, may be interested in
just a portion of the data and would certainly like to see it structured in a way
suitable to their specific application. The concept of a user’s view of the database
was specifically introduced to satisfy these requirements. A view is a query
definition named and stored. That is, a view is a dynamic picture of a query.
INGRES [7] and system R [2] are examples of systems that provide the view
facility. In a sense, such a facility allows the user to define a database whose
states depend on the underlying database. This dependence is expressed in the
view definition mapping which associates with each database state a view state.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Authors’ address: Institut National de Recherche en Informatique et en Automatique, B.P. 105,78150
Le Chesnay, France.
0 1981 ACM 0362-5915/81/1200-0557 $00.75

ACM Transactions on Database Systems, Vol. 6, NO. 4, December 1981, Pages 557-575.

558 l F. Bancilhon and N. Spyratos

The user interacts with his view by issuing queries and update requests. Queries
do not present particular problems. The view definition mapping is sufficient to
translate view queries into database queries. View updates, however, present a
difficult problem: A database update that translates a view update must take the
database to a state mapping onto the updated view. Now there is, in general,
more than one database update that satisfies this requirement. The problem is
how to choose one: that is, how to choose a unique operation which can be
applied to the underlying base relations and which will result in exactly the
specified changes to the user’s view.

The objective of this paper is to study the view update translation in the
context of the relational model. No attempt is made to produce computational
algorithms. We proceed as follows: After a review of the relational model, we
present formal definitions for updates and views. We then define “complete” sets
of view updates so that they reflect users’ requirements. A complete set is such
that

(i) the composition of two updates from the set is also in the set;
(ii) if the view is updated, using an update from the set, then there exists an

update in the set that brings the view back to the original state (thus
canceling the effect of the previous update).

In order to translate a complete set, we use a mapping called a “translator.”
This mapping associates with each view update a unique database updAte, called
a “translation,” The constraint on a translation is to take the database to a state
mapping onto the updated view. The constraint on the translator is to be
morphism, that is, to associate with the composition of two view updates the
composition of their translations.

We solve the following problem: Given a database view and a complete set U
of view updates, find a translator of U. The solution is based on the concept of a
view “complement.” Together with the user-defined view, we define a comple-
mentary view such that the database could be computed from the view and its
complement. We show that a view can have more than one complement and that
the choice of a complement determines an update policy. Thus we fix a view
complement, and we define the translation of a given view update in such a way
that the complement remains invariant (“translation under constant comple-
ment”). The main result of the paper is the following: Given a complete set U of
view updates,

(i) the translations of the updates in U under a constant complement define a
translator of V;

(ii) to every translator of U, there corresponds a complement which remains
invariant by the translations of the updates in U.

2. BASIC DEFINITIONS AND NOTATION

LetA= {A1,AP,.. . , A,} be a set of names called attributes. With each attribute
Ai we associate a set of values Vi (these sets of values need not be distinct). A
mapping which assigns to each attribute Ai a value in Vi is called a tuple over A.
A set of tuples is called a relation over A. It is not hard to see how the tuples of
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views l 559

a relation can be represented as lines in a table where each column is associated
one-to-one with an attribute. The notation R(AI: VI, AZ: Vz, . . . , A,: V,) is used
to represent a variable R whose values are relations over A. We shall call R a
relational variable. When the attributes clearly imply the corresponding sets
of values, the notation can be simplified. For example, we write
PAY(EMPLOYEE, SALARY) instead of PAY(EMPLOYEE : NAMES,
SALARY : INTEGERS). We shall use the notation r.X to denote the restriction
of a tuple r to a subset X of A. The projection of R over X, denoted by R[X], is
a relation over X defined as follows:

R[X] = {r.XlrER}.

Let R, W be two relational variables over attribute sets A and B, respectively.
Let x denote tuples over A U B. The join of R and W, denoted by R * W, is a
relation over A U B defined as follows:

R* W= {xIx.AER,x.BE W}.

A database is a set of relational variables together with a set of properties
called integrity constraints. Functional dependencies are an important type of
integrity constraint [11. If R is a relational variable over A, then we may have two
sets of attributes X, Y C A such that for any two tuples tl, tz of R, if tl .X = t2.X
then tl.Y = t2.Y. We then say that X functionally determines Y in R, denoted
X+ Y (if R is understood). A database state, denoted by s, is any assignment of
values (i.e., relations) to the variables such that the integrity constraints are
satisfied. The database schema, denoted by S, is the set of all database states.
Figure 1 shows a database where E and M are the relational variables; Cl, C2,
and C3 are the integrity constraints; and s is the current database state; the
database schema is the set S = {s 1 Cl, C2, C3}. We shall refer to this example
throughout the paper. Note that the current database state is sufficient to verify
the integrity constraints. Such constraints are called static. Constraints requiring
more than one database state for their verification are called dynamic. In this
paper we restrict our attention to static constraints only.

A view is a database whose schema is derived from the schema of a given
database. That is, in order to obtain a view of a given database with schema S,
(i) define a set of relational variables;
(ii) define a mapping f that associates with each database state s E S a view

state f(s).
The mapping f is the view definition mapping. The set f(S) = {f(s) 1 s E S}

is the view schema. Figure 1 shows five different views of the same database.
Views are normally defined using a relational data language. For example, using
SEQUEL statements [7], VIEW #3 could be defined as follows:
DEFINE VIEW EM AS
SELECT EMPL, MGR
FROM E, M
WHERE E.DEPT = M.DEPT

The first two lines define a relational variable EM. The last three lines define the
mapping A.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

560 - F. Bancilhon and N. Spyratos

DATABASE

E(EMP, DEP)
M(DEP, MGR)
Cl : EMP + DEP
C2 : DEP .+s MGR
C3 : E[DEP] = M[DEP]

VIEW #l
E(EMP, DEP)
h(s) = E

VIEW #2
M(DEP, MGR)
h(s) = M

CURRENT
STATE E M

VIEW #3
EMWMP, MGR)
h(s) = (E * M)[EMP, MGR]

EM

EDM

VIEW #4
EDM(EMP, DEP, MGR)
fr(s) = E * M MS) =

VIEW #5
DC(DEP, #EMP)
fs(s) = (x 1 x.DEP E E, x.#EMP = 1 A 1)

where
A=(~EE~~.DEP=.LDEP)

DC

h.(s) =

Fig. 1. Five different views of a given database.

An update of a database with schema S can be seen as a mapping from S into
S. This is so because an update is executed only if the result of the update
operation satisfies the integrity constraints. Therefore, an update takes the
current database state (whatever this state may be) to a new state in the schema.
For example, in the database of Figure 1, the following statement is an update:

t : Fire employee B if he is not the only employee in his department.
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views * 561

If B does not appear in the current database state s, or if B is the only employee
in his department, then t will not change s; that is, t(s) = s; otherwise, t will
change s to a new state t(s) E S (this is the case in Figure 1). Therefore, we can
think of the given database update as a mapping t : S + S. In keeping with this
definition of a database update, a view update can be seen as a mapping from the
view schema into itself. However, the view schema is a derived schema, and this
poses a consistency problem between the view and the underlying database. In
Section 3, we discuss this and related problems in formal terms.

In our discussions throughout this paper,
S denotes the schema of a given database;
f denotes the definition mapping of a given view (we shall say, simply, “the

view f”);
s denotes the current database state;
lJ1 denotes the set of all database updates;
U, denotes the set of all view updates.

3. THE VIEW UPDATE PROBLEM
In order to state the view update problem, we must first answer the following
questions:
Ql. Given a view update U, what are the constraints on the database update that

translates U.
Q2. What sets of view updates do we want to translate, that is, what sets of

updates users are to be allowed on the view.
Q3. How do we associate with each view update a database update that translates

it.
First, suppose the view f is updated by some u E U,. Then the database must

also be updated by some t E U1, to reflect the view update operation. In order for
t to be consistent with the view f, it must always take the database to a state that
maps onto the updated view. That is, it must be such that ft(s) = uf(s), Vs E S.
But is every consistent t acceptable? Let us see an example. Refer to Figure 1 and
consider the following update of VIEW 12:

u : In department n, replace manager 2 by W.

Clearly, u does not change the current view state, in Figure 1. Consider now the
following database update:

t : In department n, replace manager 2 by W and hire one more employee in
each existing department.

While t is consistent with f2, it is not acceptable, as it changes the database
although no changes are made in the view. Therefore, to answer Ql above, we
require that the database update be both consistent with the view and acceptable.

Definition 3.1. Given a view update u E Uf, a database update T, E VI is called
a translation of u iff

(i) fT,, = uf (consistent), (concatenation denotes composition),
(ii) Vs E S, uf(s) = f(s) * Tu(s) = s (acceptable). 0

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

562 - F. Bancilhon and N. Spyratos

The next question to settle is defining the set of updates that the user of a view
is allowed. User requirements impose two constraints on this set, namely,

(i) If the user is allowed two updates u and u, then he must also be allowed the
composite update uv.

(ii) The user must have the means to cancel, if he wishes, the effect of every
update that he is allowed on the view.

We state these requirements formally in the following definition of a complete
set.

Definition 3.2. A set U of view updates is called complete iff

(i) Vu E U, Vu E U, uv E U,
(ii) Vs E S, Vu E U, 3v E U such that vuf(s) = f(s). Cl

(Note that condition (ii) above does not imply that v is an inverse of u.) So to
answer Q2 above, we want to translate complete sets of view updates.

Finally, in order to translate a complete set U, we need a mapping that
associates with each view update in U a database update. The obvious constraints
onTare

(i) With each view update u E U, T must associate a translation of u.
(ii) Whether the user applies two updates from U one after the other, or their

composite update, the result of the translation must be the same.

We state these requirements formally in the following definition of a translator.

Definition 3.3. Let U C Uf be a complete set. A mapping T : U+ Ul is called
a translator iff
(i) Vu E U, T(u) is a translation of u,
(ii) Vu E U, Vu E U, T(w) = T(u)T(v) (i.e., T is a morphism). Cl

To simplify notation, we shall write T, instead of T(u) throughout this paper.
To answer Q3 above, we shall use translators to associate database updates to
view updates in complete sets.

We are now ready to state the view update problem that we consider in this
paper: given a complete set U of view updates, find a translator of U. We solve
this problem as follows: with each u E U we associate a translation of u that
leaves invariant “the information not visible within the view.” We show that, if
this is possible for all u in U, this association is a translator. Then we proceed to
show that this is the only way of obtaining translators. That is, we show that,
given any translator T of U, the translations T, leave invariant “the information
not visible within the view.” The solution of the view update problem is based on
a precise definition of the information not visible within the view. We study this
problem in the next section.

4. THE VIEW COMPLEMENT
What is “the informatioin not visible within the view”? Let us see an example.
Consider the database of Figure 1. It is clear that “the information not visible
within VIEW #l” is the base relation E. It is less clear in the case of VIEW #2.
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views 563

It looks as though either E or M qualifies as “the information not visible within
the view.” Therefore, we need a precise definition of this concept. First, let us
introduce some basic definitions and notation.

We denote M(S) a set of view definition mappings on S. We assume that M(S)
contains the identity mapping on S, denoted 1, and a constant mapping on S,
denoted 0. An example is the set of all projection mappings on S. We do not
specify here what the set M(S) is, as the theory we present is independent of the
type of mappings chosen. Only when we want to implement actual algorithms
must we worry about this problem. What we do need here is a structure on the
set M(S), which we now define.

Definition 4.1. Let f, g E M(S). We say that f is greater than g or that f
determines g, denoted f -1 g, iff

vs E s, Vs’ E s, f(s) = f(d) * g(s) = g(s’). cl

This definition can be interpreted as follows: f E g iff whenever we know the
state f(s), we could compute the state g(s). Following this interpretation, in the
example of Figure 1, we conclude that f4 2 f3, as EDM is sufficient to compute
EM. Similarly, f4 L fi and f4 r fs. On the other hand, fi and fi cannot be
compared, as neither M or EM can be computed from the other. Definition 4.1
can also be interpreted using the partitions of S induced by f and g, that is, S/f
and S/g, respectively. Recall that S/f is defined as follows: Vs E S, Vs’ E S, s and
s’ are in the same member of S/f iff f(s) = f(d). Also recall that S/f is called a
refinement of S/g iff each member of S/f is contained in a member of S/g. The
following theorem is an immediate consequence of Definition 4.1.

THEOREM 4.1. f 2 g iff S/f is a refinement of S/g. 0

This theorem has some ,important implications. First, knowledge of the parti-
tions S/f and S/g is sufficient to order f and g. In this respect, the mappings 1
and 0 are of particular interest. Each member of the partition S/l consists of a
single element of S; therefore, Vf E M(S), S/l refines S/f. It follows that Vf E
S/f, f 5 1. Similarly, the partition S/O consists of just one member, namely, S
itself. Therefore, VIE M(S), S/f refines S/O. It follows that Vf E M(S), 0 I f. The
relation L induces the following equivalence relation on the set M(S).

Definition 4.2. Let f, g E M(S). We say that f and g are equivalent, denoted
f=g,ifffrgandgrfi 0

As an immediate consequence of this definition we obtain f = g iff S/f = S/g.
This implies that 1 is equivalent to every injective mapping on S, and that 0 is
equivalent to every constant mapping on S. In Figure 1, we have f4 = 1, as EDM
is sufficient to compute E and M, and conversely. Loosely speaking, VIEW #4 is
equivalent to the database.

Let us refer again to Figure 1. It is clear that fi f 1 and A f 1. That is, we
cannot recompute the database using VIEW #2 alone or VIEW #3 alone. But it
looks as though we can do so if we put the two views together and create a new
view. So let us define a view definition mapping that “puts together” two given
views.

ACM Transactions on Database System, Vol. 6, No. 4, December 1981.

564 l F. Bancilhon and N. Spyratos

Definition 4.3. Let f, g E M(S). The product of f and g, denoted f x g, is
defined by

f x g(s) = (f(s), g(s)), vs E S. 0

As an example, the product of fi and f5 (Figure l), at the current database
state s, is computed as follows:

fi x f5(s) = (fi(s), f&)) = CM, DC).

We assume that the set M(S) is closed under product (i.e., Vf, g E M(S),
f X g EM(S)) so that we can compare products to other views. One consequence
of Definition 4.3 is the following:

Vf,gEM(S), fl f xg and g= f Xg.

That is, given a view f, the product f x g “adds” to f the information in g.
Suppose now that f x g contains sufficient information for computing the
database. Then g must contain the information not visible within the view f
This leads to the following definition of a view complement:

Definition 4.4. Let f E M(S). A view g E M(S) is called a complement of f iff
fxg=1. 0

(Note that f is a complement of g iff g is a complement off .)
As an example, the views fi and f; (Figure 1) are complementary, whereas fi

and f5 are not. It follows from the previous definition that a view and its
complement provide an isomorphic image of the schema S. That is, if f and g are
complementary, then there is a one-to-one correspondence between database
states s and the pairs (f(s), g(s)). Thus, for all practical purposes, s can be
replaced by the pair (f(s), g(s)). We shall refer to this pair as a representation of
s. Another interpretation of complements is provided by the following theorem,
which is a consequence of Definition 4.4.

THEOREM 4.2. Let f, g E M(S). g is a complement off iff

vs E s, Vs’ E s, f(s) = f(s’) -g(s) # g(s’). 0

What this theorem says is that g is a complement of f iff g separates or
distinguishes between database states that map onto the same view state (under
f). It follows that 1 is a complement of every view in M(S). In particular, 1 is a
complement of 0. Therefore, given any view f there always exists a complement
of f. We shall make use of this fact in the following section.

Intuitively, if g is a complement of f, then any view larger than g is also a
complement of f. Here is why: g adds sufficient information to f to recompute
the database. Therefore, any view that adds to f at least as much information
must be a complement of f We state this formally in the following theorem. Its
proof follows immediately from the previous theorem and Definition 4.1.

THEOREM 4.3. Let g be a complement of fi Let h L g. Then h is a complement
of6 0

As an example, f3 is a complement of f2 (Figure 1) and f4 r fa. Therefore f4 is
also a complement of f2. There is, however, a basic difference between the two
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views l 565

complements A and f4: namely, it seems that there is no complement of fi which
is smaller than A. In other words, fi is in some sense a minimal complement.

Definition 4.5. g is a minimal complement of f iff

(i) g is a complement of f,
(ii) if h is a complement of f and h I g, then h = g. Cl

According to this definition, view f4 (Figure 1) does not qualify as a minimal
complement of fi (A is a complement of fi such that fi I fi and fi f A).

A minimal complement provides a formal description of the information not
visible within the view. But it looks like this description is not unique. Refer again
to Figure 1. Each of the views fi, fi is a minimal complement of A. It turns out
that only the trivial views 0 and 1 have unique (up to equivalence) minimal
complements.

THEOREM 4.4. Let f E M(S). f h as a unique (up to equivalence) minimal
complement iff f = 0 or f = 1. Cl

PROOF

“lf”part. If f = 0, then f is a constant mapping. Therefore, g is a complement
of f iff g is injective. It follows that g is a complement of f iff g = 1: Therefore,
1 is the unique (up to equivalence) minimal complement of f.

If f = 1, then f is an injective mapping. Therefore, Vg E M(S), g is a
complement of $ It follows that 0 is the unique (up to equivalence) minimal
complement of fi

“Only if” part. It is enough to show that if

f$ 1, (1)

f# 0, (2)

g is a minimal complement of f, (3)
then there exists complement h of f such that h + g and g $ h. It follows from
(1) that there exists A E S/f such that 1 A 1 > 1; that is,

3AES/f and a,a’~A such that a # a’. (4)

It follows from (2) that

3B E S/f such that B #0 and B #A. (5)

Let b E B. As g is a complement of f, it follows from (4) that

g(a) # g(a’) (Theorem 4.2).

Therefore, eitherg(a) # g(b) or g(a’) # g(b). Assume that

da) + g(b). (6)
Define a view h on S such that

h(a) = h(b) = c, where c $! g(S), (7)
h(s) = g(s), Vs E S such that s # a and s # b. (8)

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

566 ’ F. Bancilhon and N. Spyratos

As g is a complement of f, g distinguishes between all database states that map
onto the same view state, under f (Theorem 4.2). It follows from (7) and (8) that
h does also. Therefore h is also a complement of f (Theorem 4.2).

It follows from (6) and (7) that S/g # S/h. Therefore, g + h. In order to show
that g $ h, it is enough to find two states s, s’ E S such that h(s) = h(s’) and
g(s) # g(s’) (Definition 4.1). This follows immediately from (6) and (7) if we take
s=aands’=b. Cl

In conclusion, we have seen that

(i) given a view f, there always exists a complement of f;
(ii) a minimal complement of f describes the information not visible within f;
(iii) in general, a minimal complement is not unique.

In view of (iii), there is no unique way to describe “the information not visible
within the view.” Therefore, there is not much sense in asking that this infor-
mation remain invariant during the translation process. Instead, we shall fix, in
advance, a description of that part of database information that must remain
invariant. We shall require, however, that this description be a view complement
(not necessarily minimal). In this way, the view and its complement provide an
isomorphic image of the schema. We shall use this fact in order to translate view
updates into database updates.

5. TRANSLATION UNDER CONSTANT COMPLEMENT

The problem that we consider in this section can be stated as follows: given a
complement g of the view f and a view update u E U,, define a translation of u
that leaves the complement g invariant. The invariance of a complement corre-
sponds to the “rectangle rule” in [4] and the “absence of side effects” in [5]. Let
us remark right away that, intuitively, if g remains invariant by a translation of
u, then any information contained in g must also remain invariant. The following
theorem states that this is indeed the case.

THEOREM 5.1. Let g be a complement of fi Let u E U,. Let t be a translation
of u such that gt = g. Let h be a view such that h 5 g. Then ht = h. 0

PROOF. We have that Vs E S, gt(s) = g(s). As h I g, it follows that Vs E S,
ht(s) = h(s), that is, ht = h. Q.E.D.

Let us now return to our original problem. As g is a complement of f, the
current database state can be represented by the pair (f(s), g(s)). Updating f(s)
by u, while keeping g(s) invariant, results in the pair (uf(s), g(s)). If this last pair
lies in the image of S under f x g, then it represents a unique database state s’.
We shall associate s’ to s to obtain the desired translation of u. This process
is illustrated in Figure 2. First, however, we must make sure that the state s’
exists.

Definition 5.1. Let u E Uf. Let g be a complement of fi u is called
g-translatable iff

vs E s, 3s’ E s so that f(s’) = uf(s) and g(s’) = g(s). cl
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views - 567

Yu s ___----______------- *’

:

fxg j (f x g)-’ Figure 2

This definition simply states the existence condition for the state s’ that leads to
the desired translation of U.

THEOREM 5.2. Let u E Ut. Let g be a complement off Then u is g-translatable
if Vs E S, g(f-‘(f(s))) C g(f-l(uf(s))). 17

PROOF. Vs E S, s E f-‘(f(s)). Therefore, Vs E S, g(s) E g(f-‘(f(s))). It follows,
from the hypothesis of the theorem, that Vs E S, g(s) E g(f-‘(uf(s))). Therefore
Vs E S, 3s’ E f-‘(uf(s)) such that g(s’) = g(s). Moreover, as s’ E f-‘(uf(s)), we
have f(s’) = uf(s). It follows that u is g-translatable. Q.E.D.

Sets of g-translatable updates are closed under composition, as the following
theorem shows.

THEOREM 5.3. Let g be a complement off Let u, u E Ur be g-translatable.
Then uv is g-translatable. Cl

PROOF. As u is g-translatable, Vs E S, 3s’ E S such that (1) f(s’) = uf(s), and
(2) g(s’) = g(s). As u is g-translatable, there exists s” E S such that (3) f(s”) =
uf(s’) and (4) g(C) = g(s’). Therefore, Vs E S, 3s” E S such that

f(s”) = uvf(s) (It follows from (1) and (3))

ds” 1 = g(s) (It follows from (2) and (4)).
Therefore uv is g-translatable. Q.E.D.

We show now that, for g-translatable updates, the association of s’ to s (see
previous diagram) produces the desirable translation of u. First, we give the
following theorem, which is an immediate consequence of Definition 4.3.

THEOREM 5.4. Let f, g, h, 1 be views in M(S). Let a be a database update.
Then

(9 (fXg)a= faxga,
(ii) fxg=hxl* f=handg=l. Cl

(fa X ga denotes the product of fa and ga.)

THEOREM 5.5. Let g be a complement off. Let u E lJf be a g-translatable
update. Define yU = (f x g)-‘(uf x g). Then

(i) yU is a translation of u,
(ii) gy, = g. Cl

We call y,, the g-translation of u.
PROOF. Note first that, as u is g-translatable, yU is a well-defined mapping from

S into S; that is, yU is a database update. Also, noting that (f x g)(f x g)-’ is the
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

568 - F. Bancilhon and N. Spyratos

identity mapping on S, we obtain

ufx g = [(fx g)(fx gr’l(ufx g)
= (fx g)rtfxg)-‘tufx 681 = (fx k9Yu. (9)

(i) To show that yU is a translation of U, we must show that it is consistent with
the view and acceptable (Definition 3.1).

Consistent. It follows from (9) that uf x g = (f x g)yU. Then Theorem 5.3
implies that uf = fyU. Q.E.D.

Acceptable. Let s E S. Suppose uf(s) = f(s). We must show that yU(s) = s. We
have

yu(s) = (f x gr’(uf x g) (4

= (fx g)-Y~fts), B(S))

= (fx gr’(f(s), g(s)) (because of our hypothesis)

= (fx kv(fx g)(s)

= s. Q.E.D.

(ii) It follows from (9) that uf X g = (f x g) yU. Then Theorem 5.4 implies that
g = gyu. Q.E.D.

Let us now see a complete example of a translation. Refer again to Figure 1
and consider the following update on VIEW #3:

U: Replace employee A by employee F.

Suppose that we declare fi as the complement of A (that must remain invariant
during translation). Then the update u is fi-translatable. In terms of A and u, the
translation yU is defined as follows:

E := (M * u(EM))[EMP, DEP]
M := M

(The symbol := denotes assignment of a value.)
Figure 3 shows the details of the translation process.
It should be noted that this example is only meant to explain the translation

process. It must not be interpreted as a method for the actual computation of the
updated database.

We conclude this section by an important property of g-translations: namely,
we show that uniqueness of g-translations is implied by the invariance of the
complement. Therefore, it is not necessary to state it as a constraint on the
translation process.

THEOREM 5.6. Let g be a complement of /I Let u E U,. Let t, be a translation
of u such that gtu = g. Then

(i) u is g-translatable,
(ii) t, = (fx g)-‘(uf x g) (i.e., t, is the g-translation of u). Cl
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views l 569

f3 I
EM EM

Fig. 3. Details of the translation process.

PROOF

(i) Let s E S. Let &(s) = s’. It follows that

fb’) = ftds) = ufb)

ds’) = &As) = g(s).

(because tU is a translation of U)

It follows from Definition 5.1 that u is g-translatable. Q.E.D.

(ii) As g is a complement of f, f x g is injective. As u is g-translatable,
uf x g(S) C f x g(S). If we restrict the codomain off X g to the set f X g(S), then
f x g becomes bijective. On the other hand, we have

(fxgh=ft, xgtu (from Theorem 5.4)

=ufxg (because tu is a translation and gtu = g).

Therefore, (f x g)tu = uf x g and, as f x g is bijective, we obtain tu = (f x g)-’
(uf x g). Q.E.D.

There is an important consequence of this theorm: To every triple (f, g, u)
such that g is a complement off and u is g-translatable, there corresponds one
and only one translation of u that leaves g invariant. This is precisely the
g-translation yU.

In [5] it is argued that “an update on a view f is translatable if there is a unique
database update producing the desired update off such that” Then, later,
the authors remark that the uniqueness criterion is controversial : “we do not feel
comfortable with this choice but could not find more attractive alternatives . . .
admittedly, our correctness criteria have weaknesses. However, these weaknesses
are due to gaps in our understanding of update semantics in the relational model.”
Indeed, it seems that the uniqueness criterion is the best choice when the only

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

570 * F. Bancilhon and N. Spyratos

information available is the view definition. However, as the authors observe,
“the view definition mapping . . . is often not sufficient to express the semantics
of the relationship between update operations on the view and on the [original]
schema.”

Our conclusion here is that the extra information that we need in order to
express these semantics is precisely a view complement.

6. THE CHOICE OF A COMPLEMENT
We have seen that a given view update may or may not be translatable depending
on the choice of a view complement. Let us see an example. Consider the following
updates on VIEW #3 (Figure 1):
u: Replace employee A by employee F.
u: Permute the managers.
If we declare fi as the complement of b, then u is fi-translatable, whereas u is not.
In other words, if we decide that the association of departments and managers
(in the database) must not change while updating VIEW #3, then only u can be
translated (with respect to this “policy”). Alternately, if we declare fi as the
complement of f3, then u is f&ranslatable, whereas u is not. In other words, if we
decide that the association of employees and departments (in the database) must
not change while updating VIEW #3, then only u can be translated (with respect
to this new “policy”). Therefore, a view complement corresponds to a view update
policy. The existence of more than one view complement simply means that there
are more than one view update policies. The choice of a policy depends, of course,
on the specific application. But once this choice is made we must check whether
a given view update is translatable with respect to this policy (g-translatability).
And if it is, we must compute its translation (g-translation).

Let us see one more example. Consider a database, a user-defined view ft and
three different update policies (i.e., view complements) gl, g2, g3, as follows:
DATABASE: R (PRODUCT, COST, SALEPRICE, PROFIT, PROFITRATE)

Cl: PRODUCT + COST, SALEPRICE, PROFIT, PROFITRATE
C2: Vx E R, x.COST 2 0

x.SALEPRICE L x.COST
x.PROFIT = n.SALEPRICE - x.COST
x.PROFITRATE = x.PROFIT/x.COST

VIEW PC(PRODUCT, COST)
f(s) = R[PRODUCT, COST]

POLICY #l: PS(PRODUCT, SALEPRICE)
gl(s) = R[PRODUCT, SALEPRICE]

POLICY #2: PP(PRODUCT, PROFIT)
g*(s) = R[PRODUCT, PROFIT]

POLICY #3: PR(PRODUCT, PROFITRATE)
gs(s) = R[PRODUCT, PROFITRATE]

Suppose that, in the context of view f above, we want to perform the following
update:
u: Decrease the cost of all product by 10 percent.

Note that gi is a complement off and that u is gi-translatable, i = 1,2,3. In all
three cases, the cost will decrease by 10 percent (at the database level) as
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views - 571

required. But the changes made in the remaining part of the database depend on
the policy (i.e., the view complement) chosen. Thus, along with the 10 percent
decrease in cost, the following changes are made in the database:

POLICY #l. The sale price remains constant, but profit and profit rate
increase.

POLICY #2. The profit remains constant, the sale price decreases, and the
profit rate increases.

POLICY #3. The profit rate remains constant, but profit and sale price
decrease.

The choice of a complement g for a given view f determines the set U of view
updates that are g-translatable. Of course, these are the only updates that a user
of the view is allowed to perform. Intuitively, we would expect the set U to
become larger as the complement g becomes smaller. The following theorem says
that this is indeed the case.

THEOREM 6.1. Let g, h be complements off such that h I g. Let u E Uf be
g-translatable. Then

(i) u is h-translatable,
(ii) the h-translation of u is equal to the g-translation of u. Cl

PROOF

(i) Let s E S. As u is g-translatable, there exists s’ E S such that

fb’) = UfW,
g(s’) = g(s).

As h 5 g, it follows from (11) that

(10)
(11)

h(s’) = h(s). (12)

It follows from (10) and (12) that u is h-translatable. Q.E.D.

(ii) Let yU be the g-translation of u. Then, Vs E S, gyU(s) = g(s). As h I g, it
follows that Vs E S, hyy(s) = h(s). Therefore, hy, = h. It follows from Theorem
5.6 that yU is the h-translation of u. Q.E.D.

In view of this theorem, the set U of g-translatable updates is maximal when
the complement g is minimal. We have seen that minimal complements are not
necessarily unique. Therefore, there are as many maximal U’s as there are
minimal complements of the view.

Note that to every pair (f, g), where f and g are complementary views, there
corresponds a set U C Uf of g-translatable updates. There are two extreme cases,
where U = 0 and U = U,. In the first case, f and g are such that no view update
is g-translatable. As an example, consider VIEW #5, in Figure 1. f4 is a comple-
ment of f5, but no update of f5 is b-translatable. Note, however, that the converse
is not true. The following update of f4 is fs-translatable:

u: Permute the managers of departments 1 and m.
ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

572 * F. Bancilhon and N. Spyratos

In the second case, where U = U,, every update off is g-translatable. Therefore,
as far as updating goes, f is “independent” of g. The problem of finding indepen-
dent views is extremely important in database theory. A complete treatment of
this problem is presented in [3].

7. A UNIVERSAL PROPERTY
In this section we present the main result of this paper, which can be stated as
follows. Given a complete set U c Uf:

(i) For every complement g of f such that: u is g-translatable VU E U, the
mapping T: U + UI defined by: Vu E U, T, = yU , is a translator of U.

(ii) To every translator T of U there corresponds a complement g off such that:
Vu E U, u is g-translatable and yU = T,,.

THEOREM 7.1. Let U C U, be a complete set. Let g be a complement off such
that Vu E U, u is g-translatable. Then the mapping T: U + U, defined by
T, = y” is a translator of U. Cl

PROOF. As yU is a translation, it follows from Definition 3.2 that it is enough to
show that

(i) Vs ES, uf(s) = f(s) - vu(s) = s,
(ii) Vu E U, Vu E U, y,, = y”y”.

(i) We have

vu(s) = (f x g)F’(uf x g)(s) (from Theorem 5.4)

= (f x g)?uf(s), g(s))

= (f x gF’(f(s), g(s)) (from our hypothesis)

= (fx g)-‘(f x g)(s)

= s.

(ii) Let s E S. Let y,(s) = s”. Then

sn = y,(s)

= (f x g)F’(uf x g)(s)

= (f x g)%f(s), g(s)).

It follows that (1) f(s”) = uf(s), and (2) g(s”) = g(s). Now,

yuy,(s) = YUW) (because y”(s) = s”)

= (f x g)-‘(uf x g)(s”)

= (f x g)F’(uf(s”), g(s”))

= (f x g)%of(s), g(s)) (from (1) and (2))

= (f x g)F’(uufx g)(s)
= yuu .

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Q.E.D.

Q.E.D.

Update Semantics of Relational Views * 573

To prove the converse of this theorem, we need the following result.

THEOREM 7.2. Let U C i!Jf be a complete set. Let T be a translator of U. The
following relation on S is an equivalence relation:

Vs E S, Vs’ E S, s = s’ iff 3~ E U such that s = Tu(s’). Cl

PROOF. We show that = is reflexive, symmetric, and transitive.

Reflexiuity. Let s E A, for some A E S/f. Take any u E U. If T,(s) E A, then
uf(s) = f(s), and this implies that s = T”(s), that is, s = s (see Definition 3.2). If
T,(s) 4 A, then uf(s) # f(s) and, as U is complete, there exists u E U such that
uuf(s) = f(s). This implies that s = T,,(s) and, as uu E U, it follows that
s = s. Q.E.D.

Symmetry. Let s, s’ E S such that s # s’ (if s = s’, we can use reflexivity).
suppose that s = s’. Then there exists u E U such that s = T,, (s’). Then, supposing
that s E A, for some A E S/f, we obtain T, (s’) E A. This implies that s’ @ A (for,
if s’ E A, then s’ = T, (s’) = s, a contradiction). It follows that fT,, (s’) # f (s’) and,
as f T, = uf, we obtain uf(s’) # f(s’). Now, as U is complete, there exists u E U
such that uuf(s’) = f(s’). It follows that s’= Tuu(s’) = T”(T,(s’)) = T”(s).
Therefore s’ = s. Q.E.D.

Transitivity. Suppose s = s’ and s’ = sN. Then there exist U, u E U such that
s = T”(s’) and s’ = T”(s”). It follows that s = Tu(s’) = Tu(T,(s”)) = Tuu(s”).
Therefore s = s”. Q.E.D.

In order to show the converse of Theorem 7.1, we shall make use of the
equivalence relation = of Theorem 7.2. We shall denote by S the equivalence class
of s and by S/= the set of all equivalence classes of S.

THEOREM 7.3. Let UC Uf be a complete set. Let T be a translator of U. Define
the mapping g:S + S/G such that Vs E S, g(s) = S. Then,

(i) g is a complement off;
(ii) Vu E U, u is g-translatable;
(iii) Vu E U, T, = (f x g)-‘(uf x g). q

PROOF. (i) We must show that f x g is injective. That is, we must show that
Vs, s’ E S, s # s’ * f x g(s) # f x g(s’), or, equivalently that Vs, s’ E S,s # s’ and
g(s) = g(s’) =+ f(s) # f(s’). Supposing g(s) = g(s’), we obtain S = s’, that is,
s = s’. It follows that there exists u E U such that (1) s = Tu(s’). Now, if
f(s) = f(s’), then (1) implies that fT,(s’) = f(s’), that is, uf(s’) = f(s’). As T is a
translator of U, we obtain T, (s’) = s’. It follows from (1) that s = s’, a contradiction.
Therefore f(s) # f(s’). Q.E.D.

(ii) and (iii) follow directly from Theorem 5.5 if we show that Vu E U,
gT,, = g. And in order to show this it is enough to show that VS E S, Vu E U,
s = T,, (s). Take any s E S and u E U and set T, (s) = s’. It follows that
fT,(s) = f(s’), that is, (1) uf(s) = f(s’).

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

574 l F. Bancilhon and N. Spyratos

Suppose first thatf(s) = f(s’). Then (1) implies uf(s) = f(s). As Tis a translator,
we obtain T,(s) = s, that is, s = Tu(s). Suppose next that f(s) # f(s’). Then (1)
implies uf(s) # f(s). As U is complete, there exists u E U such that uuf(s) = f(s).
As T is a translator, we obtain T,,(s) = s or T, (T, (s)) = s, that is,
s = Tu(s). Q.E.D.

In conclusion, translation under constant complement is the only method of
translation, in the sense that

(i) it provides translators for complete sets;
(ii) any translator of a complete set translates under some constant complement.

8. CONCLUSION
We have presented a formal treatment of the view update problem. The statement
of the problem relies on three basic concepts;

(i) the complete set of view updates, which reflects user requirements;
(ii) the translation of a view update, which guarantees consistency between the

view and the database;
(iii) the translator, which associates translations to view updates of complete

sets.

The solution to the problem of finding translators is based on the key concept of
a view complement. Roughly speaking, a view complement is database informa-
tion that, along with the view, is sufficient to recompute the whole database. We
have seen that, in general, view complements are not unique and that the choice
of a complement can be interpreted as the definition of an update policy.

The method of solution can be summarized as follows:

(1) choose a complement g of the given view f;
(2) check whether the view updates of the given complete set U leave g invariant;
(3) associate with each u E U, the translation T, = (fx g)-‘(uf X g).

We have shown that this method leads to a translator T of the complete set U.
We have also shown that this is the only method of solution. Steps (1) and (2) of
the solution depend on the given database schema S and the view definition
mapping / That is, they depend on the type of database integrity constraints and
the operators allowed for view definition. Therefore, computational algorithms
(if they exist) implementing steps (1) and (2) must be sought in specific problems:
for example, schemata defined by functional dependencies and views derived by
projections. For step (3), the most likely implementation will be by a program.

REFERENCES

(Note. Reference [63 is not cited in the text.)
1. AFCMSTRONG, W.W. Dependency structures of data base relationships. Information Processing

74, North-Holland, Amsterdam, 1974, pp. 580-583.
2. ASTRAHAN, M.M., ET AL. System R: Relational approach to database management. ACM Truns.

Database Syst. I, 2(June 1976), 97-137.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Update Semantics of Relational Views - 575

3. BANCILHON, F.M., AND SPYRATOS, N. Independent views of relational data bases. To appear.
4. CHAMBERLIN, D.D., ET AL. Views, authorization and locking in a relational data base system. In

Proc. 1975 Nat. Computer Conf., AFIPS Press, Arlington, Va.
5. DAYAL, U., AND BERNSTEIN, P.A. On the updatability of relational views. In Proc. 4th VLDN

Conf., West Berlin, Sept. 1978.
6. SEVCIK, K.C.., AND FURTADO, A.L. Complete and compatible sets of update operations. In Proc.

ICMOD 78 Conf, Milano, Italy, June 1978, pp. 247-260.
7. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of

INGRES. ACM Trans. Database Syst. 1, 3(Sept. 1976), 189-222.

Received October 1978; revised April 1980; accepted January 1981

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1961.

