
The Combined Approach to Ontology-Based
Data Access

R. Kontchakov, C. Lutz, D. Toman, F.Wolter and M.
Zakharyaschev

Presented by Amer Mouawad
University of Waterloo

July 8, 2013

Ontology-Based Data Access (OBDA)

Motivation:

I Data enrichment (through inference)

I Separation of concerns: Users are generally not interested
in how or where data is stored

I Provide a user-oriented view of the data

I Queries are formulated in the language of the ontology

Notation:

I T is given by a finite set of sentences of FO logic

I D is given by a finite set of ground atoms P (a1, ..., an)

I a1, ..., an are constants

I A query q(~x) is an FO-formula with free variables ~x

Ontology-Based Data Access (OBDA)

Motivation:

I Data enrichment (through inference)

I Separation of concerns: Users are generally not interested
in how or where data is stored

I Provide a user-oriented view of the data

I Queries are formulated in the language of the ontology

Notation:

I T is given by a finite set of sentences of FO logic

I D is given by a finite set of ground atoms P (a1, ..., an)

I a1, ..., an are constants

I A query q(~x) is an FO-formula with free variables ~x

Ontology-Based Data Access (OBDA)

Example:

I All MEN are MORTAL (ontology)

I Socrates is a MAN (explicit data)

I List all mortals => {Socrates}

Problems:

I D is incomplete

I Potentially infinite set of possible models of T and D
I q(~x) must be true in every FO-model M of T and D

(certain answers as opposed to RDBMS)

I OBDA should scale to large amounts of data and be as
efficient as RDBMS

Ontology-Based Data Access (OBDA)

Example:

I All MEN are MORTAL (ontology)

I Socrates is a MAN (explicit data)

I List all mortals => {Socrates}

Problems:

I D is incomplete

I Potentially infinite set of possible models of T and D
I q(~x) must be true in every FO-model M of T and D

(certain answers as opposed to RDBMS)

I OBDA should scale to large amounts of data and be as
efficient as RDBMS

Ontology-Based Data Access (OBDA)

Given T , D, and q(~x), the general problem is to compute a
finite FO model D′ and an FO query q′(~x) such that the
following properties hold:

I (ans): ~a is an answer to q′(~x) over D′ iff ~a is a certain
answer to q(~x) over T and D

I (dat): D′ is computable in polynomial time in D and does
not depend on q(~x)

I (que): q′(~x) does not depend on D

Various refinements of these conditions have been studied.
Replacing (dat) by D′ = D is one example which guarantees
the same data complexity as in RDBMSs but rewritten queries
may be exponential in the size of q (Calvanese et al., 2007)

Ontology-Based Data Access (OBDA)

Given T , D, and q(~x), the general problem is to compute a
finite FO model D′ and an FO query q′(~x) such that the
following properties hold:

I (ans): ~a is an answer to q′(~x) over D′ iff ~a is a certain
answer to q(~x) over T and D

I (dat): D′ is computable in polynomial time in D and does
not depend on q(~x)

I (que): q′(~x) does not depend on D

Various refinements of these conditions have been studied.
Replacing (dat) by D′ = D is one example which guarantees
the same data complexity as in RDBMSs but rewritten queries
may be exponential in the size of q (Calvanese et al., 2007)

Ontology-Based Data Access (OBDA)

This paper suggests the use of two different conditions:

I (dat’): D′ is computable in polynomial time in both T
and D, preferably using RDBMSs

I (que’): q′(~x) is polynomial in T and q(~x)

Notes: Source data has to be manipulated, no exponential
blowups.

Description Logic: DL-Litehorn

Reminder:

I Concepts (unary predicates in FO)

I Domains and ranges of roles (binary relations in FO)

I Roles R and concepts C are built from concept names Ai
and role names Pi, i ≥ 0, according to the following syntax
rules:

I R ::= Pi | P−i
I C ::=⊥| > | Ai | ∃R

I A DL-Litehorn TBox, T , is a finite set of concept
inclusions

I A DL-Litehorn ABox, A, is a finite set of concept and role
assertions, which is used to store instance data

Description Logic: DL-Litehorn

I A DL-Litehorn knowledge base (KB) is a pair K = (T ,A)

I An interpretation I is a model of a KB if I |= α for all
α ∈ T ∪ A

I K |= α whenever I |= α for all models I of K
I K is consistent if it has a model

Consider K = (T , {A (a)}) where
T = {A v ∃T ,∃T − v B,B v ∃R,∃R− v A} and
let q(x) = ∃y, z(T (x, y) ∧R(y, z) ∧ T (z, y))
⇒ a is an answer to q(x) in GK, but not a certain answer to
q(x) over K

Description Logic: DL-Litehorn

I A DL-Litehorn knowledge base (KB) is a pair K = (T ,A)

I An interpretation I is a model of a KB if I |= α for all
α ∈ T ∪ A

I K |= α whenever I |= α for all models I of K
I K is consistent if it has a model

Consider K = (T , {A (a)}) where
T = {A v ∃T ,∃T − v B,B v ∃R,∃R− v A} and
let q(x) = ∃y, z(T (x, y) ∧R(y, z) ∧ T (z, y))
⇒ a is an answer to q(x) in GK, but not a certain answer to
q(x) over K

Description Logic: DL-Litehorn

Problem: Given a DL-Litehorn knowledge base K = (T ,A)
and a conjunctive query q(~x), compute (in poly time if possible)
a finite FO-structure GK, independently from q(~x), and an
FO-query q′(~x), independently from A, such that (dat’),
(dat’), and (ans) hold: for every tuple ~a ⊆ Ind(A),
~a ∈ cert(q,K) iff ~a ∈ ans(q′,GK)

⇒ The key to the solution is the existence of canonical models
for Horn theories which give all correct answers to CQs

Description Logic: DL-Litehorn

Problem: Given a DL-Litehorn knowledge base K = (T ,A)
and a conjunctive query q(~x), compute (in poly time if possible)
a finite FO-structure GK, independently from q(~x), and an
FO-query q′(~x), independently from A, such that (dat’),
(dat’), and (ans) hold: for every tuple ~a ⊆ Ind(A),
~a ∈ cert(q,K) iff ~a ∈ ans(q′,GK)

⇒ The key to the solution is the existence of canonical models
for Horn theories which give all correct answers to CQs

Canonical Models

Some definitions for a KB K = (T ,A):

I NT = {cP , cP− | P is a role name in T } is a set of ”new”
individual names (disjoint from Ind(A)).

I A role R is called generating in K if there exist a ∈ Ind(A)
and R0, ..., Rn = R such that:

I (agen): K |= ∃R0(a) but R0(a, b) /∈ A for all b ∈ Ind(A)
(written as a cR0

)
I (rgen): for i ≤ n, T |= ∃R−i v Ri+1 and R−i 6= Ri+1

(written as cRi cRi+1)

Canonical Models

The model GK for K = (T ,A) is defined as follows:

∆GK = Ind(A) ∪{cR | R ∈ NT , R is generating in K}

aGK = a, for all a ∈ Ind(A)

AGK = {a ∈ Ind(A) | K |= A(a)} ∪ {cR ∈ ∆GK | T |= ∃R− v A}

P GK = {(a, b) ∈ Ind(A) ×Ind(A) | P (a, b) ∈ A}
∪{(d, cP) ∈ ∆GK ×NT | d cP }
∪{(cP− , d) ∈ NT ×∆GK | cP− d}

Canonical Models
The model GK
I can be built in time polynomial in |K| and thus satisfies

(dat’)

I is not in general a model of K (finiteness)

I does NOT always give correct answers to queries (without
modifications)

Another example: K = (T , {A(a), A(b)}) where
T = {A v ∃T ,∃T − v B,B v ∃R,∃R− v A} and
let q(x1, x2) = ∃y(T (x1, y) ∧ T (x2, y))
⇒ (a, b) is an answer to q(x) in GK, but not a certain answer to
q(x) over K

Canonical Models
The model GK
I can be built in time polynomial in |K| and thus satisfies

(dat’)

I is not in general a model of K (finiteness)

I does NOT always give correct answers to queries (without
modifications)

Another example: K = (T , {A(a), A(b)}) where
T = {A v ∃T ,∃T − v B,B v ∃R,∃R− v A} and
let q(x1, x2) = ∃y(T (x1, y) ∧ T (x2, y))
⇒ (a, b) is an answer to q(x) in GK, but not a certain answer to
q(x) over K

Canonical Models

The solution to the problem is two-fold:

I First, it is showed that by ”unraveling” GK into a (possibly
infinite) homomorphic model UK, we can guarantee
cert(q,K) = ans(q,UK) ⊆ ans(q,GK) for every consistent
DL-Litehorn KB K and every positive existential query q.

I Secondly, a query rewriting algorithm is proposed which
converts any q into some q′ such that ans(q′,GK) =
ans(q,UK).

Conjunctive Query Answering

I We are given a CQ q(~x) = ∃~y.σ(~x, ~y) and the goal is to find
a rewriting, q?, such that

(i) for every DL-Litehorn KB K, cert(q,K) = ans(q?,GK) and
(ii) the size of q? is polynomial in the size of q.

I q? = ∃~y(σ ∧ σ1 ∧ σ2 ∧ σ3)
(i) where σ1, σ2, and σ3 are boolean combinations of equalities

t1 = t2
(ii) and ti is either a term in q or a constant cR ∈ NT .

Conjunctive Query Answering

I We are given a CQ q(~x) = ∃~y.σ(~x, ~y) and the goal is to find
a rewriting, q?, such that

(i) for every DL-Litehorn KB K, cert(q,K) = ans(q?,GK) and
(ii) the size of q? is polynomial in the size of q.

I q? = ∃~y(σ ∧ σ1 ∧ σ2 ∧ σ3)
(i) where σ1, σ2, and σ3 are boolean combinations of equalities

t1 = t2
(ii) and ti is either a term in q or a constant cR ∈ NT .

Conjunctive Query Answering

I σ1 =
∧
x∈~x

∧
cR∈NT (x 6= cR)

I σ1 guarantees that no tuples in the answer can contain an
”unknown” or ”null” value

I The size of σ1 is polynomial in q and T (que’).

Conjunctive Query Answering

I Let N∗ = NT ∪ ε (the empty string).

I Let q be a CQ and R(t, t′) ∈ q.
I Identify q with the set of its atoms and use P−(t, t′) ∈ q as

a synonym of P (t′, t) ∈ q.
I A partial function f : terms of q → N∗ is a tree-witness for

(R, t) if its domain is minimal such that f(t) = ε and for all
S(s, s′) ∈ q

I If f(s) = ε, then f(s′) = cR (provided S = R)

I If f(s) = ωcT , then f(s′) =

{
ω, if T = S−

ωcT cS otherwise

Conjunctive Query Answering

I σ2 =
∧
R(t,t′)∈q, tw (R,t) exists((t

′ = cR)→
∧
fR,t(s)=ε

(s = t))

I σ2 guarantees that no tuples in the answer were the result
of a ”join” on null or unknown values

I The size of σ2 is polynomial in q and T (que’) (poly-time
for tree-witness testing).

Back to our example where q(x1, x2) = ∃y(T (x1, y) ∧ T (x2, y))
⇒ As fT,x1(x2) = ε, we have (y = cT)→ (x1 = x2) in σ2, which
prevents the spurious (a, b) answer

Conjunctive Query Answering

I σ3 =
∧
R(t,t′)∈q, tw (R,t) !exists(t

′ 6= cR)

I If the tree witness for (R, t) does not exist, then there are
two paths from R(t, t′) to some term s ∈ q. σ3 guarantees
that reaching such a term cannot be through null or
unknown values

I The size of σ3 is polynomial in q and T (que’) (poly-time
for tree-witness testing).

Back to our example where
q(x) = ∃y, z(T (x, y) ∧R(y, z) ∧ T (z, y))
⇒ There exist no tree witnesses for (R, y), (R−, z), (T, z) and
(T−, y). This gives four conjuncts (z 6= cR), (y 6= cR−), (y 6= cT)
and (z 6= cT−) which prevent the spurious answer (a)

Conclusion

I Using the combined approach, query rewriting can be done
without an exponential blowup

I Experimental evidence suggest that the efficiency of this
technique is comparable to RDBMSs

I By generating the model using classical views, all the
power of current RDBMSs can be exploited

