The Combined Approach to Ontology-Based
Data Access

R. Kontchakov, C. Lutz, D. Toman, F.Wolter and M.
Zakharyaschev

Presented by Amer Mouawad
University of Waterloo

July 8, 2013

Ontology-Based Data Access (OBDA)

Motivation:
» Data enrichment (through inference)

> Separation of concerns: Users are generally not interested
in how or where data is stored

» Provide a user-oriented view of the data

» Queries are formulated in the language of the ontology

Ontology-Based Data Access (OBDA)

Motivation:
» Data enrichment (through inference)

> Separation of concerns: Users are generally not interested
in how or where data is stored

» Provide a user-oriented view of the data

» Queries are formulated in the language of the ontology

Notation:
» T is given by a finite set of sentences of FO logic
» D is given by a finite set of ground atoms P(aq, ..., a,)
> ai, ..., a, are constants

» A query ¢(Z) is an FO-formula with free variables &

Ontology-Based Data Access (OBDA)

Example:
» All MEN are MORTAL (ontology)
» Socrates is a MAN (explicit data)

» List all mortals => {Socrates}

Ontology-Based Data Access (OBDA)

Example:
» All MEN are MORTAL (ontology)
» Socrates is a MAN (explicit data)

» List all mortals => {Socrates}

Problems:
» D is incomplete
» Potentially infinite set of possible models of 7 and D

» ¢(Z) must be true in every FO-model M of T and D
(certain answers as opposed to RDBMS)

» OBDA should scale to large amounts of data and be as
efficient as RDBMS

Ontology-Based Data Access (OBDA)

Given T, D, and ¢(&), the general problem is to compute a
finite FO model D’ and an FO query ¢/(Z) such that the
following properties hold:

» (ans): @ is an answer to ¢'(Z) over D' iff @ is a certain
answer to q(Z) over T and D

» (dat): D’ is computable in polynomial time in D and does
not depend on ¢(Z)

» (que): ¢'(Z) does not depend on D

Ontology-Based Data Access (OBDA)

Given T, D, and ¢(&), the general problem is to compute a
finite FO model D’ and an FO query ¢/(Z) such that the
following properties hold:
» (ans): @ is an answer to ¢'(Z) over D' iff @ is a certain
answer to q(Z) over T and D
» (dat): D’ is computable in polynomial time in D and does
not depend on ¢(Z)
» (que): ¢'(Z) does not depend on D

Various refinements of these conditions have been studied.
Replacing (dat) by D’ = D is one example which guarantees
the same data complexity as in RDBMSs but rewritten queries
may be exponential in the size of ¢ (Calvanese et al., 2007)

Ontology-Based Data Access (OBDA)

This paper suggests the use of two different conditions:

» (dat’): D’ is computable in polynomial time in both 7
and D, preferably using RDBMSs

» (que’): ¢/(Z) is polynomial in 7 and ¢(%)

Notes: Source data has to be manipulated, no exponential
blowups.

Description Logic: DL-LITE;,

Reminder:

>

Concepts (unary predicates in FO)

» Domains and ranges of roles (binary relations in FO)

» Roles R and concepts C are built from concept names A;

and role names FP;, ¢ > 0, according to the following syntax

rules:
» Ru=P; | P

» Cu=1|T|A4|3R

A DL-LITEj, TBox, T, is a finite set of concept
inclusions

A DL-LI1TE,-, ABox, A, is a finite set of concept and role
assertions, which is used to store instance data

Description Logic: DL-LITE;,

» A DL-LITEp,, knowledge base (K B) is a pair K = (T,.A)

» An interpretation Z is a model of a KB if Z |= « for all
acTUA

» K = a whenever Z | « for all models Z of K

» /C is consistent if it has a model

Description Logic: DL-LITE;,

» A DL-LITEp,, knowledge base (K B) is a pair K = (T,.A)

» An interpretation Z is a model of a KB if Z |= « for all
acTUA

» K = a whenever Z | « for all models Z of K

» /C is consistent if it has a model

Consider K = (7 ,{A (a)}) where
T={AC3IT,IT-CB,BCIR,IR™ C A} and

let Q(l‘) =Ty, Z(T(l‘, y) N R(yv Z) N T(Z’ y))

= q is an answer to ¢(z) in Gk, but not a certain answer to
q(z) over K

B T A A7 B g A B

T C CR K acr acpcr HCTCRCT

cT

Description Logic: DL-LITE;,

Problem: Given a DL-LITE,,, knowledge base K = (T, A)
and a conjunctive query ¢(Z), compute (in poly time if possible)
a finite FO-structure Gx, independently from ¢(Z), and an
FO-query ¢'(#), independently from A, such that (dat’),
(dat’), and (ans) hold: for every tuple @ C Ind(A),

a € cert(q,K) iff @ € ans(q', Gk)

Description Logic: DL-LITE;,

Problem: Given a DL-LITE,,, knowledge base K = (T, A)
and a conjunctive query ¢(Z), compute (in poly time if possible)
a finite FO-structure Gx, independently from ¢(Z), and an
FO-query ¢'(#), independently from A, such that (dat’),
(dat’), and (ans) hold: for every tuple @ C Ind(A),

a € cert(q,K) iff @ € ans(q', Gk)

= The key to the solution is the existence of canonical models
for Horn theories which give all correct answers to CQs

Canonical Models

Some definitions for a KB K = (T, A):

» N7 = {cp,cp- | Pis arole name in T} is a set of "new”
individual names (disjoint from Ind(A)).

» A role R is called generating in K if there exist a € Ind(A)
and Ry, ..., R, = R such that:
» (agen): K = JRp(a) but Ro(a,b) ¢ A for all b € Ind(A)
(written as a ~> cr,)
» (rgen): fori <n,T |=3R; C R;11 and R; # R;11
(written as cgr, ~ Cr,,)

Canonical Models

The model Gx for K = (T, A) is defined as follows:

A9 = Ind(A) U{cr | R € N7 | R is generating in K}

a9 = a, for all a € Ind(A)

A% ={acInd(A) | K E A(a)} U{cg € A% | T =3IR™ C A}
P9 = {(a,b) € Ind(A) xInd(A) | P(a,b) € A}

U{(d,cp) € A9% xNT | d~ cp}
U{(CP—,d) S NT XAg’C | Cp— ~ d}

Canonical Models
The model Gx
» can be built in time polynomial in |K| and thus satisfies
(dat’)
» is not in general a model of K (finiteness)

» does NOT always give correct answers to queries (without
modifications)

Canonical Models
The model Gx
» can be built in time polynomial in |K| and thus satisfies
(dat’)
» is not in general a model of K (finiteness)

» does NOT always give correct answers to queries (without
modifications)

Another example: K = (T ,{A(a), A(b)}) where

T={AC3IT, 37T CB,BCIR,IR™ C A} and

let q(z1,22) = FyY(T(21,y) AT (22,Y))

= (a,b) is an answer to ¢(x) in Gk, but not a certain answer to
q(x) over K

A A r B g A r B
T T o 0 vee
g b B A U b ber beper bererer
K K
A et A v B g A x B
a a acr acpcr ACTCRET

Canonical Models

The solution to the problem is two-fold:

» First, it is showed that by ”unraveling” Gx into a (possibly
infinite) homomorphic model Uy, we can guarantee
cert(q,K) = ans(q,Ux) C ans(q,Gx) for every consistent
DL-L1TEo-» KB K and every positive existential query gq.

» Secondly, a query rewriting algorithm is proposed which
converts any ¢ into some ¢’ such that ans(q',Gx) =
ans(q,Ux).

Conjunctive Query Answering

» We are given a CQ ¢(Z) = 3y.0(Z, §) and the goal is to find
a rewriting, ¢*, such that
(i) for every DL-LITEporn KB K, cert(q, K) = ans(¢*, G) and
(ii) the size of ¢* is polynomial in the size of g.

Conjunctive Query Answering

» We are given a CQ ¢(Z) = 3y.0(Z, §) and the goal is to find
a rewriting, ¢*, such that
(i) for every DL-LITEporn KB K, cert(q, K) = ans(¢*, G) and
(ii) the size of ¢* is polynomial in the size of g.

» ¢* =3y(oc Noy Noa Aos)
(i) where o1, 09, and o3 are boolean combinations of equalities
ty =12
(ii) and t; is either a term in ¢ or a constant cg € N7 .

Conjunctive Query Answering

> 01 = /\mef /\CRGNT(Qj # CR)

» o, guarantees that no tuples in the answer can contain an
”unknown” or "null” value
» The size of o7 is polynomial in ¢ and T (que’).

Conjunctive Query Answering

» Let N* = N7 Ue (the empty string).

» Let ¢ be a CQ and R(¢,t') € gq.

» Identify ¢ with the set of its atoms and use P~ (t,t') € q as
a synonym of P(t',t) € q.

» A partial function f : terms of ¢ — N* is a tree-witness for
(R,t) if its domain is minimal such that f(¢) = e and for all
S(s,s') €q

» If f(s) =€, then f(s') = cgr (provided S = R)

» If f(s) = wer, then f(s') = w, if T'= 57 .

wercg otherwise

Example Letq = {R(y1,42), S(¥2, y3), S(y4, ya)}. Then
the tree witnesses for (R, y1) and (S, y4) in g are:
£ Cr undef.

o > s S
o y> wot
Cr Y3 € Y3

S S

fR,y1 ya fS.y4 m

Conjunctive Query Answering

> 02 = /\R(t,t’)Eq, tw (R,t) exists((t, = CR) - /\fR,t(s):e(S = t))

» 0o guarantees that no tuples in the answer were the result
of a ”join” on null or unknown values

» The size of o3 is polynomial in ¢ and T (que’) (poly-time
for tree-witness testing).

Back to our example where q(z1,z2) = Jy(T(x1,y) A T(22,y))
= As fr, (22) = €, we have (y = cr) = (21 = 22) in o9, which
prevents the spurious (a, b) answer

A r B p A r B

o ees
bepcr bercrer
TR A B p A r B

o eee
acr acpCr GCTCRCT

Q
e}
QL T O
S\ /S
S¥w
(N
b
£
-
%“
~

20

Conjunctive Query Answering
> 03 = /\R(t,t’)Eq, tw (R,t) !exists(t/ 75 CR)

» If the tree witness for (R,t) does not exist, then there are
two paths from R(t,t') to some term s € ¢q. o3 guarantees
that reaching such a term cannot be through null or
unknown values

» The size of o3 is polynomial in ¢ and 7 (que’) (poly-time
for tree-witness testing).

Back to our example where

Q(m) = Ty, Z(T($, y) N R(y7 Z) N T(Za y))

= There exist no tree witnesses for (R,y), (R™,z), (T, z) and
(T—,y). This gives four conjuncts (z # cr), (y # cg-), (y # cr)
and (z # c¢p-) which prevent the spurious answer (a)

B T A 4TBR4TB

O—TQMK

cr a acr acpcr acrcRcT

Conclusion

» Using the combined approach, query rewriting can be done
without an exponential blowup

» Experimental evidence suggest that the efficiency of this
technique is comparable to RDBMSs

» By generating the model using classical views, all the
power of current RDBMSs can be exploited

