The Combined Approach to Ontology-Based Data Access

R. Kontchakov, C. Lutz, D. Toman, F.Wolter and M. Zakharyaschev

Presented by Amer Mouawad University of Waterloo

July 8, 2013

Ontology-Based Data Access (OBDA)

Motivation:

- Data enrichment (through inference)
- Separation of concerns: Users are generally not interested in how or where data is stored
- Provide a user-oriented view of the data
- Queries are formulated in the language of the ontology

Ontology-Based Data Access (OBDA)

Motivation:

- Data enrichment (through inference)
- Separation of concerns: Users are generally not interested in how or where data is stored
- Provide a user-oriented view of the data
- Queries are formulated in the language of the ontology

Notation:

- \mathcal{T} is given by a finite set of sentences of FO logic
- \mathcal{D} is given by a finite set of ground atoms $P\left(a_{1}, \ldots, a_{n}\right)$
- a_{1}, \ldots, a_{n} are constants
- A query $q(\vec{x})$ is an FO-formula with free variables \vec{x}

Ontology-Based Data Access (OBDA)

Example:

- All MEN are MORTAL (ontology)
- Socrates is a MAN (explicit data)
- List all mortals $=>$ \{Socrates $\}$

Ontology-Based Data Access (OBDA)

Example:

- All MEN are MORTAL (ontology)
- Socrates is a MAN (explicit data)
- List all mortals $=>$ \{Socrates $\}$

Problems:

- \mathcal{D} is incomplete
- Potentially infinite set of possible models of \mathcal{T} and \mathcal{D}
- $q(\vec{x})$ must be true in every FO-model \mathcal{M} of \mathcal{T} and \mathcal{D} (certain answers as opposed to RDBMS)
- OBDA should scale to large amounts of data and be as efficient as RDBMS

Ontology-Based Data Access (OBDA)

Given \mathcal{T}, \mathcal{D}, and $q(\vec{x})$, the general problem is to compute a finite FO model \mathcal{D}^{\prime} and an FO query $q^{\prime}(\vec{x})$ such that the following properties hold:

- (ans): \vec{a} is an answer to $q^{\prime}(\vec{x})$ over \mathcal{D}^{\prime} iff \vec{a} is a certain answer to $q(\vec{x})$ over \mathcal{T} and \mathcal{D}
- (dat): \mathcal{D}^{\prime} is computable in polynomial time in \mathcal{D} and does not depend on $q(\vec{x})$
- (que): $q^{\prime}(\vec{x})$ does not depend on \mathcal{D}

Ontology-Based Data Access (OBDA)

Given \mathcal{T}, \mathcal{D}, and $q(\vec{x})$, the general problem is to compute a finite FO model \mathcal{D}^{\prime} and an FO query $q^{\prime}(\vec{x})$ such that the following properties hold:

- (ans): \vec{a} is an answer to $q^{\prime}(\vec{x})$ over \mathcal{D}^{\prime} iff \vec{a} is a certain answer to $q(\vec{x})$ over \mathcal{T} and \mathcal{D}
- (dat): \mathcal{D}^{\prime} is computable in polynomial time in \mathcal{D} and does not depend on $q(\vec{x})$
- (que): $q^{\prime}(\vec{x})$ does not depend on \mathcal{D}

Various refinements of these conditions have been studied. Replacing (dat) by $\mathcal{D}^{\prime}=\mathcal{D}$ is one example which guarantees the same data complexity as in RDBMSs but rewritten queries may be exponential in the size of q (Calvanese et al., 2007)

Ontology-Based Data Access (OBDA)

This paper suggests the use of two different conditions:

- (dat'): \mathcal{D}^{\prime} is computable in polynomial time in both \mathcal{T} and \mathcal{D}, preferably using RDBMSs
- (que'): $q^{\prime}(\vec{x})$ is polynomial in \mathcal{T} and $q(\vec{x})$

Notes: Source data has to be manipulated, no exponential blowups.

Description Logic: DL-LITE $h o r n$

Reminder:

- Concepts (unary predicates in FO)
- Domains and ranges of roles (binary relations in FO)
- Roles R and concepts C are built from concept names A_{i} and role names $P_{i}, i \geq 0$, according to the following syntax rules:
- $R::=P_{i} \mid P_{i}^{-}$
- $C::=\perp|\top| A_{i} \mid \exists R$
- A DL-Lite $h o r n$ TBox, \mathcal{T}, is a finite set of concept inclusions
- A DL-Lite ${ }_{\text {horn }}$ ABox, \mathcal{A}, is a finite set of concept and role assertions, which is used to store instance data

Description Logic: DL-LITE $h o r n$

- A DL-LitE ${ }_{\text {horn }}$ knowledge base $(K B)$ is a pair $\mathcal{K}=(\mathcal{T}, \mathcal{A})$
- An interpretation \mathcal{I} is a model of a $K B$ if $\mathcal{I} \models \alpha$ for all $\alpha \in \mathcal{T} \cup \mathcal{A}$
- $\mathcal{K} \models \alpha$ whenever $\mathcal{I} \models \alpha$ for all models \mathcal{I} of \mathcal{K}
- \mathcal{K} is consistent if it has a model

Description Logic: DL-LITE $h o r n$

- A DL-LiTE ${ }_{\text {horn }}$ knowledge base $(K B)$ is a pair $\mathcal{K}=(\mathcal{T}, \mathcal{A})$
- An interpretation \mathcal{I} is a model of a $K B$ if $\mathcal{I} \models \alpha$ for all $\alpha \in \mathcal{T} \cup \mathcal{A}$
- $\mathcal{K} \models \alpha$ whenever $\mathcal{I} \models \alpha$ for all models \mathcal{I} of \mathcal{K}
- \mathcal{K} is consistent if it has a model

Consider $\mathcal{K}=(\mathcal{T},\{\mathcal{A}(a)\})$ where $\mathcal{T}=\left\{\mathcal{A} \sqsubseteq \exists \mathcal{T}, \exists \mathcal{T}^{-} \sqsubseteq \mathcal{B}, \mathcal{B} \sqsubseteq \exists \mathcal{R}, \exists \mathcal{R}^{-} \sqsubseteq \mathcal{A}\right\}$ and let $q(x)=\exists y, z(T(x, y) \wedge R(y, z) \wedge T(z, y))$
$\Rightarrow a$ is an answer to $q(x)$ in $\mathcal{G}_{\mathcal{K}}$, but not a certain answer to $q(x)$ over \mathcal{K}

Description Logic: DL-LITE $h o r n$

Problem: Given a DL-Lite $_{\text {horn }}$ knowledge base $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ and a conjunctive query $q(\vec{x})$, compute (in poly time if possible) a finite FO-structure $\mathcal{G}_{\mathcal{K}}$, independently from $q(\vec{x})$, and an FO-query $q^{\prime}(\vec{x})$, independently from A, such that (dat'), (dat'), and (ans) hold: for every tuple $\vec{a} \subseteq \operatorname{Ind}(\mathcal{A})$, $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\vec{a} \in \operatorname{ans}\left(q^{\prime}, \mathcal{G}_{\mathcal{K}}\right)$

Description Logic: DL-LITE $h o r n$

Problem: Given a DL-Lite ${ }_{\text {horn }}$ knowledge base $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ and a conjunctive query $q(\vec{x})$, compute (in poly time if possible) a finite FO-structure $\mathcal{G}_{\mathcal{K}}$, independently from $q(\vec{x})$, and an FO-query $q^{\prime}(\vec{x})$, independently from A, such that (dat'), (dat'), and (ans) hold: for every tuple $\vec{a} \subseteq \operatorname{Ind}(\mathcal{A})$, $\vec{a} \in \operatorname{cert}(q, \mathcal{K})$ iff $\vec{a} \in \operatorname{ans}\left(q^{\prime}, \mathcal{G}_{\mathcal{K}}\right)$
\Rightarrow The key to the solution is the existence of canonical models for Horn theories which give all correct answers to CQs

Canonical Models

Some definitions for a $\mathrm{KB} \mathcal{K}=(\mathcal{T}, \mathcal{A})$:

- $N^{\mathcal{T}}=\left\{c_{P}, c_{P^{-}} \mid P\right.$ is a role name in $\left.\mathcal{T}\right\}$ is a set of "new" individual names (disjoint from $\operatorname{Ind}(\mathcal{A})$).
- A role R is called generating in \mathcal{K} if there exist $a \in \operatorname{Ind}(\mathcal{A})$ and $R_{0}, \ldots, R_{n}=R$ such that:
- (agen): $\mathcal{K} \models \exists R_{0}(a)$ but $R_{0}(a, b) \notin \mathcal{A}$ for all $b \in \operatorname{Ind}(\mathcal{A})$ (written as $a \rightsquigarrow c_{R_{0}}$)
- (rgen): for $i \leq n, \mathcal{T} \models \exists R_{i}^{-} \sqsubseteq R_{i+1}$ and $R_{i}^{-} \neq R_{i+1}$ (written as $c_{R_{i}} \rightsquigarrow c_{R_{i+1}}$)

Canonical Models

The model $\mathcal{G}_{\mathcal{K}}$ for $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ is defined as follows:
$\Delta^{\mathcal{G}_{\mathcal{K}}}=\operatorname{Ind}(\mathcal{A}) \cup\left\{c_{R} \mid R \in N^{\mathcal{T}}, R\right.$ is generating in $\left.\mathcal{K}\right\}$
$a^{\mathcal{G}_{\mathcal{K}}}=a$, for all $a \in \operatorname{Ind}(\mathcal{A})$
$A^{\mathcal{G}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{c_{R} \in \Delta^{\mathcal{G}_{\mathcal{K}}} \mid \mathcal{T} \equiv \exists R^{-} \sqsubseteq A\right\}$
$P^{\mathcal{G}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\}$
$\cup\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{G}_{\mathcal{K}}} \times N^{\mathcal{T}} \mid d \rightsquigarrow c_{P}\right\}$
$\cup\left\{\left(c_{P^{-}}, d\right) \in N^{\mathcal{T}} \times \Delta^{\mathcal{G}_{\mathcal{K}}} \mid c_{P^{-}} \rightsquigarrow d\right\}$

Canonical Models

The model $\mathcal{G}_{\mathcal{K}}$

- can be built in time polynomial in $|\mathcal{K}|$ and thus satisfies (dat')
- is not in general a model of \mathcal{K} (finiteness)
- does NOT always give correct answers to queries (without modifications)

Canonical Models

The model $\mathcal{G}_{\mathcal{K}}$

- can be built in time polynomial in $|\mathcal{K}|$ and thus satisfies (dat')
- is not in general a model of \mathcal{K} (finiteness)
- does NOT always give correct answers to queries (without modifications)

Another example: $\mathcal{K}=(\mathcal{T},\{A(a), A(b)\})$ where $\mathcal{T}=\left\{\mathcal{A} \sqsubseteq \exists \mathcal{T}, \exists \mathcal{T}^{-} \sqsubseteq \mathcal{B}, \mathcal{B} \sqsubseteq \exists \mathcal{R}, \exists \mathcal{R}^{-} \sqsubseteq \mathcal{A}\right\}$ and let $q\left(x_{1}, x_{2}\right)=\exists y\left(T\left(x_{1}, y\right) \wedge T\left(x_{2}, y\right)\right)$
$\Rightarrow(a, b)$ is an answer to $q(x)$ in $\mathcal{G}_{\mathcal{K}}$, but not a certain answer to $q(x)$ over \mathcal{K}

Canonical Models

The solution to the problem is two-fold:

- First, it is showed that by "unraveling" $\mathcal{G}_{\mathcal{K}}$ into a (possibly infinite) homomorphic model $\mathcal{U}_{\mathcal{K}}$, we can guarantee $\operatorname{cert}(q, \mathcal{K})=\operatorname{ans}\left(q, \mathcal{U}_{\mathcal{K}}\right) \subseteq \operatorname{ans}\left(q, \mathcal{G}_{\mathcal{K}}\right)$ for every consistent DL-LITE $_{\text {horn }} \mathrm{KB} \mathcal{K}$ and every positive existential query q.
- Secondly, a query rewriting algorithm is proposed which converts any q into some q^{\prime} such that $\operatorname{ans}\left(q^{\prime}, \mathcal{G}_{\mathcal{K}}\right)=$ $\operatorname{ans}\left(q, \mathcal{U}_{\mathcal{K}}\right)$.

Conjunctive Query Answering

- We are given a CQ $q(\vec{x})=\exists \vec{y} \cdot \sigma(\vec{x}, \vec{y})$ and the goal is to find a rewriting, q^{\star}, such that
(i) for every DL-LitE ${ }_{h o r n} \operatorname{KB} \mathcal{K}, \operatorname{cert}(q, \mathcal{K})=\operatorname{ans}\left(q^{\star}, \mathcal{G}_{\mathcal{K}}\right)$ and
(ii) the size of q^{\star} is polynomial in the size of q.

Conjunctive Query Answering

- We are given a CQ $q(\vec{x})=\exists \vec{y} \cdot \sigma(\vec{x}, \vec{y})$ and the goal is to find a rewriting, q^{\star}, such that
(i) for every DL-LitE ${ }_{\text {horn }} \operatorname{KB} \mathcal{K}, \operatorname{cert}(q, \mathcal{K})=\operatorname{ans}\left(q^{\star}, \mathcal{G}_{\mathcal{K}}\right)$ and
(ii) the size of q^{\star} is polynomial in the size of q.
- $q^{\star}=\exists \vec{y}\left(\sigma \wedge \sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3}\right)$
(i) where σ_{1}, σ_{2}, and σ_{3} are boolean combinations of equalities $t_{1}=t_{2}$
(ii) and t_{i} is either a term in q or a constant $c_{R} \in N^{\mathcal{T}}$.

Conjunctive Query Answering

- $\sigma_{1}=\bigwedge_{x \in \vec{x}} \bigwedge_{c_{R} \in N^{\mathcal{T}}}\left(x \neq c_{R}\right)$
- σ_{1} guarantees that no tuples in the answer can contain an "unknown" or "null" value
- The size of σ_{1} is polynomial in q and \mathcal{T} (que').

Conjunctive Query Answering

- Let $N^{*}=N^{\mathcal{T}} \cup \epsilon$ (the empty string).
- Let q be a CQ and $R\left(t, t^{\prime}\right) \in q$.
- Identify q with the set of its atoms and use $P^{-}\left(t, t^{\prime}\right) \in q$ as a synonym of $P\left(t^{\prime}, t\right) \in q$.
- A partial function f : terms of $q \rightarrow N^{*}$ is a tree-witness for (R, t) if its domain is minimal such that $f(t)=\epsilon$ and for all $S\left(s, s^{\prime}\right) \in q$
- If $f(s)=\epsilon$, then $f\left(s^{\prime}\right)=c_{R}($ provided $S=R)$
- If $f(s)=\omega c_{T}$, then $f\left(s^{\prime}\right)=\left\{\begin{array}{l}\omega, \text { if } T=S^{-} \\ \omega c_{T} c_{S} \text { otherwise }\end{array}\right.$

$$
\text { Example Let } q=\left\{R\left(y_{1}, y_{2}\right), S\left(y_{2}, y_{3}\right), S\left(y_{4}, y_{3}\right)\right\} \text {. Then }
$$ the tree witnesses for $\left(R, y_{1}\right)$ and $\left(S, y_{4}\right)$ in q are:

Conjunctive Query Answering

- $\sigma_{2}=\bigwedge_{R\left(t, t^{\prime}\right) \in q, t w(R, t) \text { exists }}\left(\left(t^{\prime}=c_{R}\right) \rightarrow \bigwedge_{f_{R, t}(s)=\epsilon}(s=t)\right)$
- σ_{2} guarantees that no tuples in the answer were the result of a "join" on null or unknown values
- The size of σ_{2} is polynomial in q and \mathcal{T} (que') (poly-time for tree-witness testing).

Back to our example where $q\left(x_{1}, x_{2}\right)=\exists y\left(T\left(x_{1}, y\right) \wedge T\left(x_{2}, y\right)\right)$ \Rightarrow As $f_{T, x_{1}}(x 2)=\epsilon$, we have $\left(y=c_{T}\right) \rightarrow(x 1=x 2)$ in σ_{2}, which prevents the spurious (a, b) answer

Conjunctive Query Answering

- $\sigma_{3}=\bigwedge_{R\left(t, t^{\prime}\right) \in q, t w(R, t) \text { !exists }}\left(t^{\prime} \neq c_{R}\right)$
- If the tree witness for (R, t) does not exist, then there are two paths from $R\left(t, t^{\prime}\right)$ to some term $s \in q . \sigma_{3}$ guarantees that reaching such a term cannot be through null or unknown values
- The size of σ_{3} is polynomial in q and \mathcal{T} (que') (poly-time for tree-witness testing).

Back to our example where
$q(x)=\exists y, z(T(x, y) \wedge R(y, z) \wedge T(z, y))$
\Rightarrow There exist no tree witnesses for $(R, y),\left(R^{-}, z\right),(T, z)$ and $\left(T^{-}, y\right)$. This gives four conjuncts $\left(z \neq c_{R}\right),\left(y \neq c_{R^{-}}\right),\left(y \neq c_{T}\right)$ and ($z \neq c_{T^{-}}$) which prevent the spurious answer (a)

Conclusion

- Using the combined approach, query rewriting can be done without an exponential blowup
- Experimental evidence suggest that the efficiency of this technique is comparable to RDBMSs
- By generating the model using classical views, all the power of current RDBMSs can be exploited

