
Fundamentals of Physical Design
Open Problems

David Toman

D. R. Cheriton School of Computer Science

D. Toman (Waterloo) Physical Design: Issues 1 / 8



Summary of the Lectures

Take Home Massage(s):
1 Basis for Physical Design: expressive integrity constraints plus

simple index (capabilities) declarations (plus cost estimates):
• supports varied physical designs ranging from main-memory to

external storage to distributed data.
• provides a fine-grained control over how data is accessed using

binding patterns.

2 Query Optimization (compilation): essential part of the approach:
• yields true physical data independence

3 Trade-offs between the expressive power of constraints/queries
vs. the computational properties need to be considered.

D. Toman (Waterloo) Physical Design: Issues 2 / 8



Summary of the Lectures

Take Home Massage(s):
1 Basis for Physical Design: expressive integrity constraints plus

simple index (capabilities) declarations (plus cost estimates):
• supports varied physical designs ranging from main-memory to

external storage to distributed data.
• provides a fine-grained control over how data is accessed using

binding patterns.

2 Query Optimization (compilation): essential part of the approach:
• yields true physical data independence

3 Trade-offs between the expressive power of constraints/queries
vs. the computational properties need to be considered.

D. Toman (Waterloo) Physical Design: Issues 2 / 8



Summary of the Lectures

Take Home Massage(s):
1 Basis for Physical Design: expressive integrity constraints plus

simple index (capabilities) declarations (plus cost estimates):
• supports varied physical designs ranging from main-memory to

external storage to distributed data.
• provides a fine-grained control over how data is accessed using

binding patterns.

2 Query Optimization (compilation): essential part of the approach:
• yields true physical data independence

3 Trade-offs between the expressive power of constraints/queries
vs. the computational properties need to be considered.

D. Toman (Waterloo) Physical Design: Issues 2 / 8



Open Issues&Directions of Research

. . . for Interpolation:

1 Plan Generation and Costs
2 Duplicates, Binding Patterns, etc.

. . . for both/all Approaches:

3 Updates through Constraints
4 Ordering of Data
5 Inductive Types, Fixpoints, et al.
6 Transactions et al.

D. Toman (Waterloo) Physical Design: Issues 3 / 8



Interpolation: Plan Generation, Costs, et al.

The interpolation based rewriting produces domain independent query

. . . from a proof of the implicit definability property.

Can the above proof (search) be guided:

1 to produce a range restricted query instead?
. . . and to respect binding patterns?

2 to account for duplicate semantics?

3 by the cost (estimation) of the plan generated?

D. Toman (Waterloo) Physical Design: Issues 4 / 8



Interpolation: Plan Generation, Costs, et al.

The interpolation based rewriting produces domain independent query

. . . from a proof of the implicit definability property.

Can the above proof (search) be guided:

1 to produce a range restricted query instead?
. . . and to respect binding patterns?

2 to account for duplicate semantics?

3 by the cost (estimation) of the plan generated?

D. Toman (Waterloo) Physical Design: Issues 4 / 8



Updates through Constraints

Story so far:
1 Schema constraints
2 User Query

}
compile−−−−−−−−−−→ Query Plan

Can this approach be extended to updates?

• how to specify what can change/what must remain invariant?

• how to deal with internal data values (e.g., page numbers)?

• how to handle non-determinism (e.g., page splits in B+tree)?

D. Toman (Waterloo) Physical Design: Issues 5 / 8



Updates through Constraints

Story so far:
1 Schema constraints
2 User Query

}
compile−−−−−−−−−−→ Query Plan

Can this approach be extended to updates?

• how to specify what can change/what must remain invariant?

• how to deal with internal data values (e.g., page numbers)?

• how to handle non-determinism (e.g., page splits in B+tree)?

D. Toman (Waterloo) Physical Design: Issues 5 / 8



Ordering of Data

Understanding ordering of data provides support
for the use of algorithmically better techniques . . .

• removes the need for sorting (e.g., for duplicate removal)
• allows alternative algorithms (merge join, merge (union), etc.)

• How to define proper semantics with order?
• What are the appropriate physical primitives/operations?

Order Dependencies
Capture ordering correlations between attributes (paths):

EMP<EMP: Id(<) -> Eid(<) Employees “ordered” by Eid
EMP<EMP: Eid(<) -> Name(=<) Names increase with Eids

D. Toman (Waterloo) Physical Design: Issues 6 / 8



Ordering of Data

Understanding ordering of data provides support
for the use of algorithmically better techniques . . .

• removes the need for sorting (e.g., for duplicate removal)
• allows alternative algorithms (merge join, merge (union), etc.)

• How to define proper semantics with order?
• What are the appropriate physical primitives/operations?

Order Dependencies
Capture ordering correlations between attributes (paths):

EMP<EMP: Id(<) -> Eid(<) Employees “ordered” by Eid
EMP<EMP: Eid(<) -> Name(=<) Names increase with Eids

D. Toman (Waterloo) Physical Design: Issues 6 / 8



Ordering of Data

Understanding ordering of data provides support
for the use of algorithmically better techniques . . .

• removes the need for sorting (e.g., for duplicate removal)
• allows alternative algorithms (merge join, merge (union), etc.)

• How to define proper semantics with order?
• What are the appropriate physical primitives/operations?

Order Dependencies
Capture ordering correlations between attributes (paths):

EMP<EMP: Id(<) -> Eid(<) Employees “ordered” by Eid
EMP<EMP: Eid(<) -> Name(=<) Names increase with Eids

D. Toman (Waterloo) Physical Design: Issues 6 / 8



Inductive Types, Fixpoints, et al.

Physical Primitive in FO Approach
Index declarations + binding patterns (necessary to deal with sets)

Can we use more primitive constructs?
. . . only if queries/plans allow (some form of) iteration

• impact on schema language (e.g., regular expressions in Paths)?
• impact on query language (e.g., fixpoints, loops)?

. . . inductive types or general graphs?
• can we still compile queries?

D. Toman (Waterloo) Physical Design: Issues 7 / 8



Inductive Types, Fixpoints, et al.

Physical Primitive in FO Approach
Index declarations + binding patterns (necessary to deal with sets)

Can we use more primitive constructs?
. . . only if queries/plans allow (some form of) iteration

• impact on schema language (e.g., regular expressions in Paths)?
• impact on query language (e.g., fixpoints, loops)?

. . . inductive types or general graphs?
• can we still compile queries?

D. Toman (Waterloo) Physical Design: Issues 7 / 8



Transactions and Concurrency Control

IDEA
Describe synchronization primitives in the schema

. . . perhaps as a special index declaration

• can then queries/updates be compiled in such a way that they
follow a particular concurrency protocol when executed?

. . . e.g., the tree locking protocol?
• how about recovery?

⇒ rollback for non-deadlock free CC?
⇒ durability?

D. Toman (Waterloo) Physical Design: Issues 8 / 8



Transactions and Concurrency Control

IDEA
Describe synchronization primitives in the schema

. . . perhaps as a special index declaration

• can then queries/updates be compiled in such a way that they
follow a particular concurrency protocol when executed?

. . . e.g., the tree locking protocol?
• how about recovery?

⇒ rollback for non-deadlock free CC?
⇒ durability?

D. Toman (Waterloo) Physical Design: Issues 8 / 8


