Fundamentals of Physical Design Query Processing: First-Order Queries

David Toman

D. R. Cheriton School of Computer Science
University of
Waterloo

... the Story so Far:
(1) Integrity constraints and simple index declarations capture a variety of logical-to-physical mappings and physical designs: physical data independence,
(2) Most of physical design issues (including appropriate costs) can be captured in such a framework, and
(3) Conjunctive queries can be compiled to low-level query plans.
\Rightarrow complex queries: "select block at a time" approach.

Shortcomings

(1) General first-order queries: not satisfactory
(2) Complex schema: what to do with negations et al.?
\Rightarrow additional "rewriting rules"? (when is it enough?)
(3) Completeness (can we find a rewriting if one exists)?
\Rightarrow conjunctive query over conjunctive materialized views
... may need negation in the plan.

Non-conjunctive Rewriting for CQ over CQ views

- Query:

$$
Q(x, y) \equiv \exists z, v, u \cdot R(z, x), R(z, v), R(v, u), R(u, y)
$$

- Views (with "index Vi () (x,y)"):

$$
\begin{aligned}
& V_{1}(x, y) \equiv \exists z, v \cdot R(z, x), R(z, v), R(v, y) \\
& V_{2}(x, y) \equiv \exists z \cdot R(x, z), R(z, y) \\
& V_{3}(x, y) \equiv \exists z, v \cdot R(x, z), R(z, v), R(v, y)
\end{aligned}
$$

Non-conjunctive Rewriting for CQ over CQ views

- Query:

$$
Q(x, y) \equiv \exists z, v, u \cdot R(z, x), R(z, v), R(v, u), R(u, y)
$$

- Views (with "index Vi () (x,y)"):

$$
\begin{aligned}
& V_{1}(x, y) \equiv \exists z, v \cdot R(z, x), R(z, v), R(v, y) \\
& V_{2}(x, y) \equiv \exists z \cdot R(x, z), R(z, y) \\
& V_{3}(x, y) \equiv \exists z, v \cdot R(x, z), R(z, v), R(v, y)
\end{aligned}
$$

- Rewriting (and a plan, assuming indices for the views):

$$
\exists z . V_{1}(x, z) \wedge \forall v \cdot\left(V_{2}(v, z) \rightarrow V_{3}(v, y)\right)
$$

Non-conjunctive Rewriting for CQ over CQ views

- Query:

$$
Q(x, y) \equiv \exists z, v, u \cdot R(z, x), R(z, v), R(v, u), R(u, y)
$$

- Views (with "index Vi () (x,y)"):

$$
\begin{aligned}
& V_{1}(x, y) \equiv \exists z, v \cdot R(z, x), R(z, v), R(v, y) \\
& V_{2}(x, y) \equiv \exists z \cdot R(x, z), R(z, y) \\
& V_{3}(x, y) \equiv \exists z, v \cdot R(x, z), R(z, v), R(v, y)
\end{aligned}
$$

- Rewriting (and a plan, assuming indices for the views):

$$
\exists z . V_{1}(x, z) \wedge \forall v \cdot\left(V_{2}(v, z) \rightarrow V_{3}(v, y)\right)
$$

... and there isn't an equivalent conjunctive query.

First-order (FO) Query Language

Syntax:

```
Q ::= A v
    V.Pf1 = u.Pf2
    true
    from Q1,Q2
    elim v1,...,vk Q
    empty v1,...,vk empty set
    Q1 union Q2
    Q1 minus Q2
```

class access
equation
singleton
natural join
selection (distinct)
empty set
union (union-compatible)
set difference (union-compatible)
... essentially an alternative syntax for First-order Formulæ
... restricted to domain-independent queries.

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data?

Definition (Implicit Definability)
A query Q is implicitly definable in $A_{j} s$ if $Q\left(M_{1}\right)=Q\left(M_{2}\right)$ for all $M_{1} \models \mathcal{T}$ and $M_{2} \models \mathcal{T}$ two databases such that

$$
\left(\text { select } v . V_{j}\left(A_{j} v\right)\right)\left(M_{1}\right)=\left(\text { select } v . V_{j}\left(A_{j} \text { v) }\right)\left(M_{2}\right)\right.
$$

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data?

Definition (Implicit Definability)
A query Q is implicitly definable in $A_{j} s$ if $Q\left(M_{1}\right)=Q\left(M_{2}\right)$ for all $M_{1} \models \mathcal{T}$ and $M_{2} \models \mathcal{T}$ two databases such that

$$
\left(\text { select } v . V_{j}\left(A_{j} \text { v)) }\left(M_{1}\right)=\left(\text { select } v . V_{j}\left(A_{j} \text { v) }\right)\left(M_{2}\right)\right.\right.\right.
$$

(2) Can we test for this?

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data?

Definition (Implicit Definability)
A query Q is implicitly definable in $A_{j} s$ if $Q\left(M_{1}\right)=Q\left(M_{2}\right)$ for all $M_{1} \models \mathcal{T}$ and $M_{2} \models \mathcal{T}$ two databases such that
$\left(\right.$ select $\left.\mathrm{v} . V_{j}\left(A_{j} \mathrm{v}\right)\right)\left(M_{1}\right)=\left(\right.$ select $\left.\mathrm{v} . V_{j}\left(A_{j} \mathrm{v}\right)\right)\left(M_{2}\right)$.
(2) Can we test for this? YES:
$\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*}$, where (.) $)^{*}$ renames all symbols but $A_{j} \& V_{j}$.

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data? Implicit Definability: Q is determined by the data only
(2) Can we test for this? YES:
$\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*}$, where (. $)^{*}$ renames all symbols but $A_{j} \& V_{j}$.
(3) Does it mean we have a rewriting (a plan)?

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data? Implicit Definability: Q is determined by the data only
(2) Can we test for this? YES:
$\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*}$, where (. $)^{*}$ renames all symbols but $A_{j} \& V_{j}$.
(3) Does it mean we have a rewriting (a plan)? YES:

Theorem (Beth, 1953)
Q implicitly definable in A_{1}, \ldots, A_{k}. Then Q is explicitly definable, i.e., $Q \equiv \zeta$ for some $\zeta \in F O_{\left[\left[A_{1}, \ldots, A_{k}, V_{1}, \ldots, V_{j}\right]\right.}$.

Beth Definability

(1) \mathcal{T} a schema (theory), (2) Q a (FO) query, and
(3) A_{1}, \ldots, A_{k} data: indices with $B P\left(A_{j}\right)=\left(\{ \}, V_{j}\right)$.
(1) What does it mean for a query to be defined by the data? Implicit Definability: Q is determined by the data only
(2) Can we test for this? YES:
$\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*}$, where (. $)^{*}$ renames all symbols but $A_{j} \& V_{j}$.
(3) Does it mean we have a rewriting (a plan)? YES:

Theorem (Beth, 1953)
Q implicitly definable in A_{1}, \ldots, A_{k}. Then Q is explicitly definable, i.e., $Q \equiv \zeta$ for some $\zeta \in F O_{\left[A_{1}, \ldots, A_{k}, V_{1}, \ldots, V_{j}\right]}$.
... this unfortunately fails in finite models

Craig Interpolation

Theorem (Craig, 1957)

For $\varphi \rightarrow \psi$ a valid $F O$ formula there is a FO formula $\zeta \in \mathcal{L}(\varphi) \cap \mathcal{L}(\psi)$, an interpolant, such that $\varphi \rightarrow \zeta$ and $\zeta \rightarrow \psi$ are valid.

Craig Interpolation

Theorem (Craig, 1957)

For $\varphi \rightarrow \psi$ a valid $F O$ formula there is a FO formula $\zeta \in \mathcal{L}(\varphi) \cap \mathcal{L}(\psi)$, an interpolant, such that $\varphi \rightarrow \zeta$ and $\zeta \rightarrow \psi$ are valid.

How do we use this? Convert

$$
\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*} \quad \text { to } \quad \vDash((\bigwedge \mathcal{T}) \wedge Q) \rightarrow\left(\left(\bigwedge \mathcal{T}^{*}\right) \rightarrow Q^{*}\right)
$$

Craig Interpolation

Theorem (Craig, 1957)

For $\varphi \rightarrow \psi$ a valid FO formula there is a FO formula $\zeta \in \mathcal{L}(\varphi) \cap \mathcal{L}(\psi)$, an interpolant, such that $\varphi \rightarrow \zeta$ and $\zeta \rightarrow \psi$ are valid.

How do we use this? Convert

$$
\mathcal{T} \cup \mathcal{T}^{*} \models Q \leftrightarrow Q^{*} \quad \text { to } \quad \vDash((\bigwedge \mathcal{T}) \wedge Q) \rightarrow\left(\left(\bigwedge \mathcal{T}^{*}\right) \rightarrow Q^{*}\right)
$$

and then extract an interpolant ζ from $\vdash((\bigwedge \mathcal{T}) \wedge Q) \rightarrow\left(\left(\bigwedge \mathcal{T}^{*}\right) \rightarrow Q^{*}\right)$
\ldots note that ζ contains only the "required" symbols.

How to Get Interpolants? Biased Tableaux

Prove $\varphi \rightarrow \psi$ by refuting $\{L(\varphi), R(\neg \psi)\}$ using tableaux rules.
Closed Branches

$$
\begin{array}{ll}
S \cup\{L(\varphi), L(\neg \varphi)\} & S \cup\{L(\varphi), R(\neg \varphi)\} \\
S \cup\{R(\varphi), R(\neg \varphi)\} & S \cup\{R(\varphi), L(\neg \varphi)\}
\end{array}
$$

Propositional Rules (only the "interesting" ones)

$$
\begin{array}{ll}
\frac{S \cup\left\{L\left(\varphi_{1} \wedge \varphi_{2}\right)\right\}}{S \cup\left\{L\left(\varphi_{1}\right), L\left(\varphi_{2}\right)\right\}} & \\
\left.S \cup\left\{L\left(\neg \varphi_{1}\right)\right\}\left(\neg\left(\varphi_{1} \wedge \varphi_{2}\right)\right)\right\} \\
\frac{S \cup\left\{R\left(\varphi_{1} \wedge \varphi_{2}\right)\right\}}{S \cup\left\{L\left(\neg \varphi_{2}\right)\right\}} \\
S \cup\left\{R\left(\varphi_{1}\right), R\left(\varphi_{2}\right)\right\} & \\
S \cup\left\{R\left(\neg \varphi_{1}\right)\right\} & S \cup\left\{R\left(\neg\left(\varphi_{1} \wedge \varphi_{2}\right)\right)\right\} \\
S \cup\left\{R\left(\neg \varphi_{2}\right)\right\}
\end{array}
$$

Quantifiers\&Equality Rules ... similar

How to Get Interpolants? Biased Tableaux

Prove $\varphi \rightarrow \psi$ by refuting $\{L(\varphi), R(\neg \psi)\}$ using tableaux rules.
Closed Branches

$$
\begin{array}{ll}
S \cup\{L(\varphi), L(\neg \varphi)\} \xrightarrow{\text { int }} \perp & S \cup\{L(\varphi), R(\neg \varphi)\} \xrightarrow{\text { int }} \varphi \\
S \cup\{R(\varphi), R(\neg \varphi)\} \xrightarrow{\text { int }} T & S \cup\{R(\varphi), L(\neg \varphi)\} \xrightarrow{\text { int }} \neg \varphi
\end{array}
$$

Propositional Rules (only the "interesting" ones)

$$
\begin{aligned}
& \frac{S \cup\left\{L\left(\varphi_{1} \wedge \varphi_{2}\right)\right\} \xrightarrow[\text { int }]{\rightarrow} \zeta}{S \cup\left\{L\left(\varphi_{1}\right), L\left(\varphi_{2}\right)\right\} \xrightarrow{\text { int }} \zeta} \xrightarrow[{S \cup\left\{L\left(\neg \varphi_{1}\right)\right\} \xrightarrow{\text { int }} \zeta_{1} \quad S \cup\left\{L\left(\neg \varphi_{2}\right)\right\} \xrightarrow{\text { int }} \zeta_{2}}]{S \cup\left\{\left(\neg\left(\varphi_{1}\right)\right) \xrightarrow{\text { int }} \zeta_{1} \vee \zeta_{2}\right.} \\
& \xrightarrow[{\left.S \cup\left\{R\left(\varphi_{1} \wedge \varphi_{2}\right)\right\} \xrightarrow{\text { int }} \zeta\left(\varphi_{2}\right)\right\} \xrightarrow{\text { int }}} \zeta]{S \cup\left\{R\left(\neg \varphi_{1}\right)\right\} \xrightarrow{\text { int }} \zeta_{1} \quad S \cup\left\{R\left(\neg \varphi_{2}\right)\right\} \xrightarrow{S \text { int }} \zeta_{2}}
\end{aligned}
$$

Quantifiers\&Equality Rules ... similar
\ldots and then extract the interpolant ζ s.t. $\varphi \rightarrow \zeta \rightarrow \psi$.

Example: Tableaux for $\{x \mid \exists y, z . E(x, y, z)\}$

$$
\begin{aligned}
& \forall x, y, z . I_{1}(x, y) \wedge I_{2}(x, z) \rightarrow E(x, y, z) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{1}(x, y) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{2}(x, z)
\end{aligned}
$$

$L E(c, a, b), R \neg E^{*}(c, y, z)$
$L\left(\neg E(c, a, b) \vee I_{1}(c, a)\right)$

$L \neg E(c, a, b)$
$\times_{L L} \quad R\left(E^{*}(c, y, z) \vee \neg I_{1}(c, y) \vee \neg I_{2}(c, z)\right)$
$R E^{*}(c, y, z)$
$\times{ }_{R R}$

Example: Tableaux for $\{x \mid \exists y, z . E(x, y, z)\}$

$$
\begin{aligned}
& \forall x, y, z . I_{1}(x, y) \wedge I_{2}(x, z) \rightarrow E(x, y, z) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{1}(x, y) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{2}(x, z)
\end{aligned}
$$

$L E(c, a, b), R \neg E^{*}(c, y, z)$
$L\left(\neg E(c, a, b) \vee I_{1}(c, a)\right)$
$\perp \vee\left(T \wedge I_{1}(x, y) \wedge I_{2}(x, z)\right)$

$L \neg E(c, a, b)$
 $\times_{L L}$

$L \neg E(c, a, b)$
$L\left(\neg E(c, a, b) \vee I_{2}(c, b)\right)$
元
$L I_{1}(c, a)$

$$
I_{1}(x, y) \wedge I_{2}(x, z)
$$

$$
\frac{\times_{L L}}{*(c, y, z)} \frac{R\left(E^{*}(c, y, z) \vee \neg I_{1}(c, y) \vee \neg I_{2}(\right.}{R\left(\neg I_{1}(c, y) \vee \neg l_{2}(c, z)\right)}
$$

Example: Tableaux for $\{x \mid \exists y, z . E(x, y, z)\}$

$$
\begin{aligned}
& \forall x, y, z . I_{1}(x, y) \wedge I_{2}(x, z) \rightarrow E(x, y, z) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{1}(x, y) \\
& \forall x, y, z . E(x, y, z) \rightarrow I_{2}(x, z)
\end{aligned}
$$

$L E(c, a, b), R \neg E^{*}(c, y, z)$

$L \neg E(c, a, b)$

$$
\times_{L L} \quad R\left(E^{*}(c, y, z) \vee \neg I_{1}(c, y) \vee \neg I_{2}(c, z)\right)
$$

Plan: $\exists y, z . I_{1}(x, y) \wedge I_{2}(x, z)$

Example2: CQ Views (via Resolution\&Vampire)

1) $Q\left(s k_{0}, s k_{1}\right)$
(2) $\neg Q^{\prime}\left(s k_{0}, s k_{1}\right)$
(3) $V_{2}\left(X_{0}, X_{1}\right) \vee \neg R^{\prime}\left(X_{0}, X_{3}\right) \vee \neg R^{\prime}\left(X_{3}, X_{1}\right)$
(4) $R\left(s k_{3}\left(X_{0}, x_{1}\right), X_{1}\right) \vee \neg V_{2}\left(X_{0}, X_{1}\right)$
(5) $R\left(X_{0}, s k_{3}\left(X_{0}, X_{1}\right)\right) \vee \neg V_{2}\left(X_{0}, X_{1}\right)$
$6 R^{\prime}\left(s k_{4}\left(X_{0}, X_{1}\right), s k_{5}\left(X_{0}, X_{1}\right)\right) \vee \neg V_{1}\left(X_{0}, X_{1}\right)$
(7) $R^{\prime}\left(s k_{5}\left(X_{0}, X_{1}\right), X_{1}\right) \vee \neg V_{1}\left(X_{0}, X_{1}\right)$
$8 R^{\prime}\left(s k_{4}\left(X_{0}, X_{1}\right), X_{0}\right) \vee \neg V_{1}\left(X_{0}, X_{1}\right)$
(9) $R^{\prime}\left(s k_{6}\left(X_{0}, X_{1}\right), s k_{7}\left(X_{0}, X_{1}\right)\right) \vee \neg V_{3}\left(X_{0}, X_{1}\right)$
$10 R^{\prime}\left(s k_{7}\left(X_{0}, X_{1}\right), X_{1}\right) \vee \neg V_{3}\left(X_{0}, X_{1}\right)$
$11 R^{\prime}\left(X_{0}, s k_{6}\left(X_{0}, X_{1}\right)\right) \vee \neg V_{3}\left(X_{0}, X_{1}\right)$
$12 V_{3}\left(X_{0}, X_{1}\right) \vee \neg R\left(X_{0}, X_{4}\right) \vee \neg R\left(X_{5}, X_{1}\right) \vee \neg R\left(X_{4}, X_{5}\right)$
$13 V_{1}\left(X_{0}, X_{1}\right) \vee \neg R\left(X_{4}, X_{0}\right) \vee \neg R\left(X_{5}, X_{1}\right) \vee \neg R\left(X_{4}, X_{5}\right)$
$14 Q^{\prime}\left(X_{0}, X_{1}\right) \vee \neg R^{\prime}\left(X_{2}, X_{3}\right) \vee \neg R^{\prime}\left(X_{2}, X_{0}\right) \vee$ $\neg R^{\prime}\left(X_{4}, X_{1}\right) \vee \neg R^{\prime}\left(X_{3}, X_{4}\right)$
[Input] $21 R\left(s k_{12}\left(s k_{0}, s k_{1}\right), s k_{13}\left(s k_{0}, s k_{1}\right)\right)$
[Res:1,18]
[Input]

$$
26 \neg R^{\prime}\left(s k_{7}\left(X_{1}, X_{2}\right), s k_{1}\right) \vee \neg R^{\prime}\left(X_{3}, s k_{6}\left(X_{1}, X_{2}\right)\right) \vee
$$

[Input]

[Input]
[Input]
$28 \neg V_{3}\left(X_{1}, s k_{1}\right) \vee \neg R^{\prime}\left(X_{1}, s k_{0}\right)$
[Res:11,27]
$\neg R^{\prime}\left(X_{1}, s k_{5}\left(X_{2}, X_{3}\right)\right) \vee V_{2}\left(X_{1}, X_{3}\right) \vee \neg V_{1}\left(X_{2}, X_{3}\right)$
[Res:3,7]
$V_{2}\left(s k_{4}\left(X_{1}, X_{2}\right), X_{2}\right) \vee \neg V_{1}\left(X_{1}, X_{2}\right)$
[Res:6,29]
$R\left(s k_{1} 4\left(s k_{0}, s k_{1}\right), s k_{1}\right)$
[Res:1,16]
$\neg R\left(X_{1}, s k_{3}\left(X_{2}, X_{3}\right)\right) \vee \neg R\left(X_{3}, X_{4}\right) \vee \neg V_{2}\left(X_{2}, X_{3}\right) \vee$
$V_{3}\left(X_{1}, X_{4}\right)$
[Res:4,12]
[Input]
33
[Input]
[Input]
[Input]
[Res:1,15]
36
$\neg R\left(X_{1}, X_{2}\right) \vee \neg V_{2}\left(X_{3}, X_{1}\right) \vee V_{3}\left(X_{3}, X_{2}\right) \quad[R e s: 5,32]$
$\neg V_{2}\left(X_{1}, s k_{14}\left(s k_{0}, s k_{1}\right)\right) \vee V_{3}\left(X_{1}, s k_{1}\right)$
[Res:31,33]
$V_{3}\left(s k_{4}\left(X_{1}, s k_{14}\left(s k_{0}, s k_{1}\right)\right), s k_{1}\right) \vee$
$\neg V_{1}\left(X_{1}, s k_{14}\left(s k_{0}, s k_{1}\right)\right)$
[Res:30,34]
$\neg R^{\prime}\left(s k_{4}\left(X_{1}, s k_{14}\left(s k_{0}, s k_{1}\right)\right), s k_{0}\right) \vee$
$\neg V_{1}\left(X_{1}, s k_{14}\left(s k_{0}, s k_{1}\right)\right)$
[Res:28,35]
[Res:1,17]

Domain Independence

Question

Given a schema \mathcal{T}, set of indices \mathcal{I}, and a (range restricted) query Q such that a rewriting ζ for Q over \mathcal{I} exists.
is ζ domain independent (DI)?

Domain Independence

Question

Given a schema \mathcal{T}, set of indices \mathcal{I}, and a (range restricted) query Q such that a rewriting ζ for Q over \mathcal{I} exists.
is ζ domain independent (DI)?

- Not in general; consider

$$
\mathcal{T}=\{\forall x . P(x) \vee R(x), \neg \exists x . P(x) \wedge R(x)\}
$$

Then, for $\{x \mid P(x)\}$, the rewriting over $\{R\}$ is $\{x \mid \neg R(x)\}$.

Domain Independence

Question

Given a schema \mathcal{T}, set of indices \mathcal{I}, and a (range restricted) query Q such that a rewriting ζ for Q over \mathcal{I} exists.

is ζ domain independent (DI)?

- Not in general;
- To guarantee DI we define a restriction on constraints in \mathcal{T} :

Definition (Domain Independent Constraint)
A constraint is domain independent if its truth depends only on the interpretation of logical parameters (and not on the domain).
... all usual database constraints are domain independent

Domain Independence

Question

Given a schema \mathcal{T}, set of indices \mathcal{I}, and a (range restricted) query Q such that a rewriting ζ for Q over \mathcal{I} exists.
is ζ domain independent (DI)?

- Not in general;
- To guarantee DI we define a restriction on constraints in \mathcal{T} :

Definition (Domain Independent Constraint)
A constraint is domain independent if its truth depends only on the interpretation of logical parameters (and not on the domain).

[^0]
Summary

Beth Definability and Interpolation provide

 a starting point for query optimization in first-order logic.
Summary

Beth Definability and Interpolation provide

 a starting point for query optimization in first-order logic.Features:
\Rightarrow handles full first order logic (constraints and queries)
\Rightarrow builds on decades of research in theorem proving

Summary

Beth Definability and Interpolation provide

 a starting point for query optimization in first-order logic.Features:
\Rightarrow handles full first order logic (constraints and queries)
\Rightarrow builds on decades of research in theorem proving
Drawbacks:
\Rightarrow handles full first order logic (constraints and queries)
... no decidability (of plan existence) in general
\Rightarrow expensive\&incomplete reasoning

Summary

Beth Definability and Interpolation provide a starting point for query optimization in first-order logic.

Features:
\Rightarrow handles full first order logic (constraints and queries)
\Rightarrow builds on decades of research in theorem proving
Drawbacks:
\Rightarrow handles full first order logic (constraints and queries)
... no decidability (of plan existence) in general
\Rightarrow expensive\&incomplete reasoning
Open Issues:
\Rightarrow how to handle "database extras"
\Rightarrow how to get "optimal plans"

[^0]: Theorem
 Let \mathcal{T} be a schema, \mathcal{I} a set of indices, and Q a range restricted query for which a rewriting ζ exists. Then ζ is domain independent.

