Fundamentals of Physical Design
Query Processing: Conjunctive Queries

David Toman

D. R. Cheriton School of Computer Science
University of

Waterloo
%

D. Toman (Waterloo) Physical Design: Conjunctive Queries 1/16

Story so far ...

Two approaches to physical design:
© Current practice:

Changes to logical schema + index selection

® Desired solution:

Integrity constraints + index selection

D. Toman (Waterloo) Physical Design: Conjunctive Queries

2/16

Story so far ...

Two approaches to physical design:
© Current practice:

Changes to logical schema + index selection

... destroys physical data independence

® Desired solution:
Integrity constraints + index selection

... preserves physical data independence

D. Toman (Waterloo) Physical Design: Conjunctive Queries 2/16

Story so far ...

Two approaches to physical design:
© Current practice:

Changes to logical schema + index selection

... destroys physical data independence

® Desired solution:
Integrity constraints + index selection

... preserves physical data independence

... but how do we now execute queries?]

D. Toman (Waterloo) Physical Design: Conjunctive Queries 2/16

Query Language: Conjunctive Queries

Syntax:
Qu=A Vv class access
| v.Pfl = u.Pf2 equation
| true singleton
| from Q1,02 natural join

| elim v1,...,vk Q selection (select distinct)

v

. usual “normal form” a.k.a. SELECT block

D. Toman (Waterloo) Physical Design: Conjunctive Queries 3/16

Query Language: Conjunctive Queries

Syntax:
Qu=A Vv class access
| v.Pfl = u.Pf2 equation
| true singleton
| from Q1,02 natural join

| elim v1,...,vk Q selection (select distinct)

v

. usual “normal form” a.k.a. SELECT block

Definition (Meaning)
Let D be a database instance and ¢ a formula corresponding to 0.

Q(D):{{V1 201,...,Vk:Ok}|D,{V1 :O1,...,Vk:Ok}':<pQ}

... alternatively, an equivalent an algebraic definition

D. Toman (Waterloo) Physical Design: Conjunctive Queries 3/16

Example

Query: given an employee id (: p), list name of the employee
and addresses of their department:

elim ename, dcity

from EMPLOYEE e, DEPARTMENT d,
e.eid=:p, e.Dept=d,
ename=e.Name, dcity=d.City

D. Toman (Waterloo) Physical Design: Conjunctive Queries 4/16

Example

Query: given an employee id (: p), list name of the employee
and addresses of their department:

elim ename, dcity, :p

from EMPLOYEE e, DEPARTMENT d,
e.eid=:p, e.Dept=d,
ename=e.Name, dcity=d.City

D. Toman (Waterloo) Physical Design: Conjunctive Queries 4/16

Example
Query: given an employee id (: p), list name of the employee
and addresses of their department:

elim ename, dcity, :p

from EMPLOYEE e, DEPARTMENT d,
e.eid=:p, e.Dept=d,
ename=e.Name, dcity=d.City

Graphical Representation:

ename @

dcity

w@
W Eid

Name

D. Toman (Waterloo) Physical Design: Conjunctive Queries 4/16

Query Plans ~ Patterns in QL

IDEA: Extend binding patterns to queries

BP(Q) is a pair (/, O) of path sets where
| are the expected input parameters and O the outputs.

BP(a v) is (v.l,v.0)ifan “index A | O declaration exists;
BP(v.Pfl = u.P£2)

is ({v.pf1},{u.pPf2})or ({u.P£2},{v.P£1});
BP(true) is ({},{});
BP(from 01,0Q2)

is (hU(k— 04),01U0O) for BP(0i) = (/;, O;); and
BP(elim Vv Q)

is(/,0nV)forBP(Q)=(/,0)and I C V.

A query Qis a planif BP(Q) = (P, FV(Q)) where P are parameters. |

D. Toman (Waterloo) Physical Design: Conjunctive Queries 5/16

Query Compilation ~ Equivalence under Constraints

Chase Step

Replace “D x” with “from D %, E x”if 7 U Q = D<E,
where 7 is the schema and Q are constraints induced by 0.

... easy to see that this preserves equivalence.

D. Toman (Waterloo) Physical Design: Conjunctive Queries 6/16

Query Compilation ~ Equivalence under Constraints

Chase Step

Replace “D x” with “from D %, E x”if 7 U Q |= D<E,
where 7 is the schema and Q are constraints induced by 0.

... easy to see that this preserves equivalence.

How can we use this??
© (repeatedly) apply chase to Q;
@® extract plan by traversing result using index declarations;
©® (repeatedly) apply chase on the plan;

O if results of (1) and (3) are the same:
signal “success” otherwise signal “no plan”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 6/16

Query Compilation ~ Equivalence under Constraints

Chase Step

Replace “D x” with “from D %, E x”if 7 U Q |= D<E,
where 7 is the schema and Q are constraints induced by 0.

... easy to see that this preserves equivalence.

How can we use this??
© (repeatedly) apply chase to Q;
@® extract plan by traversing result using index declarations;
©® (repeatedly) apply chase on the plan;

O if results of (1) and (3) are the same:
signal “success” otherwise signal “no plan”

In practice (1-3) have to be interleaved as chase may not terminate J

D. Toman (Waterloo) Physical Design: Conjunctive Queries 6/16

Example

INT

PLAN: elim ename,dcity, :p
from true,

n (Waterloo) Physical Design: Conjunctive Queries

Example

ename
dcity

d

Dept
~— EARRAY—— >
Name Addr
a: |ADDR
PLAN: elim ename,dcity, :p
from true,
(e.Eid = :p, EARRAY e, a = e.Addr),

D. Toman (Waterloo) Physical Design: Conjunctive Queries

7/16

Example

o
~—
Addr

e
Dept [EMP
|
EARRAY

Eid

INT

Name

a: |ADDR

PLAN: elim ename,dcity, :p

from true,
(e.Eid =

:p, EARRAY e, a = e.Addr
e .Name

(e.Addr = a, ENAME e, ename =

D. Toman (Waterloo)

Physical Design: Conjunctive Queries

),

),

7/16

Example

Dept EARRAY
STR < Jename INT
e
EDEPT Eid
Addr
:|ADDR

PLAN: elim ename,dcity, :p
from true,

(e.Eid = :p, EARRAY e, a = e.Addr

(e.Addr = a, ENAME e, ename =
(e.Addr

D. Toman (Waterloo) Physical Design: Conjunctive Queries

),

e.Name),

a, EDEPT e, b = e.Dept.Boss.Eid),

7/16

Example

ename <::::>
dcity e
dl

Dept [EARRAY

STR STR DIDX ENAME INT
EDEPT Eid

Addr

:|ADDR
PLAN: elim ename,dcity, :p
from true,
(e.Eid = :p, EARRAY e, a = e.Addr),
e.Addr = a, ENAME e, ename = e.Name),

(
(e.Addr
(d.Boss.Eid = b, DIDX d, dcity = d.City)

D. Toman (Waterloo) Physical Design: Conjunctive Queries

a, EDEPT e, b = e.Dept.Boss.Eid),

7/16

More about Plans

¢ Alternative plans (e.g., join-order selection?)
= YES: non-determinism in extracting PLANs

D. Toman (Waterloo) Physical Design: Conjunctive Queries 8/16

More about Plans

¢ Alternative plans (e.g., join-order selection?)

= YES: non-determinism in extracting PLANs

e Does a PLAN always exist?

= NO (i.e., the “current” design cannot support the query)

D. Toman (Waterloo) Physical Design: Conjunctive Queries

8/16

More about Plans

¢ Alternative plans (e.g., join-order selection?)

= YES: non-determinism in extracting PLANs

e Does a PLAN always exist?

= NO (i.e., the “current” design cannot support the query)

e |f a PLAN exists, do we find it?

= NO (in general—depends on integrity constraints)
... e.g., we do not have an empty query construct.

D. Toman (Waterloo) Physical Design: Conjunctive Queries 8/16

Database Trimmings: Duplicates et al.

e SQL (OQL) queries allow duplicate semantics:

Syntax:
Qi=A v class access
| v.Pfl = u.Pf2 equation
| true singleton
| from Q,0Q natural join
| elim v1,...,vk Q selection (distinct)
| select vl1,...,vk Q selection (with duplicates)

= algebraic semantics

D. Toman (Waterloo) Physical Design: Conjunctive Queries 9/16

Database Trimmings: Duplicates et al.

e SQL (OQL) queries allow duplicate semantics:

Syntax:
Qi=A v class access
| v.Pfl = u.Pf2 equation
| true singleton
| from Q,0Q natural join
| elim v1,...,vk Q selection (distinct)
| select vl1,...,vk Q selection (with duplicates)

= algebraic semantics

o IDEA: mark which variables do not need to be deduplicated
+ transformation that uses PFDs to manipulate the marking

D. Toman (Waterloo) Physical Design: Conjunctive Queries 9/16

Duplicate Elimination Elimination

Normal Form for Queries w/Duplicates:

select V from Al vl1,..., Am vm,
(elim W from B1 wl,..., Bn wn, R)

where R are all the equations.

D. Toman (Waterloo) Physical Design: Conjunctive Queries 10/16

Duplicate Elimination Elimination

Normal Form for Queries w/Duplicates:

select V from Al vl1,..., Am vm,
(elim W from B1 wl,..., Bn wn, R)

where R are all the equations.

Transformation Rule:

select V from Al vl1,..., Am vm,
(elim W from B1 wl,..., Bn wn, R)

is semantically equivalent to

select V from Al v1,..., Am vm, Bl wl,
(elim W, wl from B2 w2,..., Bn wn, R)

ifandonlyifo < 0: v1,...,vn, W —> wl.

D. Toman (Waterloo) Physical Design: Conjunctive Queries 10/16

Example: Chase and Variable Tags

e Query: “elim name from EMPLOYEE e, DEPARTMENT d,
e.Eid = :p, e.Dept=d,

STR

D. Toman (Waterloo)

ename @
e
dl
Dept
EARRAY
ENAME

Eid

Name

INT

ADDR

Physical Design: Conjunctive Queries

name=e.Name”

11/16

Example: Chase and Variable Tags

e Query: “elim name from EMPLOYEE e, DEPARTMENT d,
e.Eid = :p, e.Dept=d,

STR

D. Toman (Waterloo)

@
SN

INT

ept
EARRAY
ENAME|~———1
_/ Eid
Name Addr
ADDR

Physical Design: Conjunctive Queries

name=e.Name”

11/16

Example: Chase and Variable Tags

e Query: “elim name from EMPLOYEE e, DEPARTMENT d,

e.Eid = :p, e.Dept=d, name=e.Name”

R

STR

D. Toman (Waterloo)

INT

Dept
&————EARRAY
ENAME|[~———7]
_/ Eid
Name Addr
ADDR

Physical Design: Conjunctive Queries

11/16

Example: Chase and Variable Tags

e Query: “elim name from EMPLOYEE e, DEPARTMENT d,

e.Eid = :p, e.Dept=d, name=e.Name”

R

STR

D. Toman (Waterloo)

INT

Dept
&————EARRAY
ENAME|[~———7]
_/ Eid
Name Addr
ADDR

Physical Design: Conjunctive Queries

11/16

Example: Chase and Variable Tags

e Query: “elim name from EMPLOYEE e, DEPARTMENT d,
e.Eid = :p, e.Dept=d, name=e.Name”

ename @

Dept
&————EARRAY
STR INT
ENAME|[~———7]
Name Addr
ADDR

e Plan: “select ename from
(e.Eid=p, EARRAY e, a = e.Addr),
(e.Addr = a, ENAME e, ename = e.Name)’

11/16

D. Toman (Waterloo) Physical Design: Conjunctive Queries

Bigger Languages: Positive Queries w/Duplicates

Syntax:
Qui=A v class access
| v.Pf1l = u.Pf2 equation
true singleton
from Q1,02 natural join

select vl,...,vk Q selection (with duplicates)
empty vl,...,vk empty set
Q1 union all Q2 concatenation (union-compatible)

|
|
| elim v1,...,vk Q selection (distinct)
|
|
|

...input query is still conjunctive (w/duplicate semantics)
= union arises from the SCHEMA

D. Toman (Waterloo) Physical Design: Conjunctive Queries 12/16

Handling OR in Schema

o additional expansion rule:

Chase Step

Replace “(D or E) x”with
“elim x (D x union all E x)’

D. Toman (Waterloo) Physical Design: Conjunctive Queries

Handling OR in Schema

o additional expansion rule:

Chase Step

Replace “(D or E) x”with
“elim x (D x union all E x)’

e and rules for handling duplicates:

Duplicates and Union Step
“elim V (Q1 union all Q2)”rewritesto
“(elim V Q1) union all (elim V Q2)”
if (abstractions of) 01 and 02 are disjoint

D. Toman (Waterloo) Physical Design: Conjunctive Queries

13/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP. J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP.)

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”

@ ‘sclect eid from EMPLOYEE e,
(WATEMP or TOKYOEMP) e, eid=e.Eid’

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP. J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”
@ ‘sclect eid from EMPLOYEE e,
(WATEMP or TOKYOEMP) e, eid=e.Eid’
® “sclect eid from EMPLOYEE e,
(elim e (WATEMP e union all TOKYOEMP e)),
eid=e.Eid”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP.

J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”
@ ‘sclect eid from EMPLOYEE e,

(WATEMP or TOKYOEMP) e, eid=e.Eid’
® “sclect eid from EMPLOYEE e,

(elim e (WATEMP e union all TOKYOEMP e)),

eid=e.Eid”
@® “select eid from EMPLOYEE e,

(elim e,eid (WATEMP e union all TOKYOEMP e),
eid=e.Eid)”

D. Toman (Waterloo) Physical Design: Conjunctive Queries

14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP. J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”

@ ‘sclect eid from EMPLOYEE e,
(WATEMP or TOKYOEMP) e, eid=e.Eid”

® “sclect eid from EMPLOYEE e,
(elim e (WATEMP e union all TOKYOEMP e)),
eid=e.Eid”

@® “select eid from EMPLOYEE e,
(elim e,eid (WATEMP e union all TOKYOEMP e),
eid=e.Eid)”

O “sclect eid from EMPLOYEE e,
(elim e,eid WATEMP e, eid=E.eid) union all
(elim e, eid TOKYOEMP e, eid=e.Eid)”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP. J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”

@ ‘sclect eid from EMPLOYEE e,
(WATEMP or TOKYOEMP) e, eid=e.Eid”

® “sclect eid from EMPLOYEE e,
(elim e (WATEMP e union all TOKYOEMP e)),
eid=e.Eid”

@® “select eid from EMPLOYEE e,
(elim e,eid (WATEMP e union all TOKYOEMP e),
eid=e.Eid)”

O “sclect eid from EMPLOYEE e,
(elim e,eid WATEMP e, eid=E.eid) union all
(elim e, eid TOKYOEMP e, eid=e.Eid)”
@® “select eid from EMPLOYEE e, ((WATEMP e,eid=e.Eid)
union all (TOKYOEMP e,eid=e.Eid))”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Example: Horizontal Partition

Physical design: two disjoint indices for WATEMP and TOKYOEMP. J

e Expansion of “select eid from EMPLOYEE e, eid=e.Eid”

@ ‘sclect eid from EMPLOYEE e,
(WATEMP or TOKYOEMP) e, eid=e.Eid”

® “sclect eid from EMPLOYEE e,
(elim e (WATEMP e union all TOKYOEMP e)),
eid=e.Eid”

@® “select eid from EMPLOYEE e,
(elim e,eid (WATEMP e union all TOKYOEMP e),
eid=e.Eid)”

O “sclect eid from EMPLOYEE e,
(elim e,eid WATEMP e, eid=E.eid) union all
(elim e, eid TOKYOEMP e, eid=e.Eid)”
@® “select eid from EMPLOYEE e, ((WATEMP e,eid=e.Eid)
union all (TOKYOEMP e,eid=e.Eid))”

e Plan: “select eid (WATEMP e, eid=e.Eid) union all
(TOKYOEMP e, eid=e.Eid)”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 14/16

Where does this Fail?

© Input: general first-order queries:

= best approaches so far ala QGM i.e., block-by block

® Negations in schema: what to do with “(not 2a) x"?

= restrictions on the schema language?
= more general “rewriting rules”?

® Completeness?

= conjunctive query over conjunctive materialized views

D. Toman (Waterloo) Physical Design: Conjunctive Queries

15/16

Where does this Fail?

© Input: general first-order queries:

= best approaches so far ala QGM i.e., block-by block

® Negations in schema: what to do with “(not 2a) x"?

= restrictions on the schema language?
= more general “rewriting rules”?

® Completeness?

= conjunctive query over conjunctive materialized views
. needs negation in the plan!

D. Toman (Waterloo) Physical Design: Conjunctive Queries 15/16

Summary

This is the BEST approach known today that ...
¢ handles duplicates, and
e accommodates binding patterns

. in practice commonly competitive with hand-written C code
... extensions to ordering constraints “in progress”

D. Toman (Waterloo) Physical Design: Conjunctive Queries 16/16

Summary

This is the BEST approach known today that ...
¢ handles duplicates, and
e accommodates binding patterns

. in practice commonly competitive with hand-written C code
... extensions to ordering constraints “in progress”

Next time:
How to deal with all first-order queries:
why is it worth reading older papers (on Logic).

... with speculation on dealing w/duplicates and binding patterns

D. Toman (Waterloo) Physical Design: Conjunctive Queries 16/16

