
Fundamentals of Physical Design:
Constraints and Indices

David Toman

D. R. Cheriton School of Computer Science

D. Toman (Waterloo) Physical Design: Constraints and Indices 1 / 15

Recap of “State of Art”

• Current practice:
Close coupling between Logical and Physical Schemata:

⇒ physical design = logical schema revision + indices
⇒ makes query optimization “easy”

Logical schema revision⇒ changes in application DML (BAD)

• Alternative:
Lose coupling supported by complex query optimization

⇒ must support a wide variety of physical designs

D. Toman (Waterloo) Physical Design: Constraints and Indices 2 / 15

Uniform Approach to Conceptual and Physical Design

DESIDERATA
Design a small number of primitives that support
• Conceptual/Logical schema development (including ICs)
• Physical schema development
• Linkage between the above two schemata

1 uniform DDL for both conceptual/logical and physical objects
2 capabilities (index) declarations for physical objects
3 integrity constraints to establish links between objects
4 no built-in assumptions (e.g., 2-level store)

D. Toman (Waterloo) Physical Design: Constraints and Indices 3 / 15

Uniform Approach to Conceptual and Physical Design

DESIDERATA
Design a small number of primitives that support
• Conceptual/Logical schema development (including ICs)
• Physical schema development
• Linkage between the above two schemata

1 uniform DDL for both conceptual/logical and physical objects
2 capabilities (index) declarations for physical objects
3 integrity constraints to establish links between objects
4 no built-in assumptions (e.g., 2-level store)

D. Toman (Waterloo) Physical Design: Constraints and Indices 3 / 15

Uniform Approach (cont.)

PLAN
The complete design is defined in terms of:

Integrity Constraints:
⇒ attach attributes to classes/tables
⇒ define keys and foreign keys
⇒ define class hierarchies (and coverage)
⇒ links conceptual and physical classes/tables

Index Declarations:
⇒ declare tables that can be scanned (binding patterns)
⇒ attaches costs to scanning these

. . . from now: a simple OO-style class/attribute based data model.

D. Toman (Waterloo) Physical Design: Constraints and Indices 4 / 15

Uniform Approach (cont.)

PLAN
The complete design is defined in terms of:

Integrity Constraints:
⇒ attach attributes to classes/tables
⇒ define keys and foreign keys
⇒ define class hierarchies (and coverage)
⇒ links conceptual and physical classes/tables

Index Declarations:
⇒ declare tables that can be scanned (binding patterns)
⇒ attaches costs to scanning these

. . . from now: a simple OO-style class/attribute based data model.

D. Toman (Waterloo) Physical Design: Constraints and Indices 4 / 15

Integrity Constraints in Description Logic(s)
Description Logic Syntax
Attributes and Path Functions: (denote total functions)
Pf::= Id identity λx .x

| f.Pf composition Pf ◦ f

Concept Descriptions: (denote sets of objects)
C::= A primitive (A ⊆ ∆)
| C1 and C2 intersection C1 ∩ C2
| not C complement ∆− C
| all Pf C path type {x | Pf (x) ∈ C}
| Pf1 = Pf2 equation {x | Pf1(x) = Pf2(x)}
| C: Pf1,...,Pfk -> Pf path FD

{x | ∀y ∈ C.
∧k

i=1(Pfi(x) = Pfi(y))→ (Pf (x) = Pf (y))}

Constraints: C1 < C2 (denotes subset relation; schema = set of these)

⇒ “C1<C2” a first order sentence: satisfiability, logical implication, . . .
D. Toman (Waterloo) Physical Design: Constraints and Indices 5 / 15

Integrity Constraints in Description Logic(s)
Description Logic Syntax
Attributes and Path Functions: (denote total functions)
Pf::= Id identity λx .x

| f.Pf composition Pf ◦ f

Concept Descriptions: (denote sets of objects)
C::= A primitive (A ⊆ ∆)
| C1 and C2 intersection C1 ∩ C2
| not C complement ∆− C
| all Pf C path type {x | Pf (x) ∈ C}
| Pf1 = Pf2 equation {x | Pf1(x) = Pf2(x)}
| C: Pf1,...,Pfk -> Pf path FD

{x | ∀y ∈ C.
∧k

i=1(Pfi(x) = Pfi(y))→ (Pf (x) = Pf (y))}

Constraints: C1 < C2 (denotes subset relation; schema = set of these)

⇒ “C1<C2” a first order sentence: satisfiability, logical implication, . . .
D. Toman (Waterloo) Physical Design: Constraints and Indices 5 / 15

DDL in DL Examples

Example (Department and Employee Tables)
EMPLOYEE < (all Eid INT) and

(all Name STRING) and
(all Dept DEPARTMENT)

DEPARTMENT < (all City STRING) and
(all Boss EMPLOYEE)

Example (Department and Employee Keys)
EMPLOYEE < (EMPLOYEE: Eid -> Id)

DEPARTMENT < (DEPARTMENT: Boss.Eid -> Id)

EMPLOYEE < (not (Dept.Boss = Id))

D. Toman (Waterloo) Physical Design: Constraints and Indices 6 / 15

DDL in DL Examples

Example (Department and Employee Tables)
EMPLOYEE < (all Eid INT) and

(all Name STRING) and
(all Dept DEPARTMENT)

DEPARTMENT < (all City STRING) and
(all Boss EMPLOYEE)

Example (Department and Employee Keys)
EMPLOYEE < (EMPLOYEE: Eid -> Id)

DEPARTMENT < (DEPARTMENT: Boss.Eid -> Id)

EMPLOYEE < (not (Dept.Boss = Id))

D. Toman (Waterloo) Physical Design: Constraints and Indices 6 / 15

Views via Integrity Constraints

Example (Employees Views)
WATEMP < EMPLOYEE and

(Dept.City = ’Waterloo’)

EMPLOYEE and
(Dept.City = ’Waterloo’) < WATEMP

TOKYOEMP < EMPLOYEE and
(Dept.City = ’Tokyo’) < TOKYOEMP

Example (Coverage and Disjointness Constraints)

EMPLOYEE < WATEMP or TOKYOEMP
WATEMP and TOKYOEMP < BOTTOM

D. Toman (Waterloo) Physical Design: Constraints and Indices 7 / 15

Views via Integrity Constraints

Example (Employees Views)
WATEMP < EMPLOYEE and

(Dept.City = ’Waterloo’)

EMPLOYEE and
(Dept.City = ’Waterloo’) < WATEMP

TOKYOEMP < EMPLOYEE and
(Dept.City = ’Tokyo’) < TOKYOEMP

Example (Coverage and Disjointness Constraints)

EMPLOYEE < WATEMP or TOKYOEMP
WATEMP and TOKYOEMP < BOTTOM

D. Toman (Waterloo) Physical Design: Constraints and Indices 7 / 15

Index Declarations

IDEA: use generalized binding patterns
A extra-logical declaration of the form

index A (Pf1, ..., Pfm) (Pf1’, ..., PFn’)

where
• A is the (primitive) class whose objects are indexed,
• (Pf1, ..., Pfm) are the input parameters, and
• (Pf1’, ..., Pfn’) are the outputs

in addition costs of getting the first and the next object
(details skipped in this presentation).

⇒ each index declaration has an associated “iterator”.

D. Toman (Waterloo) Physical Design: Constraints and Indices 8 / 15

Example: Addresses and Field Extraction

Example (Employee Table. . .)
EMPLOYEE < (all Eid INT) and

(all Name STRING) and
(all Dept DEPARTMENT)

Example (. . . as an array of pointers to structs)
EMPLOYEE < EARRAY < EMPLOYEE and (all Addr ADDR)
index EARRAY (Eid) (Addr)

EMPLOYEE < ENAME < EMPLOYEE
index ENAME (Addr) (Name)

EMPLOYEE < EDEPT < EMPLOYEE
index EDEPT (Addr) (Dept.Boss.Eid)

D. Toman (Waterloo) Physical Design: Constraints and Indices 9 / 15

Example: 2-level Storage

Example (Department Table. . .)
DEPARTMENT < (all City STRING) and

(all Boss EMPLOYEE)

Example (. . . as a file of pages)

(all PgRef DPAGES) <
DEPARTMENT < DRECS < DEPARTNENT and

(all PgRef DPAGES) and (all Addr ADDR)
DPAGES < (all Addr ADDR)

index DPAGES () (Addr) ; expensive
index DRECS (PgRef.Addr) (Addr) ; cheap

⇒ now we can distinguish cost of “page access” v.s. “record access”

D. Toman (Waterloo) Physical Design: Constraints and Indices 10 / 15

Example: Clustered/Unclustered Index Access

Example (Clustered index on Employee(Dept))

EMPLOYEE or (all PgRef CLUST) < EPAGE < EMPLOYEE
and (all PgRef CLUST) and (Dept = PgRef.Dept)

index EPAGE (PgRef.Addr) (Addr)
index CLUST (Dept) (Addr)

Example (Un-Clustered index on Employee(Name))

EMPLOYEE or (all PgRef EPAGES) < EPAGE < EMPLOYEE
and (all PgRef EPAGES) and (all CRef UNCLUST)
and (PgRef.PgId = Cref.PgId) and (Name = CRef.Name)
UNCLUST < (all PgId EPAGES)

index EPAGE (PgRef.Addr) (Addr)
index EPAGES (PgId) (Addr)
index UNCLUST (Name) (PgId)

D. Toman (Waterloo) Physical Design: Constraints and Indices 11 / 15

Example: Denormalization

Example (EMPDEPT denormalization)

EMPDEPT < (all Eid INT) and (all Name STRING) and
(all City STRING) (all Boss EMPDEPT)

EMPLOYEE < (all De EMPDEPT) and (EMPLOYEE: De->Id)
and (Eid = De.Eid) and (Name = De.Name)
and (Dept.City = De.City)
and (Dept.Boss = De.Boss)

index EMPDEPT () (Eid,Name,City,Boss)

What happens to DEPT?
1 no additional info⇒ we need a separate table (or NULLs)
2 every dept has an employee⇒ additional constraints

D. Toman (Waterloo) Physical Design: Constraints and Indices 12 / 15

Example: Denormalization

Example (EMPDEPT denormalization)

EMPDEPT < (all Eid INT) and (all Name STRING) and
(all City STRING) (all Boss EMPDEPT)

EMPLOYEE < (all De EMPDEPT) and (EMPLOYEE: De->Id)
and (Eid = De.Eid) and (Name = De.Name)
and (Dept.City = De.City)
and (Dept.Boss = De.Boss)

index EMPDEPT () (Eid,Name,City,Boss)

What happens to DEPT?
1 no additional info⇒ we need a separate table (or NULLs)
2 every dept has an employee⇒ additional constraints

D. Toman (Waterloo) Physical Design: Constraints and Indices 12 / 15

Other Idioms

• Horizontal Partitioning
⇒ similar to WATEMP-TOKYOEMP example.

• Vertical Partitioning and (FK) Join Indices
⇒ similar to denormalization

• Full Join Indices and Materialized Views
⇒ depends on the expressive power of the constraints: . . .

needs full FOL

• . . .

D. Toman (Waterloo) Physical Design: Constraints and Indices 13 / 15

On the Power of Integrity Constraints

Highly Expressive Logics
⇒ First-order Logic (algebraic dependencies)

and extensions of FOL (fixpoints, . . .)
⇒ Logical Implication undecidable

Decidable Logics
⇒ (certain) Description Logics
⇒ Logical Implication decidable

. . . to be combined with a decidable query language
⇒ Most features at modest cost

Weak Languages
⇒ status quo (∼ projections of “base relations”)
⇒ efficient but unable to cope with data independence

D. Toman (Waterloo) Physical Design: Constraints and Indices 14 / 15

Summary

Take Home Message(s):
1 Integrity constraints are key to realizing the promise of physical

data independence, and
2 Most of physical design issues (including appropriate costs) can

be captured in such a framework.

To be solved . . .
How to optimize queries?
⇒ Constraints ∼ (first-order) theories (T)
⇒ Queries ∼ (first-order) formulae (Q)
⇒ Plans ∼ (first-order) formulae (of certain shape, P)

T |= ∀x̄ .(Q ↔ P) . . . but how do we find P???

. . . additional issues: database trimmings (e.g., duplicates, etc.)

D. Toman (Waterloo) Physical Design: Constraints and Indices 15 / 15

Summary

Take Home Message(s):
1 Integrity constraints are key to realizing the promise of physical

data independence, and
2 Most of physical design issues (including appropriate costs) can

be captured in such a framework.

To be solved . . .
How to optimize queries?
⇒ Constraints ∼ (first-order) theories (T)
⇒ Queries ∼ (first-order) formulae (Q)
⇒ Plans ∼ (first-order) formulae (of certain shape, P)

T |= ∀x̄ .(Q ↔ P) . . . but how do we find P???

. . . additional issues: database trimmings (e.g., duplicates, etc.)

D. Toman (Waterloo) Physical Design: Constraints and Indices 15 / 15

Summary

Take Home Message(s):
1 Integrity constraints are key to realizing the promise of physical

data independence, and
2 Most of physical design issues (including appropriate costs) can

be captured in such a framework.

To be solved . . .
How to optimize queries?
⇒ Constraints ∼ (first-order) theories (T)
⇒ Queries ∼ (first-order) formulae (Q)
⇒ Plans ∼ (first-order) formulae (of certain shape, P)

T |= ∀x̄ .(Q ↔ P) . . . but how do we find P???

. . . additional issues: database trimmings (e.g., duplicates, etc.)

D. Toman (Waterloo) Physical Design: Constraints and Indices 15 / 15

Summary

Take Home Message(s):
1 Integrity constraints are key to realizing the promise of physical

data independence, and
2 Most of physical design issues (including appropriate costs) can

be captured in such a framework.

To be solved . . .
How to optimize queries?
⇒ Constraints ∼ (first-order) theories (T)
⇒ Queries ∼ (first-order) formulae (Q)
⇒ Plans ∼ (first-order) formulae (of certain shape, P)

T |= ∀x̄ .(Q ↔ P) . . . but how do we find P???

. . . additional issues: database trimmings (e.g., duplicates, etc.)

D. Toman (Waterloo) Physical Design: Constraints and Indices 15 / 15

Summary

Take Home Message(s):
1 Integrity constraints are key to realizing the promise of physical

data independence, and
2 Most of physical design issues (including appropriate costs) can

be captured in such a framework.

To be solved . . .
How to optimize queries?
⇒ Constraints ∼ (first-order) theories (T)
⇒ Queries ∼ (first-order) formulae (Q)
⇒ Plans ∼ (first-order) formulae (of certain shape, P)

T |= ∀x̄ .(Q ↔ P) . . . but how do we find P???

. . . additional issues: database trimmings (e.g., duplicates, etc.)

D. Toman (Waterloo) Physical Design: Constraints and Indices 15 / 15

