Ontology-based Data Access a.k.a. Queries and the Open World Assumption

David Toman

D. R. Cheriton School of Computer Science University of

Setting

- Input: (1) Schema T (set of integrity constraints);
 - (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
 - (3) Query φ (a formula)

How do we $\emph{answer}\,arphi$ over \emph{D} w.r.t. $\emph{T}\,?$

Setting

- Input: (1) Schema T (set of integrity constraints);
 - (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
 - (3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 1:

Definition (Implicit Definability)

A query Q is *implicitly definable in Ds* if $Q(M_1) = Q(M_2)$ for all pairs of databases $M_1 \models \mathcal{T}$ and $M_2 \models \mathcal{T}$ s. t. $A_i(M_1) = A_i(M_2)$ for all $A_i \in D$.

- lacktriangledown Chase/Craig Interpolation provides *rewriting* $\psi(D)$
- @ In some cases φ is not implicitly definable

 \Rightarrow in particular when *OWA* plays a role (e.g., NULLs)

Setting

Input: (1) Schema T (set of integrity constraints);

- (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
- (3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 1:

Definition (Implicit Definability)

A query Q is *implicitly definable in Ds* if $Q(M_1) = Q(M_2)$ for all pairs of databases $M_1 \models \mathcal{T}$ and $M_2 \models \mathcal{T}$ s. t. $A_i(M_1) = A_i(M_2)$ for all $A_i \in D$.

- 1 Chase/Craig Interpolation provides rewriting $\psi(D)$
- $oldsymbol{2}$ In some cases φ is not implicitly definable

 \Rightarrow in particular when *OWA* plays a role (e.g., NULLs)

Setting

Input: (1) Schema T (set of integrity constraints);

- (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
- (3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 2:

Definition (Certain Answers)

Answer to
$$\varphi(D)$$
 under $T:=\mathsf{cert}_{\mathcal{T},D}(\varphi)=\bigcap_{\pmb{M}\models\mathcal{T}\cup D}\{\vec{\pmb{a}}\mid \pmb{M},\vec{\pmb{a}}\models\varphi\}$

- Essentially a variant of [Imielinski&Lipski] approach
- ② Answer to φ is *always* defined (unlike in OPTION 1)

... any drawbacks?

Setting

Input: (1) Schema T (set of integrity constraints);

- (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
- (3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 2:

Definition (Certain Answers)

Answer to
$$\varphi(D)$$
 under $\mathcal{T} := \operatorname{cert}_{\mathcal{T}, D}(\varphi) = \bigcap_{M \models \mathcal{T} \cup D} \{\vec{a} \mid M, \vec{a} \models \varphi\}$

- Essentially a variant of [Imielinski&Lipski] approach
- 2 Answer to φ is *always* defined (unlike in OPTION 1)

... any drawbacks?

Setting

Input: (1) Schema T (set of integrity constraints);

- (2) Data $D = \{A_1, \dots, A_k\}$ (instance of some predicates); and
- (3) Query φ (a formula)

How do we answer φ over D w.r.t. \mathcal{T} ?

OPTION 2:

Definition (Certain Answers)

Answer to
$$\varphi(D)$$
 under $\mathcal{T} := \operatorname{cert}_{\mathcal{T}, D}(\varphi) = \bigcap_{M \models \mathcal{T} \cup D} \{\vec{a} \mid M, \vec{a} \models \varphi\}$

- Essentially a variant of [Imielinski&Lipski] approach
- 2 Answer to φ is *always* defined (unlike in OPTION 1)

... any drawbacks?

Certain Answers: Impact on Queries

Example (Unintuitive Behaviour of Queries:)

- 1 $\exists x. Phone("John", x)$?
- 2 Phone("John", x)?

```
under T = \{ \forall x. Person(x) \rightarrow \exists y. Phone(x, y) \}
and D = \{ Person("John") \}.
```

Certain Answers: Impact on Queries

Example (Unintuitive Behaviour of Queries:)

- $\exists x. Phone("John", x)? \Rightarrow YES$
- 2 Phone("John", x)? \Rightarrow {}

```
under \mathcal{T} = \{ \forall x. \textit{Person}(x) \rightarrow \exists y. \textit{Phone}(x, y) \}
and D = \{ \textit{Person}("\texttt{John"}) \}.
```

High Computational Cost:

coNP-hard for DATA COMPLEXITY

Example

Schema&Data:

$$\mathcal{T} = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y) \}$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots n_m\}, \\ Colour = \{r, g, b\} \}$$

Query:

 $\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$

e ioi ali DES between AL and 6/129.

High Computational Cost:

coNP-hard for DATA COMPLEXITY

Example

Schema&Data:

$$\begin{array}{lll} \mathcal{T} & = & \{ & \forall x, y. ColNode(x,y) \leftrightarrow Node(x), \\ & & \forall x, y. ColNode(x,y) \leftrightarrow Colour(y) & \} \\ D & = & \{ & \textit{Edge} = \{(n_i,n_j)\}, \textit{Node} = \{n_1, \dots n_m\}, \\ & & \textit{Colour} = \{r,g,b\} & \} \\ \end{array}$$

Query:

$$\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$$

 \Rightarrow the graph (*Node*, *Edge*) is NOT 3-colourable

LS DELWEET AL and 3/119.

High Computational Cost:

coNP-hard for DATA COMPLEXITY

Example

Schema&Data:

$$\mathcal{T} = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y) \}$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots n_m\}, \\ Colour = \{r, q, b\} \}$$

Query:

$$\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$$

$$\Rightarrow \text{the graph } (Node, Edge) \text{ is NOT 3-colourable.}$$

. coNP-complete for all DLs between \mathcal{AL} and $\mathcal{SHIQ}.$

High Computational Cost:

coNP-hard for DATA COMPLEXITY

Example

Schema&Data:

$$T = \{ \forall x, y. ColNode(x, y) \leftrightarrow Node(x), \\ \forall x, y. ColNode(x, y) \leftrightarrow Colour(y) \}$$

$$D = \{ Edge = \{(n_i, n_j)\}, Node = \{n_1, \dots n_m\}, \\ Colour = \{r, g, b\} \}$$

Query:

$$\exists x, y, c. Edge(x, y) \land ColNode(x, c) \land ColNode(y, c)$$

$$\Rightarrow \text{ the graph } (Node, Edge) \text{ is NOT 3-colourable.}$$

... coNP-complete for all DLs between \mathcal{AL} and \mathcal{SHIQ} .

Can this be Done Efficiently at all?

Question

Can there be a *non-trivial* schema language for which *query answering* (under certain answer semantics) is *tractable*?

YES: Conjunctive queries (or positive) and certain (dialects of) Description Logics (or OWL profiles):

- The DL-Lite family
 - \Rightarrow conjunction, \perp , domain/range, unqualified \exists , role inverse, UNA \Rightarrow certain answers in AC_0 for data complexity (i.e., maps to SQL)
- The EL family ⇒ conjunction, qualified
 - ⇒ certain answers *PTIME-complete* for data complexity
 - ... schemas are *weak on purpose*: queries *must not* be definable.

Can this be Done Efficiently at all?

Question

Can there be a *non-trivial* schema language for which *query answering* (under certain answer semantics) is *tractable*?

YES: Conjunctive queries (or positive) and certain (dialects of) Description Logics (or OWL profiles):

- 1 The DL-Lite family
 - \Rightarrow conjunction, \perp , domain/range, unqualified \exists , role inverse, UNA
 - \Rightarrow certain answers in AC_0 for data complexity (i.e., maps to SQL)
- 2 The \mathcal{EL} family
 - \Rightarrow conjunction, qualified \exists
 - ⇒ certain answers *PTIME-complete* for data complexity

... schemas are *weak on purpose*: queries *must not* be definable.

Can this be Done Efficiently at all?

Question

Can there be a *non-trivial* schema language for which *query answering* (under certain answer semantics) is *tractable*?

YES: Conjunctive queries (or positive) and certain (dialects of) Description Logics (or OWL profiles):

- 1 The DL-Lite family
 - \Rightarrow conjunction, \perp , domain/range, unqualified \exists , role inverse, UNA
 - \Rightarrow certain answers in AC_0 for data complexity (i.e., maps to SQL)
- **2** The \mathcal{EL} family
 - \Rightarrow conjunction, qualified \exists
 - ⇒ certain answers *PTIME-complete* for data complexity
 - ... schemas are *weak on purpose*: queries *must not* be definable.

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)

1 Roles R and concepts C as follows:

$$R ::= P \mid P^- \qquad C ::= \bot \mid A \mid \exists R$$

2 Schemas are represented as TBoxes: a finite set T of constraints

$$C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C$$
 $R_1 \sqsubseteq R_2$

$$R_1 \sqsubseteq R_2$$

Definition (DL-Lite family: Data and ABoxes)

ABox A is a finite set of *concept A(a)* and *role* assertions P(a, b).

⇒ OWA here: ABox does NOT say "these are all the tuples"!

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)

Roles R and concepts C as follows:

$$R ::= P \mid P^- \qquad C ::= \bot \mid A \mid \exists R$$

2 Schemas are represented as TBoxes: a finite set T of constraints

$$C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C$$
 $R_1 \sqsubseteq R_2$

$$R_1 \sqsubseteq R_2$$

Definition (DL-Lite family: Data and ABoxes)

ABox A is a finite set of *concept A(a)* and *role* assertions P(a, b).

⇒ OWA here: ABox does NOT say "these are all the tuples"!

How to compute answers to CQs?

IDEA: incorporate *schematic knowledge* into the guery.

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting

```
Q^{\dagger} = (\exists y. Works(x, y) \land Project(y)) \lor 
 (\exists y, z. Works(x, y) \land Works(z, y)) \lor 
 (\exists y. Works(x, y)) \lor 
 (Employee(x))
```

```
Q^{\dagger}\left(egin{array}{l} \{ 	extit{Employee(bob)}, \ 	extit{Works(sue, slides)} \} \end{array}
ight.
```

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

```
Q^{\dagger} = (\exists y. Works(x, y) \land Project(y)) \lor 
 (\exists y, z. Works(x, y) \land Works(z, y)) \lor 
 (\exists y. Works(x, y)) \lor 
 (Employee(x))
```

$$Q^{\dagger}$$
 { $Employee(bob)$, $Works(sue, slides)$ }

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

```
Q^{\dagger} = (\exists y. Works(x, y) \land Project(y)) \lor 
 (\exists y, z. Works(x, y) \land Works(z, y)) \lor 
 (\exists y. Works(x, y)) \lor 
 (Employee(x))
```

```
Q^{\dagger}\left(egin{array}{c} \{ \textit{Employee(bob)}, \\ \textit{Works(sue, slides)} \ \} \end{array}
ight) = \{ \textit{bob, sue} \}
```

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works^- \sqsubseteq Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Rewriting:

```
Q^{\dagger} = (\exists y. Works(x, y) \land Project(y)) \lor 
 (\exists y, z. Works(x, y) \land Works(z, y)) \lor 
 (\exists y. Works(x, y)) \lor 
 (Employee(x))
```

```
Q^{\dagger}\left(egin{array}{c} \{ 	extit{Employee(bob)}, \ 	extit{Works(sue, slides)} \ \} \end{array}
ight) = \{ 	extit{bob}, 	extit{sue} \}
```

QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox T
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \mathcal{T} do
            if \alpha is applicable to Q' then
                R = R \cup \{Q'[lhs(\alpha)/rhs(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no guery unique up to variable renaming can be added to R;
return Q^{\dagger} := (\backslash / R)
```

Theorem

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $\mathcal{A}, \vec{a} \models Q^{\dagger}$

QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox T
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \mathcal{T} do
            if \alpha is applicable to Q' then
                R = R \cup \{Q'[lhs(\alpha)/rhs(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no query unique up to variable renaming can be added to R;
return Q^{\dagger} := (\backslash / R)
```

Theorem

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $\mathcal{A}, \vec{a} \models Q^{\dagger}$ — can be VERY large

QuOnto: Rewriting Approach [Calvanese et al.]

```
Input: Conjunctive query Q, DL-Lite TBox T
R = \{Q\};
repeat
    foreach query Q' \in R do
        foreach axiom \alpha \in \mathcal{T} do
            if \alpha is applicable to Q' then
                R = R \cup \{Q'[lhs(\alpha)/rhs(\alpha)]\}
        foreach two atoms D_1, D_2 in Q' do
            if D_1 and D_2 unify then
                \sigma = MGU(D_1, D_2); R = R \cup \{\lambda(Q', \sigma)\};
until no query unique up to variable renaming can be added to R;
return Q^{\dagger} := (\backslash / R)
```

Theorem

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $\mathcal{A}, \vec{a} \models Q^{\dagger} \iff can be VERY large$

\mathcal{EL} Family of DLs

Definition (\mathcal{EL} -Lite family: Schemata and TBoxes)

1 Concepts C as follows:

$$C ::= A \mid \top \mid \bot \mid C \sqcap C \mid \exists R.C$$

2 Schemas are represented as TBoxes: a finite set \mathcal{T} of *constraints*

$$C_1 \sqsubseteq C_2$$

$$R_1 \sqsubseteq R_2$$

Definition (\mathcal{EL} -Lite family: Data and ABoxes)

ABox A is a finite set of *concept A(a)* and *role* assertions P(a, b).

⇒ OWA again: ABox does NOT say "these are all the tuples"!

How to compute answers to CQs?

IDEA: incorporate schematic knowledge into the data

\mathcal{EL} Family of DLs

Definition (\mathcal{EL} -Lite family: Schemata and TBoxes)

1 Concepts C as follows:

$$C ::= A \mid \top \mid \bot \mid C \sqcap C \mid \exists R.C$$

2 Schemas are represented as TBoxes: a finite set \mathcal{T} of *constraints*

$$C_1 \sqsubseteq C_2$$

$$R_1 \sqsubseteq R_2$$

Definition (\mathcal{EL} -Lite family: Data and ABoxes)

ABox A is a finite set of *concept A(a)* and *role* assertions P(a, b).

⇒ OWA again: ABox does NOT say "these are all the tuples"!

How to compute answers to CQs?

IDEA: incorporate *schematic knowledge* into the data.

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete for data complexity.

Combined Approach

We effectively transform

- the ABox A to a relational database D_A using constraints in T,
- 2 the conjunctive query Q to a relational query Q^{\ddagger}

. . . both *polynomial* in the input(s)

Theorem (Lutz, T., Wolter: IJCAI'09)

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models \mathcal{Q}$ if and only if $D_{\mathcal{A}}, \vec{a} \models \mathcal{Q}^{\ddagger}$

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete for data complexity.

Combined Approach

We effectively transform

- the ABox A to a relational database D_A using constraints in T,
- 2 the conjunctive query Q to a relational query Q^{\ddagger}

. . . both *polynomial* in the input(s)

Theorem (Lutz, T., Wolter: IJCAI'09)

 $T \cup A, \vec{a} \models Q$ if and only if $D_A, \vec{a} \models Q^{\ddagger}$

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete for data complexity.

Combined Approach

We effectively transform

- 1 the ABox A to a relational database D_A using constraints in T,
- 2 the conjunctive query Q to a relational query Q^{\ddagger} .

...both *polynomial* in the input(s)

Theorem (Lutz, T., Wolter: IJCAI'09)

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models \mathcal{Q} \text{ if and only if } \mathcal{D}_{\mathcal{A}}, \vec{a} \models \mathcal{Q}^{\ddagger}$

Can an approach based on *rewriting* be used for \mathcal{EL} ?

NO: \mathcal{EL} is PTIME-complete for data complexity.

Combined Approach

We effectively transform

- 1 the ABox A to a relational database D_A using constraints in T,
- 2 the conjunctive query Q to a relational query Q^{\ddagger} .

...both *polynomial* in the input(s)

Theorem (Lutz, T., Wolter: IJCAI'09)

 $\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$ if and only if $D_{\mathcal{A}}, \vec{a} \models Q^{\ddagger}$

Example (with DL-Lite schema)

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works. \top \sqsubseteq \exists Works. Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {Employee(bob), Works(sue, slides)}

Rewriting:

- $\textbf{1} \quad D_{A} = \{ \quad \textit{Employee(bob)}, \textit{Works(bob, } c_{\textit{Works}}), \\ \textit{Works(sue, slides)}, \textit{Project(} c_{\textit{Works}}), \textit{Project(slides)}$

$$\mathcal{Q}^{\ddagger}(\mathcal{D}_{\mathcal{A}}) = \{\mathit{bob}, \mathit{sue}\}$$

Example (with DL-Lite schema)

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works. \top \sqsubseteq \exists Works. Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {Employee(bob), Works(sue, slides)}

Rewriting:

- $\textbf{1} \ \ D_{\mathcal{A}} = \{ \ \ \textit{Employee}(\textit{bob}), \textit{Works}(\textit{bob}, \textit{c}_\textit{Works}), \\ \textit{Works}(\textit{sue}, \textit{slides}), \textit{Project}(\textit{c}_\textit{Works}), \textit{Project}(\textit{slides}) \ \}$
- $Q^{\ddagger} = Q \wedge (x \neq c_w)$

$$\mathcal{Q}^{\ddagger}(\mathcal{D}_{\mathcal{A}}) = \{\mathit{bob}, \mathit{sue}\}$$

Example (with DL-Lite schema)

TBox (Schema): $Employee \sqsubseteq \exists Works$

 $\exists Works. \top \sqsubseteq \exists Works. Project$

Conjunctive Query: $\exists y. Works(x, y) \land Project(y)$

Data: {Employee(bob), Works(sue, slides)}

Rewriting:

- $\textbf{1} \ \, D_{\mathcal{A}} = \{ \ \, \textit{Employee(bob)}, \textit{Works(bob,} \textit{c}_{\textit{Works}}), \\ \textit{Works(sue, slides)}, \textit{Project(}\textit{c}_{\textit{Works}}), \textit{Project(slides)} \, \, \}$
- $Q^{\ddagger} = Q \wedge (x \neq c_w)$

$$Q^{\ddagger}(D_{\mathcal{A}}) = \{bob, sue\}$$

Experiments

Ontology NCI (70k axioms, 65k classes, 70 roles)

Cina at the		n 1 1									
Size of the original ${\cal A}$											
Concept	100K	100K	100K	200K	200K	200K	400K	800K	1.6M		
Role	25K	50K	75K	40K	65K	90K	360K	1.5M	5.8M		
Size of the completed D_A											
Concept	440K	440K	441K	683K	683K	684K	1.3M	2.6M	5.1M		
Role					371K						
Query execution time in seconds											
Q1 (2c1r)	0.19	0.19	0.20	0.23	0.25	0.24	0.27	0.46	0.59		
Q2 (3c2r)	0.23	0.22	0.23	0.52	0.25	0.56	0.33	0.42	0.69		
Q3 (3c2r)	0.25	0.27	0.26	0.31	0.31	0.31	0.42	0.86	1.13		
Q4 (4c3r)	0.24	0.23	0.23	0.25	0.26	0.25	0.31	0.42	1.44		
Q5 (5c5r)	0.36	0.36	0.30	0.60	0.34	0.45	2.24	7.93	128		

A Combined Approach and DL-Lite

Can the *exponential size* of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach

... but query rewriting is much more involved due to *inverse roles* (... and still exponential for *role hierarchies*.)

Theorem (Konchatov et al., KR10)

 $T \cup A$, $\vec{a} \models Q$ if and only if D_A , $\vec{a} \models Q^{\dagger}$

A Combined Approach and DL-Lite

Can the *exponential size* of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach

...but query rewriting is much more involved due to *inverse roles*; (...and still exponential for *role hierarchies*.)

Theorem (Konchatov et al., KR10)

$$\mathcal{T} \cup \mathcal{A}, \vec{a} \models Q$$
 if and only if $D_{\mathcal{A}}, \vec{a} \models Q^{\ddagger}$

Experiments: a Comparison

Ontology Core (381 axioms, 81 concepts, 58 roles)

Size of the original ${\cal A}$										
Individuals	100k		200k			300k				
Concept	5.0M		10.0M			20.0M				
Role	5.0M			10.0M			20.0M			
Size of the completed D_A										
Concept	11.8M			23.7M			54.5M			
Role	5.7M			11.4M			27.8M			
Query execution time (base, combined, rewritten)										
Q1	0.46	3.97	25"32	0.80	5.73	38"33	1.28	7.32	23"04	
Q2	0.53	5.97	97"47	0.86	6.65	67"13	1.34	8.03	71"49	
Q3	0.50	1.10	2"15	0.81	1.78	3"28	1.87	3.12	5"31	
Q4	0.20	1.00	12"02	0.78	2.57	13"38	1.70	3.86	14"55	

Summary

- 1 Answering queries over databases with respect to schema constraints/ontologies is hard.
- 2 Choice between:

Query Definability:

- \Rightarrow expressive schema languages and queries
- \Rightarrow rewritten queries in AC_0 (\sim efficient)
- ⇒ but rewriting is hard to find and may not exist

Certain Answers:

- ⇒ weak schema languages and positive queries only
- \Rightarrow rewritten queries still complex (data complexity)
- ⇒ but certain answers are always defined