
Ontology-based Data Access
a.k.a. Queries and the Open World Assumption

David Toman

D. R. Cheriton School of Computer Science

D. Toman (Waterloo) Queries and Ontologies 1 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 1:

Definition (Implicit Definability)
A query Q is implicitly definable in Ds if Q(M1) = Q(M2) for all pairs of
databases M1 |= T and M2 |= T s. t. Ai(M1) = Ai(M2) for all Ai ∈ D.

1 Chase/Craig Interpolation provides rewriting ψ(D)

2 In some cases ϕ is not implicitly definable
⇒ in particular when OWA plays a role (e.g., NULLs)

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 1:

Definition (Implicit Definability)
A query Q is implicitly definable in Ds if Q(M1) = Q(M2) for all pairs of
databases M1 |= T and M2 |= T s. t. Ai(M1) = Ai(M2) for all Ai ∈ D.

1 Chase/Craig Interpolation provides rewriting ψ(D)

2 In some cases ϕ is not implicitly definable
⇒ in particular when OWA plays a role (e.g., NULLs)

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Open World Assumption and Possible Worlds

Setting

Input: (1) Schema T (set of integrity constraints);
(2) Data D = {A1, . . . ,Ak} (instance of some predicates); and
(3) Query ϕ (a formula)

How do we answer ϕ over D w.r.t. T ? OPTION 2:

Definition (Certain Answers)

Answer to ϕ(D) under T := certT ,D(ϕ) =
⋂

M|=T ∪D

{~a | M, ~a |= ϕ}

1 Essentially a variant of [Imielinski&Lipski] approach
2 Answer to ϕ is always defined (unlike in OPTION 1)

. . . any drawbacks?

D. Toman (Waterloo) Queries and Ontologies 2 / 15

Certain Answers: Impact on Queries

Example (Unintuitive Behaviour of Queries:)
1 ∃x .Phone("John", x)? ⇒ YES

2 Phone("John", x)? ⇒ {}

under T = {∀x .Person(x)→ ∃y .Phone(x , y)}
and D = {Person("John")}.

D. Toman (Waterloo) Queries and Ontologies 3 / 15

Certain Answers: Impact on Queries

Example (Unintuitive Behaviour of Queries:)
1 ∃x .Phone("John", x)? ⇒ YES

2 Phone("John", x)? ⇒ {}

under T = {∀x .Person(x)→ ∃y .Phone(x , y)}
and D = {Person("John")}.

D. Toman (Waterloo) Queries and Ontologies 3 / 15

What is the Price?

High Computational Cost:
coNP-hard for DATA COMPLEXITY

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

. . . coNP-complete for all DLs between AL and SHIQ.

D. Toman (Waterloo) Queries and Ontologies 4 / 15

What is the Price?

High Computational Cost:
coNP-hard for DATA COMPLEXITY

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

. . . coNP-complete for all DLs between AL and SHIQ.

D. Toman (Waterloo) Queries and Ontologies 4 / 15

What is the Price?

High Computational Cost:
coNP-hard for DATA COMPLEXITY

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

. . . coNP-complete for all DLs between AL and SHIQ.

D. Toman (Waterloo) Queries and Ontologies 4 / 15

What is the Price?

High Computational Cost:
coNP-hard for DATA COMPLEXITY

Example
• Schema&Data:

T = { ∀x , y .ColNode(x , y)↔ Node(x),
∀x , y .ColNode(x , y)↔ Colour(y) }

D = { Edge = {(ni ,nj)},Node = {n1, . . .nm},
Colour = {r ,g,b} }

• Query:
∃x , y , c.Edge(x , y) ∧ ColNode(x , c) ∧ ColNode(y , c)

⇒ the graph (Node,Edge) is NOT 3-colourable.

. . . coNP-complete for all DLs between AL and SHIQ.

D. Toman (Waterloo) Queries and Ontologies 4 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 5 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 5 / 15

Can this be Done Efficiently at all?

Question
Can there be a non-trivial schema language for which query answering
(under certain answer semantics) is tractable?

YES: Conjunctive queries (or positive) and
certain (dialects of) Description Logics (or OWL profiles):

1 The DL-Lite family
⇒ conjunction, ⊥, domain/range, unqualified ∃, role inverse, UNA
⇒ certain answers in AC0 for data complexity (i.e., maps to SQL)

2 The EL family
⇒ conjunction, qualified ∃
⇒ certain answers PTIME-complete for data complexity

. . . schemas are weak on purpose: queries must not be definable.

D. Toman (Waterloo) Queries and Ontologies 5 / 15

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)
1 Roles R and concepts C as follows:

R ::= P | P− C ::= ⊥ | A | ∃R
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 u · · · u Cn v C R1 v R2

Definition (DL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA here: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the query.

D. Toman (Waterloo) Queries and Ontologies 6 / 15

DL-Lite Family of DLs

Definition (DL-Lite family: Schemata and TBoxes)
1 Roles R and concepts C as follows:

R ::= P | P− C ::= ⊥ | A | ∃R
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 u · · · u Cn v C R1 v R2

Definition (DL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA here: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the query.

D. Toman (Waterloo) Queries and Ontologies 6 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)
= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)
= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)
= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 7 / 15

Example

TBox (Schema): Employee v ∃Works
∃Works− v Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Rewriting:

Q† = (∃y .Works(x , y) ∧ Project(y)) ∨
(∃y , z.Works(x , y) ∧Works(z, y)) ∨
(∃y .Works(x , y)) ∨
(Employee(x))

Query Execution:

Q†
(
{Employee(bob),

Works(sue, slides) }

)
= {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 7 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R ;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q† ⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 8 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R ;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q† ⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 8 / 15

QuOnto: Rewriting Approach [Calvanese et al.]

Input: Conjunctive query Q, DL-Lite TBox T
R = {Q};
repeat

foreach query Q′ ∈ R do
foreach axiom α ∈ T do

if α is applicable to Q′ then
R = R ∪ {Q′[lhs(α)/rhs(α)]}

foreach two atoms D1,D2 in Q′ do
if D1 and D2 unify then

σ = MGU(D1,D2); R = R ∪ {λ(Q′, σ)};
until no query unique up to variable renaming can be added to R ;
return Q† := (

∨
R)

Theorem

T ∪ A, ~a |= Q if and only if A, ~a |= Q† ⇐ can be VERY large

D. Toman (Waterloo) Queries and Ontologies 8 / 15

EL Family of DLs

Definition (EL-Lite family: Schemata and TBoxes)
1 Concepts C as follows:

C ::= A | > | ⊥ | C u C | ∃R.C
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 v C2 R1 v R2

Definition (EL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA again: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the data.

D. Toman (Waterloo) Queries and Ontologies 9 / 15

EL Family of DLs

Definition (EL-Lite family: Schemata and TBoxes)
1 Concepts C as follows:

C ::= A | > | ⊥ | C u C | ∃R.C
2 Schemas are represented as TBoxes: a finite set T of constraints

C1 v C2 R1 v R2

Definition (EL-Lite family: Data and ABoxes)
ABox A is a finite set of concept A(a) and role assertions P(a,b).

⇒ OWA again: ABox does NOT say “these are all the tuples”!

How to compute answers to CQs?
IDEA: incorporate schematic knowledge into the data.

D. Toman (Waterloo) Queries and Ontologies 9 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Combined Approach

Can an approach based on rewriting be used for EL?
NO: EL is PTIME-complete for data complexity.

Combined Approach
We effectively transform

1 the ABox A to a relational database DA using constraints in T ,
2 the conjunctive query Q to a relational query Q‡.

. . . both polynomial in the input(s)

Theorem (Lutz, T., Wolter: IJCAI’09)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 10 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 11 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 11 / 15

Example (with DL-Lite schema)

TBox (Schema): Employee v ∃Works
∃Works.> v ∃Works.Project

Conjunctive Query: ∃y .Works(x , y) ∧ Project(y)

Data: {Employee(bob),Works(sue, slides)}

Rewriting:

1 DA = { Employee(bob),Works(bob, cWorks),
Works(sue, slides),Project(cWorks),Project(slides) }

2 Q‡ = Q ∧ (x 6= cw)

Query Execution:

Q‡(DA) = {bob, sue}

D. Toman (Waterloo) Queries and Ontologies 11 / 15

Experiments

Ontology NCI (70k axioms, 65k classes, 70 roles)

Size of the original A
Concept 100K 100K 100K 200K 200K 200K 400K 800K 1.6M
Role 25K 50K 75K 40K 65K 90K 360K 1.5M 5.8M

Size of the completed DA
Concept 440K 440K 441K 683K 683K 684K 1.3M 2.6M 5.1M
Role 197K 237K 273K 323K 371K 414K 986K 2.7M 8.2M

Query execution time in seconds
Q1 (2c1r) 0.19 0.19 0.20 0.23 0.25 0.24 0.27 0.46 0.59
Q2 (3c2r) 0.23 0.22 0.23 0.52 0.25 0.56 0.33 0.42 0.69
Q3 (3c2r) 0.25 0.27 0.26 0.31 0.31 0.31 0.42 0.86 1.13
Q4 (4c3r) 0.24 0.23 0.23 0.25 0.26 0.25 0.31 0.42 1.44
Q5 (5c5r) 0.36 0.36 0.30 0.60 0.34 0.45 2.24 7.93 128

D. Toman (Waterloo) Queries and Ontologies 12 / 15

A Combined Approach and DL-Lite

Can the exponential size of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach
. . . but query rewriting is much more involved due to inverse roles;

(. . . and still exponential for role hierarchies.)

Theorem (Konchatov et al., KR10)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

A Combined Approach and DL-Lite

Can the exponential size of rewriting be avoided for DL-Lite?

Yes: using the Combined Approach
. . . but query rewriting is much more involved due to inverse roles;

(. . . and still exponential for role hierarchies.)

Theorem (Konchatov et al., KR10)

T ∪ A, ~a |= Q if and only if DA, ~a |= Q‡

D. Toman (Waterloo) Queries and Ontologies 13 / 15

Experiments: a Comparison

Ontology Core (381 axioms, 81 concepts, 58 roles)

Size of the original A
Individuals 100k 200k 300k
Concept 5.0M 10.0M 20.0M
Role 5.0M 10.0M 20.0M

Size of the completed DA
Concept 11.8M 23.7M 54.5M
Role 5.7M 11.4M 27.8M

Query execution time (base, combined, rewritten)
Q1 0.46 3.97 25"32 0.80 5.73 38"33 1.28 7.32 23"04
Q2 0.53 5.97 97"47 0.86 6.65 67"13 1.34 8.03 71"49
Q3 0.50 1.10 2"15 0.81 1.78 3"28 1.87 3.12 5"31
Q4 0.20 1.00 12"02 0.78 2.57 13"38 1.70 3.86 14"55

D. Toman (Waterloo) Queries and Ontologies 14 / 15

Summary

1 Answering queries over databases with respect to schema
constraints/ontologies is hard.

2 Choice between:
Query Definability:

⇒ expressive schema languages and queries
⇒ rewritten queries in AC0 (∼ efficient)
⇒ but rewriting is hard to find and may not exist

Certain Answers:
⇒ weak schema languages and positive queries only
⇒ rewritten queries still complex (data complexity)
⇒ but certain answers are always defined

D. Toman (Waterloo) Queries and Ontologies 15 / 15

