The Combined Approach to Query Answering in DL-Lite

Roman Kontchakov ${ }^{1}$, Carsten Lutz ${ }^{2}$, David Toman ${ }^{3}$, Frank Wolter ${ }^{4}$, and Michael Zakharyaschev ${ }^{1}$

${ }^{1}$ Department of CS and Information Systems, Birkbeck College London, UK
\{roman, michael\}@dcs.bbk. ac.uk
${ }^{2}$ Fachbereich Mathematik und Informatik, Universität Bremen, Germany clu@informatik.uni-bremen.de
${ }^{3}$ D.R. Cheriton School of Computer Science, University of Waterloo, Canada david@cs.uwaterloo.ca
${ }^{4}$ Department of Computer Science, University of Liverpool, UK
frank@csc.liv.ac.uk

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using background knowledge (captured using an ontology.)

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using background knowledge (captured using an ontology.)

Example

- Bob is a BOSS
- Every BOSS is an EMPloyee

List all EMPloyees \Rightarrow \{Bob $\}$

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using background knowledge (captured using an ontology.)

Problem: answering queries is EXPENSIVE (data complexity)
\Rightarrow large data sets and (relatively) large ontologies.
\Rightarrow need for lightweight ontology and query languages;

Queries and Ontologies

Ontology-based Data Access

Enriches (query answers over) explicitly represented data using background knowledge (captured using an ontology.)

Problem: answering queries is EXPENSIVE (data complexity)
\Rightarrow large data sets and (relatively) large ontologies.
\Rightarrow need for lightweight ontology and query languages;

DL-Lite (family) and conjunctive queries.
. . . introduced by [Calvanese et al.]

Approaches to Ontology-based Data Access

Main Task
INPUT: $\quad \underbrace{\operatorname{Ontology}(\mathcal{T}), \operatorname{Data}(\mathcal{A})}_{\text {Knowledge } \operatorname{Base}(\mathcal{K})}$, and a Query (Q)

OUTPUT: $\quad\{a \mid \mathcal{K} \models Q[a]\}$

Approaches to Ontology-based Data Access

Main Task

INPUT: $\quad \underbrace{\operatorname{Ontology}(\mathcal{T}), \operatorname{Data}(\mathcal{A})}_{\text {Knowledge } \operatorname{Base}(\mathcal{K})}$, and a Query (Q)

OUTPUT: $\quad\{a \mid \mathcal{K} \models Q[a]\}$

Approaches:
(1) Reduction to standard reasoning (e.g., satisfiability)
(2) Reduction to querying a relational database
\Rightarrow very good at $\{a \mid \mathcal{A} \models Q[a]\}$ for range restricted Q
\ldots what do we do with \mathcal{T} ?

Definitions\&Background

Definition (DL-Lite horn ${ }^{\mathcal{N}}$)

roles: $R::=P \mid P^{-}, \quad$ concepts: $C::=\perp|A| \geq m R$.

$$
\text { where } P \in \mathrm{~N}_{\mathrm{R}}, A \in \mathrm{~N}_{\mathrm{C}} \text { and } m>0 \text {. }
$$

(1) An ontology (TBox) is a finite set \mathcal{T} of concept inclusions $C_{1} \sqcap \cdots \sqcap C_{n} \sqsubseteq C$;
(2) The Data (ABox) is a finite set \mathcal{A} of concept and role assertions $C(a)$ and $R(a, b)$;
(3 A Conjunctive Query (CQ): an existentially quantified finite conjunction of atoms.

The Master Plan

IDEA:

(1) Incorporate the background knowledge (i.e., \mathcal{T}) into the data.
\Rightarrow make implicit knowledge explicit (data completion).
(2) Use the data completion (only) to answer queries
\Rightarrow and use a relational system to do this efficiently.

The Master Plan

IDEA:

(1) Incorporate the background knowledge (i.e., \mathcal{T}) into the data.
\Rightarrow make implicit knowledge explicit (data completion).
(2) Use the data completion (only) to answer queries
\Rightarrow and use a relational system to do this efficiently.
Example
$\mathcal{T}=\{B O S S \sqsubseteq E M P\}, \mathcal{A}=\{B O S S(B o b)\}, \quad Q \equiv E M P(x)$
(1) $\mathcal{I}_{\mathcal{K}}=\{B O S S(B o b), E M P(B o b)\}$
(data completion)
(2) $Q\left(\mathcal{I}_{\mathcal{K}}\right)=\{\mathrm{Bob}\}$
(relational query)

The Master Plan

IDEA:

(1) Incorporate the background knowledge (i.e., \mathcal{T}) into the data.
\Rightarrow make implicit knowledge explicit (data completion).
(2) Use the data completion (only) to answer queries
\Rightarrow and use a relational system to do this efficiently.

Issues:
(1) How to complete the data?

Naive unfolding of \mathcal{T} : large/infinite (due to existentials)
\Rightarrow we define a canonical interpretation $\mathcal{I}_{\mathcal{K}}$ (representatives)
(2) Can we then use the original Conjunctive Query?

Not directly: $Q\left(\mathcal{I}_{\mathcal{K}}\right)$ can produce "spurious matches"
\Rightarrow we eliminate the spurious matches by rewriting the query (independently of \mathcal{T} and \mathcal{A})

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$
\begin{aligned}
& A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup \\
& P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup
\end{aligned}
$$

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$
\begin{aligned}
& A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup \\
& P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup \\
& \left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathrm{N}_{1}^{\mathcal{T}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P^{-}}, d\right) \in \mathrm{N}_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P^{-}}\right\} \\
& \quad \ldots c_{R^{\prime}} \text { 's only used "when necessary" (for generating roles) }
\end{aligned}
$$

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$
\begin{aligned}
& A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{c_{R} \in \Delta^{I_{\mathcal{K}}} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\}, \\
& P^{I_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup \\
& \quad\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathrm{N}_{1}^{\mathcal{T}_{1}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P^{-}}, d\right) \in N_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P-}\right\}
\end{aligned}
$$

$\ldots c_{R}$'s only used "when necessary" (for generating roles)

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$
$A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{c_{R} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\}$,
$P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup$ $\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times N_{1}^{\mathcal{T}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P^{-}}, d\right) \in N_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P-}\right\}$ $\ldots c_{R}$'s only used "when necessary" (for generating roles)

Example

$\mathcal{T}=\left\{E M P \sqsubseteq \exists M A N A G E S, \exists M A N A G E S^{-} \sqsubseteq B O S S, B O S S \sqsubseteq E M P\right\}$
$\mathcal{A}=\{E M P($ Bob $), E M P($ Sue $)\}$
Then $E M P^{\mathcal{I}_{\mathcal{K}}}=\left\{\right.$ Bob, Sue, $\left.c_{M}\right\}, B O S S^{\mathcal{I}_{\mathcal{K}}}=\left\{c_{M}\right\}$, and MANAGES $^{\mathcal{I}_{\mathcal{K}}}=\left\{\left(\right.\right.$ Bob, $\left.c_{M}\right),\left(\right.$ Sue,$\left.\left.c_{M}\right),\left(c_{M}, c_{M}\right)\right\}$.

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$
$A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{c_{R} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\}$,
$P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup$

$$
\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathbf{N}_{1}^{\mathcal{T}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P-}, d\right) \in \mathbf{N}_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P-}\right\}
$$

$\ldots c_{R}$'s only used "when necessary" (for generating roles)

Example

$\mathcal{T}=\left\{E M P \sqsubseteq \exists M A N A G E S, \exists M A N A G E S^{-} \sqsubseteq B O S S, B O S S \sqsubseteq E M P\right\}$
$\mathcal{A}=\{E M P($ Bob $), E M P($ Sue $)\}$
Then $E M P^{\mathcal{I}_{\mathcal{K}}}=\left\{\right.$ Bob, Sue, $\left.c_{M}\right\}, B O S S^{\mathcal{I}_{\mathcal{K}}}=\left\{c_{M}\right\}$, and MANAGES $^{\mathcal{I}_{\mathcal{K}}}=\left\{\left(\right.\right.$ Bob, $\left.c_{M}\right),\left(\right.$ Sue,$\left.\left.c_{M}\right),\left(c_{M}, c_{M}\right)\right\}$.
$\mathcal{I}_{\mathcal{K}}$ is NOT model of $(\mathcal{T}, \mathcal{A})$ in general.

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$
$A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{C_{R} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\}$,
$P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup$
$\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times N_{1}^{\mathcal{T}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P-}, d\right) \in N_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P-}\right\}$
$\ldots c_{R}$'s only used "when necessary" (for generating roles)

Lemma

There are queries

- $q_{A}^{\mathcal{T}}$ s.t. $\operatorname{ans}\left(q_{A}^{\mathcal{T}}, \mathcal{A}\right)=A^{\mathcal{I}_{\mathcal{K}}}$, and
- $q_{P}^{\mathcal{T}}$ s.t. $\operatorname{ans}\left(q_{P}^{\mathcal{T}}, \mathcal{A}\right)=P^{\mathcal{I}_{\mathcal{K}}}$
for every $K B(\mathcal{T}, \mathcal{A})$ and primitive concept A and role P.

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$
$A^{\mathcal{I}_{\mathcal{K}}}=\{a \in \operatorname{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a)\} \cup\left\{C_{R} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\}$,
$P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \in \operatorname{Ind}(\mathcal{A}) \times \operatorname{Ind}(\mathcal{A}) \mid P(a, b) \in \mathcal{A}\} \cup$

$$
\left\{\left(d, c_{P}\right) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathbf{N}_{1}^{\mathcal{T}} \mid d \leadsto c_{P}\right\} \cup\left\{\left(c_{P-}, d\right) \in \mathbf{N}_{1}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \leadsto c_{P-}\right\}
$$

$\ldots c_{R}$'s only used "when necessary" (for generating roles)

Lemma

There are queries

- $q_{A}^{\mathcal{T}}$ s.t. $\operatorname{ans}\left(q_{A}^{\mathcal{T}}, \mathcal{A}\right)=A^{\mathcal{I}_{\mathcal{K}}}$, and
- $q_{P}^{\mathcal{T}}$ s.t. $\operatorname{ans}\left(q_{P}^{\mathcal{T}}, \mathcal{A}\right)=P^{\mathcal{I}_{\mathcal{K}}}$
for every $K B(\mathcal{T}, \mathcal{A})$ and primitive concept A and role P.
free consistency test: $q_{\perp}^{\mathcal{L}}(\mathcal{A})=\emptyset$

Query Rewriting

Example

$\mathcal{T}=\left\{E M P \sqsubseteq \exists M A N A G E S, \exists M A N A G E S^{-} \sqsubseteq B O S S, B O S S \sqsubseteq E M P\right\}$ $\mathcal{A}=\{E M P($ Bob $), E M P($ Sue $)\}$

Queries:
(1) $\exists v \cdot \operatorname{MANAGES}(v, v)$
(2 $\exists y \cdot \operatorname{MANAGES}(x, y) \wedge \operatorname{MANAGES}(z, y)$

Query Rewriting

Example

$\mathcal{T}=\left\{E M P \sqsubseteq \exists M A N A G E S, \exists M A N A G E S^{-} \sqsubseteq B O S S, B O S S \sqsubseteq E M P\right\}$
$\mathcal{A}=\{E M P($ Bob $), E M P($ Sue $)\}$
Queries:
(1) $\exists v \cdot \operatorname{MANAGES}(v, v)$
(2 $\exists y \cdot \operatorname{MANAGES}(x, y) \wedge \operatorname{MANAGES}(z, y)$

Query Rewriting

```
Example
T = {EMP\sqsubseteq \existsMANAGES, \existsMANAGES'` GOSS,BOSS\sqsubseteq EMP}
A ={EMP(Bob),EMP(Sue) }
```

Queries:
(1) $\exists v \cdot \operatorname{MANAGES}(v, v)$
(2 $\exists y \cdot \operatorname{MANAGES}(x, y) \wedge \operatorname{MANAGES}(z, y)$

Query Rewriting

$$
\exists \bar{u} . \varphi \quad \mapsto \quad \exists \bar{u} \cdot \varphi \wedge \varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}
$$

where $\quad \varphi_{1}$ eliminates answers containing c_{R} 's;
φ_{2} eliminates problem (1) above; and
φ_{3} eliminates problem (2) above.
selections in SQL

UNA or not UNA

So far: all results are assuming UNA (the Unique Name Assumption)
\Rightarrow also assumed by the underlying relational technology.

UNA or not UNA

So far: all results are assuming UNA (the Unique Name Assumption) \Rightarrow also assumed by the underlying relational technology.

BUT OWL does NOT adopt UNA. . .

UNA or not UNA

So far: all results are assuming UNA (the Unique Name Assumption)
\Rightarrow also assumed by the underlying relational technology.

BUT OWL does NOT adopt UNA. . .

What happens without UNA?

DL-Lite ${ }_{\text {core }}^{\mathcal{N}}$ data complexity: coNP (Artale et al. 2009)
DL-Lite ${ }_{\text {horn }}^{\mathcal{F}}$ data complexity: PTIME-complete
\Rightarrow explicit account of equality (via an auxiliary relation eq)
\Rightarrow added to the construction of $\mathcal{I}_{\mathcal{K}}$ (doesn't affect queries)

Experiments

Ontologies:

Galen-lite (2733 concepts, 207 roles, 4888 axioms)
Core (81 concept names, 58 roles, and 381 axioms) Stockexchange (17 concepts, 12 roles, 62 axioms) University (31 concepts, 25 roles, 103 axioms)
System:
DB2-Express version 9.5 running on Intel Core 2 Duo 2.5 GHz CPU, 4GB memory and 500GB storage under Linux 2.6.28.
Queries:
Conjunctive queries with 3-6 atoms in their bodies, e.g.,

```
Q1 (x):-horn(x), hasstate(x,y), cellmorphologystate(y).
Q2 (x):-shortbone(x), hasstate (x,y), cellmorphologystate (y).
Q3(x):-tissue(x), hasstate (x,y),temporalunit (y).
Q4(x):-protozoa(x), contains(x,y),metal(y),
    contains(x,z),steroid(z).
```


Experiments (results)

	$\begin{aligned} & \text { Ind } \\ & \text { (in K) } \end{aligned}$	ABox size (in M)		query					
		original	canonical	Q1			Q2		
		CA RA	CA RA	UN	RW	QO	UN	RW	QO
Galen-Lite	20	2.02 .0	9.93 .7	0.02	0.04	13.69	0.02	0.08	1.65
	50	$5.0 \quad 5.0$	24.89 .3	0.04	0.55	14.39	0.05	0.19	2.21
	70	10.010 .0	43.015 .4	0.03	0.76	17.56	0.11	0.55	3.01
	100	20.020 .0	75.025 .8	0.05	0.87	23.86	0.14	0.76	6.55

Q3			Q4		
UN	RW	QO	UN	RW	QO
0.02	0.11	1 m	28	0.12	0.22
16 m	11				
0.03	0.28	51.39	0.11	0.43	13 m 26
0.06	0.73	1 m	11	0.15	0.63
13 m 00					
0.12	0.95	1 m 31	0.18	1.52	16 m 23

Legend:
CA-number of concept assertions; RA-number of role assertions
UN-original query; RW-canonical interpretation; QO-QuOnto system

Summary of Contributions

Contributions

(1) Combined approach to query answering in DL-Lite
\Rightarrow efficiency gains in comparison with pure rewriting,
\Rightarrow non-UNA in DL-Lite ${ }^{\mathcal{F}}$ can be supported.
(2) Polynomial rewriting for DL-Lite ${ }_{\text {core }}^{\mathcal{F}}$.

Summary of Contributions

Contributions

(1) Combined approach to query answering in DL-Lite
\Rightarrow efficiency gains in comparison with pure rewriting,
\Rightarrow non-UNA in DL-Lite ${ }^{\mathcal{F}}$ can be supported.
(2) Polynomial rewriting for DL-Lite ${ }_{\text {core }}^{\mathcal{F}}$.

Future Work

(1) Better integration with role hierarchies
\Rightarrow we can do this efficiently (but not by poly-sized query)
(2) Incremental update of the canonical interpretation
\Rightarrow using techniques for incremental view maintenance

