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A b s t r a c t .  A Craig interpolant of two inconsistent theories is a formula 
which is true in one and false in the other. This paper gives an eifi- 
cient method for constructing a Craig interpolant from a refutation proof 
which involves binary resolution, paramodulation, and factoring. This 
method can solve the machine learning problem of discovering a first 
order concept from given examples. It can also be used to find sentences 
which distinguish pairs of nonisomorphic finite structures. 

1 Background and Introduction 

Let 27 and H be two inconsistent first order theories. Then by Craig's Interpo- 
lation Theorem, there is a sentence 8, called a Craig interpolant, such that  8 is 
t rue in 27 and false in H and every nonlogical symbol occurring in 8 occurs in 
bo th  27 and H.  Craig interpolants can be used to solve the problem of learning 
a first order concept by letting 27 and H be the lists of positive and negative 
examples of the concept to be learned. 

The  s tandard nonconstructive model-theoretic proof of Craig's Theorem is 
in [3]. Lyndon showed how to construct an interpolant from a special form of 
natural  deduction (see [1]). We show how to construct an interpolant from a 
refutat ion proof  which uses binary resolution, factoring and paramodulation. In 
our examples, we use O T T E R  (the s tandard text  on O T T E R  is [4]) to generate 
such proofs. 

Craig interpolants can be used to find a sentence which distinguishes two 
nonisomorphic finite structures. Let  27 and H be the atomic diagrams of the two 
structures. Then  they are inconsistent and any Craig interpolant for them is a 
sentence which is t rue in one s tructure and false in the other. 

2 Constructing Interpolation Formulas from Refutations 

Let L~: and L ~  be two languages, 27 a theory in L~:, and H a theory in L ~  such 
that  27 t9 H is not consistent. In this paper we use <> to represent contradiction, 
use O to indicate the end of a proof, and suppose P is a refutation of E U / / ~  <> 
involving only binary resolutions, paramodulations, and factorings. The input 
clauses (clauses at the top of the refutation) are required to be instances of 
clauses from 27 and / / .  For convenience, we will assume that  different input 
clauses have disjoint sets of variables. 
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For any occurrence L in the proof P of a relational symbol in L z  U L n ,  we 
define L is from 27 recursively by: 

(i). If the occurrence L is in an input clause from 27, we say it is from 27; 
otherwise, it is not. 

(ii). If the occurrence L is in a non-input clause C, then it is from 27 if the 
corresponding occurrence in some parent clause is from 27. 

Similarly, we can define L is from 11. Since factoring is allowed in the proof, 
several occurrences of some literal may be factored into a single one. So it is 
possible that  a literal in some clause may be from both 27 and 11. 

Let T and F be the t ru th  values of "truth" and "falsehood". For a binary 
resolution proof P we use the following recursive procedure to assign formulas 
to the clauses in P: 

I n t e r p o l a t i o n  A l g o r i t h m  
(i). If  C is an input clause from 27, its formula is F; if C is an input clause 

.from 11, its .formula is T. 
(ii). If r is assigned to L V C and r is assigned to -~L ' V D, and if ( C V D )Tr 

is the resolvent of L V C and D V "~L' resolving against L~'(= L'~r), then the 
formula assigned to (C V D)Tr is: 

(a). (r V r if the occurrences of both L and ",L' are from 27 alone; 
(b). (~ A r if the occurrences of both L and ",L' are from 1I alone; 
(c). (('~L' A r V (L A r if neither (a) nor (b). 

Definit ion 1. A formula 0 is a relational interpolant of 27 and 11 relative to a 
clause C iff 

(1). all relational symbols of 0 are in L z  f3 Ln,  
(2). ,U ~ 0 V C, and 
(3). 11 -0  v c .  

Theorem 2. For each clause C of a binary resolution proof P of 27 U FI ~ <>, 
the formula assigned by the above algorithm is a relational interpolant of 27 and 
1"7 relative to C. In particular, the formula 0 assigned to the final empty clause 
of the proof P is a relational interpolant between 27 and -,11. 

Proof. It is obvious tha t  any assigned formula contains only relation symbols 
from L z  f3 Ln.  So condition (1) of the definition holds. 

For any occurrence of a clause or subclause C in the proof P,  let Cz (let 
C1r) be C with all occurrences of literals not from 27 (not from 11) deleted. Then 

c, c, and CEVCR C  Jid and (CVD)  = (CE VOw) 
and (Cz)~r = (C1r)z for any unifier ~r. 

We prove by induction on the depth of C in P the following strengthenings 
of (2) and (3): 

(2)'. 27 ~ e v c ~ ,  
(3)'. 1I ~ ~0 v c~. 
Suppose C is an input clause from 27. Then 0 is F and Cz = C. Thus (2)' 

and (3)' hold since 27 ~ F V C and 11 ~ T V C. The argument for an input 
clause from 11 is similar. 
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Suppose (2)' and (3)' are true for clauses L V C and ~L '  V D of P whose 
resolvent in P is (C V D)Ir where lr is a unifier such that  L~r -- LPlr. Assume 
L V C is assigned the formula r and -~L' V D is assigned r Thus we have 

~ ~ CV (LVC)~, ~r 
/ / ~ ' , r  I I ~ - , r  
Case (a). Suppose the occurrences of L and -~L' are both from S alone. 

Then (L V C)~  = L V Cj~ and ( ' ,L '  V D ) ~  = -~L' V D~.  By resolution we get 
(2)': S ~ ((r V CE) V (r V DE))~r = (r V r V (C V D)Ir~. For (3)' we have 
(L V C)ir = Ct/ and (--L' V D)/7 = Dlr and s o / / ~  (-~r V Cu)  A (-1r V D/r) 
a n d / - / ~  --(r V r V (C V D)~'~. 

Case (b) for L and ",L' f r o m / / a l o n e  is similar. 
Case (c). In any model of 27 with any assignment of variables, if both C:vlr 

and D~Tr are false, then (r V L)~r and (r V --L')Tr are true. So if L~r --- L ' r  is 
true, then so is r if L1r is false, then r is true. Either way, 

((- ,L'  A r V (L A r  V (C V D)~)  is always true. 
S i m i l a r l y , / / k  (((n V -~r A (~n '  V r V (C V D)rl )r .  
Hence, by induction, the theorem holds. [] 

Resolution provers often use paramodulation to handle equality. Given clauses 
C(r)  and s = tVD with no variables in common and a unifier 7r such that  rTr = s~r 
or rTr = tlr, paramodulation infers the paramodulant (C(t)  V D)Ir or (C(s)  V D)lr 
respectively. 

D e f i n i t i o n 3 .  For a deduction P in L~  O Lr/, a noneommon term is a term 
which begins with a symbol not in LE N Ln .  Such a term is called a ,U,-term 
if its initial symbol is from S ,  a H-term if its initial symbol is f rom/1 .  An 
occurrence of a S ( / / ) - term is maximal if this occurrence is not a subterm of a 
larger 27 (/ /)- term. 

Now we extend the Interpolation Algorithm to proofs with paramodulation 
as follows: 

5ii).  I f  r is assigned to C(r)  and r is assigned to s = t V D and if 7r is a 
unifier such that rlr = s~r, then the .formula assigned to the paramodulant is: 

(d). [(r A s ---- t) V (r A s r t)]Ir V (s ----t A h(s) # h(t))Ir provided r occurs 
in C(r)  as a subterm o.f a m a x i m a l / / - t e r m  h(r)  and there is more than one 
occurrence of h(r)  in C(r)  V c~. 

(e}. [(r A s = t) V (r A s ~ t)]lr A (s ~ t V h(s) = h(t))Tr provided r occurs 
in C(r )  as a subterm o-f a maximal S - t e rm  h(r) and there is more than one 
occurrence of h(r)  in C(r)  V r 

(f).  ((~b ̂  s = t) V (~b ̂  s ~ t))lr i-f neither (d) nor (e}. 

L e m m a 4 .  I f  ~, r are the interpolants relative to C(r)  and s = t V D, re- 
spectively, then the above -formula is an interpolant relative to the paramodulant 
(C(t)  V D)~.  

Proof. We prove case (f). Since 27 ~ ( C ( r ) V  r and S ~ (s = t V D V r for 
any model A of 27, if s~r = t~r in A, then A ~ (C(t)  V r otherwise if s~r # t~r 
in A, then A ~ D1r V r Either way, we have A ~ (C(t)  V D V 0)Ir. 
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S i m i l a r l y , / / ~  (C($) V D V -,6)7r in the two cases: For s~r = tTr,/I ~ (-~b V 
for # u v Thus the  si ed formula satisfies the 

requirement. El 

The final rule of inference we need is factoring. Given a clause L V L'  V C and 
a unifier ~r such that  L r  = L i t ,  factoring infers the clause (L V C) r .  We extend 
the Interpolation Algorithm to proofs with factoring as follows: 

(iv). I] qb is assigned to L V L' V C and lr is a unifier as above, then we assign 
q~ to the factor clause (L V C)Ir. 

Clearly 27 ~ L V L ' V C V r  and II  ~ L V L ' V C V ' , r  imply 27 ~ (LVC)~rVr 
a n d / / ~  (L V C)~r V -,r 

Thus for a refutat ion proof P by a series of binary resolutions, factorings, and 
paramodulations,  applying the above extended algorithm gives a formula, say 
0, for the 'empty  clause. Since 27 ~ 0 a n d / 7  ~ --0, 8 is a relational interpolant 
between ,U and -1//. Though 8 does not contain any non-common relational 
symbol, it may contain noncommon terms with constants or function symbols 
which are not in L~  N LR. We now show how to get a Craig interpolant by 
replacing all noncommon terms in 0 with appropriately quantified variables. 

First we define a binary tree deduction to be a deduction in which any clause is 
used at most once. Such a deduction involving only binary resolutions, factorings, 
and paramodulations forms a binary tree. 

L e m m a S .  Any refutation P using only binary resolutions, paramodulations, 
and fuctorings, lifts to a binary tree deduction Pb with the same conclusion. 

Proof. We prove this lemma by induction on the number k(P) of clauses which 
are used more than once in the deduction P. If k(P) = O, P is a binary tree de- 
duction. Assume the lemma holds for all deductions with k(P) _< n and suppose 
k(P) = n + 1. Let  C be a clause such that  C is used m _> 2 times in P but  all 
the ancestors of C are used only once. We construct a new deduction P '  from 
P such that  P '  has m copies of C and its ancestors, and each copy of C and its 
ancestors is used exactly once in pr.  Finally, variables may be renamed if nec- 
essary, so that  different input clauses have disjoint sets of variables. Otherwise 
P is the same as P '  and has the same conclusion. Since pr is a deduction with 
k(P p) <_ n, by induction, P '  lifts to a binary tree deduction Pb with the same 
conclusion. 

Suppose P is a binary tree deduction whose input clauses have disjoint sets 
of variables and whose substitutions are generated by the usual unification al- 
gorithm, then the following properties hold in P:  

1. Every variable of any noninput  clause in P occurs in exactly one parent 
clause and thus traces back to a unique ancestral input clause. 

2. Any two incomparable (neither is the ancestor of the other) clauses have 
disjoint sets of variables. 

3. For any substi tution r of P and any variable x, either lr is trivial on x, i.e., 
~r(x) = x, or x does not occur in the term lr(x). 

4. If  ~ is nontrivial on z ,  z never appears in any clause below lr. 
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Defin i t ion  6. Given a binary tree deduction P as above, for any variable x 
occurring in P, let rtp, the composite substitution for P, be the substitution such 
that  lrp(x) is the term resulting from applying to x the composition of all the 
substitutions along the path from the unique input clause which contains z to 
the bottom of P. 

L e m m a 7 .  For any clause C in such a binary tree deduction P, C1rp is the 
clause obtained by applying to C the composition of all the substitutions along 
the path from C to the bottom of P. 

Proof. Suppose x is a variable of C. Then z traces back to a unique ancestral 
input clause D.' All of the substitutions along the path from D to C are trivial 
on z since otherwise, x would not occur in C. Hence rt(x) = the composition of 
all substitutions from D to the bottom, t3 

We say a deduction is propositional if there are no nontrivial unifying sub- 
stitutions involved in the deduction. 

L e m m a 8 .  The Boolean operations V, ̂ ,-~ and propositional binary resolution, 
faetoring, and paramodulation commute with substitution. That is, if ~r is a sub- 
stitution, then (A V B)~r = A~r V B~r, (A ^ B)rt = Ar  ^ Brt, (-A)~r = -~(A~r); 
and for any propositional binary resolution {A V L, B V -~L} ~ A V B, we have 
{Art V Lrt, Blr V -~Lrt} ~ Art V B~r; and for any propositional paramodulation 
{C(s), s = t V D} ~= C(t) V D, we have {C(s)~r, (s = t)rt V D~r} ~ C(t)rt V Dlr. 

L e m m a  9. Every binary tree proof Pb projects to a propositional proof Pp. 

Proof. Given a binary tree proof Pb, rename the variables if necessary so that 
the above four properties hold and let rtp be the composite substitution for P. 
Let Pp be the result of replacing each clause C of Pb with C1rp and replacing 
each substitution with the trivial identity substitution. Then by Lemma 8 Pp is 
a projection of Pb and Pp is a propositional binary tree deduction. D 

L e m m a  10. Assume Pb projects to Pp as in Lemma 9. I f  we apply the Interpo- 
lation Algorithm to the propositional deduction Pp, and if a clause C ~ in Pp is 
assigned formula q5 l, and if its corresponding clause C in Pb is assigned formula 
r then r = dprtp. In particular, the assignments to ~ from both deductions are 
the same. 

Proof. Any occurrence of a literal L in a clause C' of Pp is from ,U or H or 
both iff its corresponding occurrence in Pb is from ~, H, or both. So the corre- 
sponding clauses of Pb and Pp are assigned interpolants by the same case of the 
Interpolation Algorithra. Lemma 8 gives the result. 13 
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Let Pp be a propositional deduction in L~: U L~, and tt,...,tn be all the 
//-terms with maximal occurrences in Pp. Let xl, ..., x ,  be a set of new variables 
which do not occur in Pp. For any term or formula 0 in Pp, define 0(xl, . . . ,z , )  
to be the term or formula obtained by simultaneously replacing all maximal 
occurrences of the / / - t e rms  tj 's by the new variables xj's. We call 0 the lifted 
formula of 0 from//-terms. 

Lemma 1 I. 

(AV B)(:~I, ...,xn) 
(A ^ . . . ,  

(s = 

0 

4 = ,  v 

A 

r  = 

= t , )  

L e m m a  12. If 0 is the relational interpolant of 27 and II relative to C by the 
Interpolation Algorithm for the propositional deduction Pp, then we have 

Z I= (C V 0)(:~1, ..., x , ) .  

Proof. We prove this lemma by induction on Pp. If O(tl, ...,in) is an instance of 
an input clause from 27, then all the / / - te rms in C come from free variables by 
the unifying substitutions in the original deduction. So by the construction of 
Pp we know that C(xl ,  ..., z , )  is an instance of some input clause in 27, and F is 
assigned to this clause. Thus 27 ~ C(xt ,  .., xn) V F. If ~( t l ,  .., tn) is an instance 
of input clause from H, then it has assigned formula T and 27 ~ C(xt,  .., xn) VT 
holds. 

Now assume that 27 ~ (C V L V ~b)(xl, .., x , )  and 27 ~ (D V -~L V tb)(xl, .., xn) 
and that C V L and D V -~L resolving against L gives C V D with interpolant 0. 
We show that 27 ~ (CVDVO)(zl,..,zn). 

Notice that by propositional deduction and Lemma 11 we have 

{CV LV r DV'~LV~b)~CVDV( '~ -LAr162  
Using Lemma 1 1 again proves the Lemma for case (a) and case (c) of the 

Interpolation Algorithm definition of 0. For case (b), 0 = r h tb, and the occur- 
rences of L and -~L are not from ~7. By the proof of Theorem 2 we know that 
27 ~ C V r and 27 ~ D V r respectively. Thus we have 27 ~ C V D V (r A r 

Next assume C(s) and s = t V D gives C(t) V D by paramodulation. As- 
sume 27 ~ (C(s) V r ..., xn) and 27 ~ (s = t V D V r Xn). Here we 
consider case (d) of the assignment for paramodulation in which s occurs in 
C(s) as a subterm of a maximal //-term h(s) which occurs more than once 
in C(s) V ~b. Then since h(s), h(t)are distinct//-terms, they will be replaced 
by distinct new variables h(s), h(t) in C(t) V r For any model of 27 and any 
assignment of all free variables in the lifted paramodulant and its assigned 
formula, if C(s) and $ = t are true but C(t) is false, then we must have 
h(s) ~ h(t). So in this case we have: 27 ~ (s = tA h(s) # h(t))(~l, . . . ,x,). And 
hence, ,~ ~ (C(t) V D V 0)(Zl, ..., x , ) .  
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The arguments for the other cases are straightforward. 13 

We now assign a dual formula to each clause in the proof P as follows: 
(i). If C is an input clause from `U, its formula is T; if C is an input clause 

from H,  its formula is F. 
(ii). If r is assigned to L V C  and r is assigned to -~L'VD, and if (CV D)~r is 

the resolvent of L V C and D V --L r against L~ - Lrlr, then the formula assigned 
to (C V D)lr is: 

(a). (r A r if the occurrences of both L and --L' are from `U alone; 
(b). (r V r if the occurrences of both L and --L' are f r o m / / a l o n e ;  
(c). ((L A r V (-~L' A r  if neither (a) nor (b). 
(iii). If (C(t) V D)Tr is the paramodulant  from above described paramodula- 

tion, its formula is 
(d). [(r V s ~ t) A (r V s = t)]~r ̂  (s # t V h(s) = h(t))~ provided the r is 

a subterm of a maximal/- / - term h(r) and there is more than one occurrence of 
h(r) in C(r)  V r 

(e). [(r Y s # t) A (r V s = t)]lr V (s = t Y h(s) # h(t))lr provided the r is 
a subterm of a maximal ~- te rm h(r) and there is more than one occurrence of 
h(r) in C(r)  V r 

(f). ((r A s ----- t) V (r A s # t))lr if neither (d) nor (e). 
(iv). If r is assigned to L V L t V C and lr is a unifier such that  L~r = L t l r ,  

then we assign r to the factor clause (L V C)~r. 
By induction on the depth of a clause in the deduction we can show 

L e m m a  13. The formula assigned by the dual method is the logical negation of 
that assigned by the original Interpolation Algorithm. 

C o r o l l a r y  l 4 .  Assume that ~(sx,..., s~) is the dual formula assigned to C in 
Pp by the dual assignment algorithm, where sl, ..., sk are all the E-terms with 
maximal occurrences in Pp. If  we let 0(Yx,...,yk) be the formula obtained by 
simultaneously replacing all maximal occurrences of the `u-terms Sx, ..., sk by the 
new variables YI, ...,Yk, then we have 1I ~ ~(Yl,...,Yk). 

Now we are ready to quantify all the variables for noncommon terms in the 
relational interpolant 8 of `U a n d / / r e l a t i v e  to the empty clause. Assume that  
all the maximal ~U-terms a n d / / - t e r m s  are {tl, ..., t , } ,  ordered by their lengths. 
Assume {tl, ..., tn } = {rl .... , r~ } U {Sk+l, ..., sn } where the ri's are the maximal 
H-terms and the sj 's are the maximal ,U-terms. If lifting 8 from H-terms gives 
0(xl, ..., xk), and lifting ~(xl, ..., xk) from the `u-terms gives 8"(zl, ..., zn) where 
the z~'s are new variables for the t~'s, then we have 

T h e o r e m  15. Ql Zx...Qnz, O*(zl, ..., z , )  is a Craig interpolant separating ,U and 
I'I, where Qi is V if ti is a I.i-term, otherwise Qi is 3. 

Proo I. Clearly QlZl...Q,z,O*(zl, ..., zn) is a formula in Lv  N L~ .  By Lemma 12 
we have ,U ~ Vxl...xhS(xl...xk). 
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Each maximal 27-term of O(zz,...,=k) is a lifting ~j(xt,...,xk) of one of 
the maximal 27-terms Sk+l,...,sn of 0. If xi occurs in ~j(Xl,. . . ,xk) then the 
term ri which xl replaces is a subterm of sj and thus rl occurs before sj 
in the list {tl, . . . , tn} and the variable for ri  occurs before the variable for 
sj in the prefix Qazl...Qnz,. Hence ~j is a witness for the quantifier 3yj in 
Qlzz...QnznO*(zl, ..., zn). Hence, 27 ~ QlZl...QnznO*(zl, ..., Zn). 

On the other side, for the dual formula -~0, using the same order among the 
noncommon terms and by the corollary above and the fact that  0* is also the 
lifting f r o m / / - t e r m s  of the lifting 0 of 0 from 27-terms, we also have 

1-1 ~ -QlZX...-Qnzn,O*(zl, ..., Zn) where Q-"j = V (:1) iff Qj = -~ (V). Moving 
the negation symbol out we finally have H ~ "-,Qlzl...QnznO*(za, ..., zn). [] 

The formula 0* may contain free variables other than z,, ..., zn. We get a Craig 
interpolant sentence by quantifying these extra variables with the quantifier Q1 
or any other sequence of quantifiers. 

Ezamplel. Let 27 = (R(x,a) V R(x ,b) } ,  H ---- { ' - ,R(c,y)},  where a, b and c are 
distinct constants. An O T T E R  resolution refutation for 27 U / - / ~  ~ is: 

1 R(z, a) V R(x,  b). 
2 -R(c,u). 
3 [binar ,I, l Me, b). 
4 [bi,aru, S,e]. 
The Interpolation Algorithm gives the formula 0 = R(c, a) V R(c, b). Since a 

and b are 27-terms and c is a / / - t e r m ,  we replace a and b by the existentially 
quantified variables x and Y, and replace c by the universally quantified variable 
z. Since the lengths of a, b, c are all 1, the order among the quantifiers does not 
mat ter .  Thus the following three formulas are all Craig interpolants between 27 
a n d / / :  

vz3=u(R(z, =) v R(z,u)), 3.W3u(R(z, ) v v 

Ezample~. Let 27 = {x # f ( x ) , x  # f ( f ( x ) ) } ,  H = {1/= x Vy = 9(z)},  where 
bo th  f and g are functions. Any model of 27 has a universe of size at least 3, while 
any model of H has a universe of size at most 2. So 27 and H are inconsistent. 
An O T T E R  resolution refutation for 27 U H ~ ~ is: 

1 
z~f(f(x). 

3 y=xVy=g(z). 
[bina~,3.1,~.l] x=g(I(f(=))). 

5 [binary,3.1,I.I] :c=g(l(=)). 
,o .=I(*). 
11 [binary,  0.1,1.1] . 

The formula 0 the Interpolation Algorithm gives is 
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[(x r f ( f ( x ) )  ^ x # g( f ( f ( x ) ) ) )  V (x = g ( f ( f ( x ) ) )  ^ f ( x )  • f ( f (x) ) ) ]  ^ x # 
f (x) .  

The noncommon terms, when sorted according to lengths, are f (x) ,  l(l(z)), 
g(f(l(x))), where g(f(l(x))) is a//-term and the others are 27-terms. Replacing 
these terms with the variables u, v, w and quantifying them gives the formula 

0* = ~ . v ~ [ ( ~  # .  ^  9 # ~)  v (~ = ~ ^ ~ r ,)] ^ (x # ~). 
Note tha t  any model for O* contains at least three elements: It can not con- 

tain only one or two elements, for x, u, v must be distinct. Thus 0" is a Craig 
interpolant separating ,U a n d / / .  

3 A p p l i c a t i o n s  of  Craig In terpo lants  

Given two finite structures, to show they are isomorphic, one finds an isomor- 
phism. To show they are not, one gives a statement that  separates them, i.e., a 
sentence which is true in one structure but false in the other. The Interpolation 
Algorithm can be used to find such a sentence. 

For structures $1 with elements {al, .., an} and $2 with elements {bl, ..., bn}, 
assume tha t  the universes for $1 and $2 are disjoint, and all the elements ai,b i 
are named by new distinct constant symbols. I~urthermore assume the diagrams 
(the collection of all atomic sentences and negations of atomic sentences which 
hold in the structure) for the structures are ,41 and ,42 respectively. Then each 
of the diagrams is a theory in some language. If the two structures are not 
isomorphic, then ~ = ,41 U Vx(x = al V ... V x = a,,) and H = ,42 U Vy(y = 
bl V ... V y = bn) are inconsistent, and by completeness there exists a refutation 
proof for 27 U H ~ O. Applying the Interpolation Algorithm to this proof gives 
a first order sentence which separates the structures. 

For example, let Sz and $2 be directed graphs. $1 has vertices {a, b, c} with 
edges {(a,b), (a,c)}. $2 has vertices {a',b',c'} with edges {(a',b'), (c' ,a')}. We 
use binary relation p to represent the edges of the graphs. Then the diagram for 
$1 is 

A1 = {p(a, b),p(a, c), "rip(b, a),-.p(b, c),-~p(c, a),-~p(c, b), a # b, a # c, b # c}. 

And the diagram for $2 is 
A2 = {p(a', b'),p(c', a'), "~p(a', c'), ".p(b', a'), -~p(b', c'), -~p(c', b'), 
a' # b', a' # c', b' # c'}. 
So .U = ,410Vx(x  = a V x  = b V x  = c) a n d / / =  ,42 UVz(x = a ' V x  = 

b' V z = d ) .  
A refutation proof by OTTER is the following: 

1 p(a,b). 

7 (a#  b). 
S (ar  c). 
w ( = =  a) v (= = b) v (~ = c). 
14 -p(bI,~l). 
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15 -p ( c I , b l } .  
Ie -plaI,~1). 
1 9 k  = al)  V k =  bl} V (x = cl). 

3o /~,~.~m,~o,7] (~ # # v (~ = ~) v (~ = ~). 

e74 [r~-~,~,sO,  sl (~ # ~) v (~ = a). 
507 [pa~-~m,S~,el p(a,# V (~ = a). 
699 [para-from,44,14] -p(x, cl} V (x = cl). 
711 [binary,699,507] (a = cl) V {cl = a). 
7s3 [binary,711,e741 (ci = 4 .  
794 [ p ~ - ~ m ,  TS3,2~] (bl # a). 
797 [para-from, 783,15] -p (a, bl). 
sl ~ [binary, 794,a07] p(a, b O. 
817 [binary, 816, 797]. 

Applying the Interpolation Algorithm, and using some trivial logic rules such 
as AV-~A r T, (AA--,B)VB r A V B ,  A A A  r A, AA'-,A < :- 
F, A V --A ~ T, to simplify the formula, we get the following relational 
interpolant 

O: ( c ' = a V p ( a , c ' ) ) A ( b ' = a V p ( a , b ' ) ) .  
Note that a is a S-term, while b' and c' are/ / - terms.  If we replace a, b', c' 

by x, y, z, respectively, by Theorem 15, we get the following formulas. They all 
separate the two graphs: 

3~VUz[(z =  9 Vp(~, z)) A (U =  9 Vp(~,y))], 
v y 3 ~ w [ ( ~  =  9 v p ( = ,  ~)) A (y =  9 v p(:~, y))] ,  
v y , ~ = I ( z  = :~ v p ( = ,  ~)) ^ (~ = = v p(=, y))] .  
Note that there is a shorter formula 3xVU(X = y V p(x, U)) which separates 

the two given structures. The generation of minimal length separating sentences 
is an open problem. We also need more efficient proof strategies for such prob- 
lems since current resolution provers can not find refutation proof for pairs of 
structures with more than 6 elements. 
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