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Abstract

This paper briefly reviews the recent literature on consis-
tent query answering, an approach to handle database in-
consistency in a systematic and logical manner based on the
notion of repair. It discusses some computational and se-
mantic limitations of consistent query answering, and sum-
marizes selected research directions in this area.

1. Introduction

Nowadays more and more database applications have to
rely on multiple, often autonomous sources of data. While
the sources may be separately consistent, inconsistency may
arise when they are integrated together. For example, differ-
ent data sources may record different salaries or addresses
of the same employee. At the same time, the application
may require that the integrated, global database contain a
single, correct salary or address.

In consistent query answering, inconsistency is viewed
as a logical phenomenon. A database is inconsistent if it vi-
olates integrity constraints. Since it is assumed that the real
world is consistent, an inconsistent database does not corre-
spond to any state of the real world, and thus is not a source
of reliable information. It needs to be repaired before it can
be queried. However, there may be many different ways of
repairing a database, even if we limit ourselves to the mini-
mal ones. So it is natural to consider the information present
in every repaired database. This leads to the notion of con-
sistent query answer (CQA): an element of query result in
every repaired database. Consistent query answers provide
a conservative “lower bound” on the information contained
in the database.

Example 1.1 Consider the following relation Employee

∗This material is based upon work supported by the National Science
Foundation under Grant No. IIS-0119186.

Name Address Salary
John Brown Amherst 100K
John Brown Amherst 80K
Bob Green Clarence 80K

and the functional dependency Name → Address Salary .
Note that for both employees the database contains a single,
correct address, while two different salaries are recorded
for John Brown, violating the functional dependency.

There are two (minimal) repairs: one is obtained by re-
moving the first tuple, the other by removing the second tu-
ple. (Removing more tuples violates repair minimality.) The
query Q1

SELECT * FROM Employee

has one consistent answer, (Bob Green,Clarence,80K), be-
cause neither of the first two tuples appears in the result of
the query in both repairs. On the other hand, the query Q2

SELECT Name, Address FROM Employee
WHERE Salary > 70K

has two consistent answers, (John Brown,Amherst) and
(Bob Green,Clarence), because Q2 returns those two tuples
in both repairs. Using Q2 the user extracts correct address
information for John Brown, despite the fact that the infor-
mation about Brown’s salary is inconsistent.

The approach outlined and illustrated above was first pro-
posed in [1]. That paper was followed by numerous further
papers that explored several different dimensions of consis-
tent query answering:

• different notions of repair minimality;

• different classes of queries and integrity constraints;

• different methods of computing consistent query an-
swers.

In this paper, we first define the basic notions and sum-
marize the main approaches to consistent query answering.
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(For more complete surveys of the area, see [5, 8, 17].)
We show when it is practical to compute CQAs and when
this task runs into inherent computational obstacles. Sub-
sequently, we examine the assumptions on which the CQA
framework is based and its semantical adequacy. We deter-
mine in what circumstances consistent query answering is
applicable and where it needs to be supplemented by other
techniques. We conclude by outlining selected current re-
search directions in the area.

2. Basic notions

We are working in the context of the relational model
of data, assuming the standard notions of relation, tuple,
attribute, key, foreign key, functional dependency (FD), and
inclusion dependency (IND). In addition, we also consider
universal integrity constraints of the form ∀x̄.ϕ(x̄), where
ϕ is quantifier-free, and more restricted denial constraints,
in which ϕ is a disjunction of negative literals. We assume
that we are dealing with satisfiable sets of constraints. We
do not consider nulls.

A database is consistent if it satisfies the given integrity
constraints; inconsistent, otherwise. We consider the com-
mon query languages for the relational model: relational al-
gebra, relational calculus, and SQL. Each of them has a well
defined notion of the set of query answers qaQ(r) where Q
is the query and r is a database.

A repair r′ of a database r is a database over the same
schema, which is consistent and minimally different from r.
We denote the set of repairs of r by Rep(r). Several notions
of repair minimality have been proposed in the literature:

• set minimality of the symmetric difference ∆(r, r ′) [1]
(the most commonly used);

• set minimality of the asymmetric difference r−r ′, with
the assumption that r′ ⊆ r [18] or without it [15];

• several different notions of minimality defined
attribute-wise [7, 11, 35].

Each of them may lead to a different set of repairs Rep(r).
However, the set of consistent query answers cqaQ(r) is
always defined as the intersection of the query answers in
individual repairs:

cqaQ(r) =
⋂

r′∈Rep(r)

qaQ(r′).

3. Computing CQAs

Retrieving CQAs via the computation of all repairs is not
feasible. Even for FDs, the number of repairs may be too
large.

Example 3.1 Consider the FD A → B and the following
family of relations rn, n > 0, each of which has 2n tuples
(represented as columns) and 2n repairs:

rn

A a1 a1 a2 a2 · · · an an

B b0 b1 b0 b1 · · · b0 b1

Therefore, various methods for computing CQAs with-
out explicitly computing all repairs have been developed.
Such methods can be grouped into a number of categories
(only the main approaches are discussed).

Query rewriting. Given a query Q and a set of in-
tegrity constraints, construct a query Q ′ such that for every
database r

qaQ′
(r) = cqaQ(r).

This approach was first proposed in [1] for limited first-
order queries (no quantification or disjunction, binary
acyclic universal constraints). It was further extended in
[24, 23] to a subset Ctree of conjunctive queries with ex-
istential quantification, under key constraints. The advan-
tage of query rewriting is that the rewritten query is also
first-order, so it has polynomial data complexity and can be
evaluated by any relational database engine. Note that the
construction of all repairs is entirely avoided. [23] shows
that the rewriting approach is practical for medium-sized
databases.

Example 3.2 In Example 1.1, the query

SELECT e.Name, e.Address FROM Employee e
WHERE e.Salary > 70K

is rewritten to

SELECT e.Name, e.Address FROM Employee e
WHERE e.Salary > 70K
AND NOT EXISTS

SELECT * FROM Employee e1
WHERE e1.Name = e.Name
AND e1.Salary <= 70K

Compact representation of repairs. Although there may be
exponentially many repairs, in some cases one can still con-
struct a polynomial representation of all of them. For ex-
ample, for denial constraints [18] defines the conflict hy-
pergraph whose nodes are database tuples and whose edges
are sets of tuples participating in a violation of a given de-
nial constraint. Then repairs correspond to maximal inde-
pendent sets. CQAs are computed on the hypergraph, us-
ing specialized algorithms. This approach has been applied
in [19, 18] to quantifier-free first-order queries, yielding a
practical polynomial algorithm, and in [3] to aggregation
queries. A nucleus [35] is a single database that “summa-
rizes” all repairs, and over which queries are evaluated to
yield CQAs.
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Logic programs. Repairs can be specified using logic
programs with disjunction and classical negation [2, 4, 26]
and correspond to answer sets [25] of such programs. Then
CQAs are obtained by skeptical reasoning (computing facts
true in every answer set) which is usually available as a
primitive in contemporary logic programming systems like
dlv [29]. This is a very general approach that can han-
dle arbitrary first-order queries and universal integrity con-
straints. The price to be paid is the computational com-
plexity, as skeptical reasoning is Πp

2-data-complete. Thus
only very small databases can be directly handled by this
approach, However, various optimization techniques have
been developed in [20], which have the potential to make
this approach practical.

Example 3.3 For the Example 1.1, one of the rules ob-
tained using the approach of [2] would be of the form

¬Emp′(n, a, s) ∨ ¬Emp′(n, a′, s′)
← Emp(n, a, s), Emp(n, a′, s′), s (= s′.

Its reading is as follows: If the functional dependency
Name → Salary is violated (right-hand side), then one
of the violating tuples has to be dropped (left-hand side).

4. Computational complexity

We assume here the notion of data complexity [34], i.e.,
the complexity defined in terms of the number of tuples in
the database. [3, 18] show that computing CQAs for con-
junctive queries in the presence of FDs is co-NP-complete.
[18] shows that adding inclusion dependencies (under re-
pair minimality defined in terms of asymmetric difference)
makes the problem Πp

2-complete. [15] show that under dif-
ferent repair minimality notions the complexity of this prob-
lem can range from co-NP-complete to undecidable. [35]
demonstrates that the complexity of CQA under a notion of
attribute-wise repair minimality closely tracks the complex-
ity of the same problem under set-based repair minimality.

5. Semantical issues

We explore here the etiology of inconsistency. There
may be many reasons for integrity violations to occur. We
examine such reasons in order to delineate the scope of ap-
plicability of the CQA framework. We claim that applying
it to raw data leads often to undesirable results and loss of
information. We conclude that for CQA to return meaning-
ful and reliable information, the data needs to be appropri-
ately prepared by making sure the schema is semantically
adequate, detecting and eliminating duplicates, and apply-
ing some data cleaning techniques.

We use Example 1.1 and its extensions to illustrate the
points made. We will primarily consider violations of the

key dependency Name → Address Salary. Our starting
assumption is that the data from multiple sources have been
integrated into a single database, over which the integrity
constraints are defined.

Semantic inadequacy. The most basic form of inconsis-
tency at this level is due to a semantic inadequacy of the
schema. The integrity constraints may fail to be satisfied in
the real world. For example, an employee may have more
than one address or salary. The proper response in such a
case is to modify the schema either by relaxing the violated
constraints or by horizontally decomposing the relation into
separate parts that satisfy different integrity constraints. For
example, the Employee relation could be decomposed into
Employee1, in which Name is still a key, and Employee2,
in which this is no longer the case [30]. Or, the functional
dependency could be replaced by a weaker form that ac-
commodates exceptions [12]. A fundamental assumption
underlying CQA is that the integrity constraints are correct,
while the data may be incorrect. Thus, CQA is overly cau-
tious in the case of semantic inadequacy and tries to repair
possibly correct information present in the database, which
leads to information loss.

Another instance of the semantic inadequacy is when the
specified key is not sufficient for distinguishing objects in
the real world. For instance, if the first two tuples in the
Employee relation correspond to two different employees
named “John Brown,” it is not surprising that the non-key
attributes in those tuples conflict! The solution is to come
up with a right key. Trying to repair the relation loses infor-
mation.

Schema misaligment. A more subtle schema-level prob-
lem occurs if the database combines data whose semantics
is not fully aligned. For example, one source may store the
employee’s work address, while another, her home address.
So in the integrated database the employee would appear
as having two different addresses and violating the func-
tional dependency. The proper response here is to revise
the integrated schema so it contains two different address
attributes. Again, the CQA approach tries to repair correct
information, leading not only to information loss but also to
the confusion between semantically different data items.

Object misclassification. The information about an ob-
ject may be inserted into a wrong relation. For example,
in the case of the relations Employee1 and Employee2 dis-
cussed above, suppose that the information about an em-
ployee with more than one address is wrongly inserted into
Employee1, raising an integrity violation. The appropriate
response is to transfer this information to Employee2, not
to try to repair Employee1. Again, CQA leads to a loss of
information.

Data value obsolescence. If data values corresponding
to different time instants are simultaneously present in the
database, they may conflict. For example, having both old
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and new values of the salary of an employee may result in a
violation of the functional dependency. The proper response
is to clean the data using meta-data, for example in the form
of timestamps. However, if such meta-data is not available
and there is no way to tell which data is old and which is
new, the cautious approach of CQA is suitable. Another
approach is to incorporate priority information into CQA
[32].

Data value imprecision. There may be multiple read-
ings of a sensor that need to be reconciled to produce a
single value, e.g., for the temperature in a room. Again,
data cleaning is in order here because one may need to re-
move outliers, account for different reading granularities
etc. However, in some cases it is not possible or desirable to
completely clean the data online (imagine several observers
gathering information about the size of a crowd or several
witnesses reporting on an accident), and in those cases CQA
can provide a conservative lower bound on the information
in the database.

Hidden duplicates. The same value can often be rep-
resented in multiple ways, for example “East Amherst” and
“E. Amherst.” So if there are multiple tuples that only differ
in the representation of some attribute values, they are likely
to be duplicates. The normalization step in data cleaning
recognizes such duplicates. CQA treats hidden duplicates
as different values which lead to an integrity violation. This
prevents the retrieval of the affected attribute values.

Data errors. Erroneous data con often be caught using
CHECK constraints, e.g., Salary > 20K . But there are
also more subtle errors that creep into data, for example
through misspellings, omissions, or transpositions. Detect-
ing such problems is difficult in general. CQA treats cor-
rect and (undetected) erroneous values in the same fashion,
thus some repairs may contain errors. However, if an erro-
neous value conflicts with another value, the error will not
be propagated to the CQAs.

Update anomalies. Relations are often denormalized for
efficiency purposes, which may lead to the violations of
non-key functional dependencies which are not maintained
for efficiency reasons. For example, consider the Employee
relation with two extra attributes Dept and Location, to-
gether with a functional dependency Dept → Location.
It may happen that different Employee tuples contain dif-
ferent values for the location of a department. However,
as long as a query asks only about the department names
and not about their locations, all the names are returned as
CQAs (provided the tuples containing them are not involved
in other conflicts).

Example 5.1 Suppose the Employee relation has the fol-
lowing attributes: Name, Address, Salary, Dept, and Loca-
tion. It contains two tuples t1 and t2 such that t1[Name] (=
t2[Name], t1[Dept] = t2[Dept] = Sales, t1[Location] =
New York, and t2[Location] = Chicago. Then the query

SELECT Dept FROM Employee

returns Sales as a consistent answer. On the other hand, the
query

SELECT Dept, Location FROM Employee

has no consistent answer.

One can define disjunctive CQAs in terms of OR-objects
[27]. In the above example, the query

SELECT Dept, Location FROM Employee

could, instead of returning no CQAs, return the tuple
(Sales, OR(New York, Chicago)) as a disjunctive CQA. It
would be natural for disjunctive LP systems like dlv to
support the computation of disjunctive query answers.

6. Selected current research

Data integration. In this paper we have assumed that
the data in the database has already been integrated at the
instance level. Recent research in data integration studies
different kinds of mappings between local sources and the
global database [28], and investigates how their semantics
interacts with that of repairs [6, 13, 16].

Aggregate constraints. [22] studies CQA for integrity
constraints that may contain linear arithmetic expressions
involving aggregate functions.

Null values. SQL nulls lack formal semantics, while ad-
equate formal approaches to incomplete information lead to
intractability [33]. Nulls are useful in repairs under inclu-
sion dependencies, where a repair with nulls can stand for
infinitely many repairs without nulls. [14] contains a pro-
posal how to extend the CQA framework to handle nulls.

XML. For the CQA framework to be applicable to XML
databases, the basic notions of repair and consistent query
answer need to be redefined. This is done for DTDs only
in [31] and DTDs with functional dependencies in [21].
[31] proposes to base repair minimality on tree edit distance
[10], while [21] uses an approach more akin to to that of [1].
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[27] T. Imieliński, S. Naqvi, and K. Vadaparty. Incomplete Ob-
jects - A Data Model for Design and Planning Applications.
In ACM SIGMOD International Conference on Management
of Data, pages 288–297, Denver, Colorado, May 1991.

[28] M. Lenzerini. Data Integration: A Theoretical Perspec-
tive. In ACM Symposium on Principles of Database Systems
(PODS), pages 233–246, 2002. Invited talk.

[29] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello. The DLV System for Knowledge Repre-
sentation and Reasoning. ACM Transactions on Computa-
tional Logic, 2006. To appear.

[30] J. Paredaens, P. D. Bra, M. Gyssens, and D. V. Gucht. The
Structure of the Relational Database Model. Springer, 1989.

[31] S. Staworko and J. Chomicki. Validity-Sensitive Querying
of XML Databases. In EDBT Workshops. Springer, 2006.
To appear.

[32] S. Staworko, J. Chomicki, and J. Marcinkowski. Priority-
Based Conflict Resolution in Inconsistent Relational
Databases. In EDBT Workshops. Springer, 2006. To appear.

[33] R. van der Meyden. Logical Approaches to Incomplete
Information: A Survey. In J. Chomicki and G. Saake,
editors, Logics for Databases and Information Systems,
chapter 10, pages 307–356. Kluwer Academic Publishers,
Boston, 1998.

[34] M. Y. Vardi. The Complexity of Relational Query Lan-
guages. In ACM Symposium on Theory of Computing
(STOC), pages 137–146, 1982.

[35] J. Wijsen. Database Repairing Using Updates. ACM Trans-
actions on Database Systems, 30(3):722–768, 2005.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00  © 2006

Authorized licensed use limited to: University of Waterloo. Downloaded on July 06,2010 at 17:27:19 UTC from IEEE Xplore.  Restrictions apply. 


