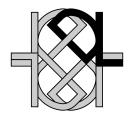
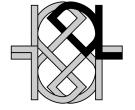
Reasoning in Description Logics:

Expressive Power vs. Computational Complexity

Carsten Lutz

University of Bremen, Germany





Motivation

Description Logic is subfield of KR concerned with terminological knowledge:

Describe the central notions of the application domain (its terminology) and their interrelations

E.g. in medical applications:

Tissue, Inflammation, Pericadium, Pericarditis, etc.

DLs play important role as logical foundation of ontology languages:

OWL is the W3C-standard for a Web Ontology LanguageOWL 1 in 2004OWL 2 in 10/2009

OWL is essentially a description logic with an XML syntax

Motivation

Main reason for popularity:

attractive compromise between expressive power and computational complexity

Propositional Logic

Efficient reasoning via SAT solvers, but often too inexpressive

First-Order Logic

Very expressive reference formalism, but reasoning too costly

≈ Modal Logic

Not one DL, but a large toolbox of formalisms:

- DLs cover broad range of responses to "complexity vs. expressive power"
- OWL 2 contains different profiles (3 inexpressive, 1 expressive, 1 not a logic)

Tutorial Overview

Before break:

- brief introduction to description logics
- complexity and expressive power of expressive DLs
- complexity and expressive power of lightweight DLs, part I

After break:

- complexity and expressive power of lightweight DLs, part II
- instance data and query answering

Introduction to Description Logics

Some DL Basics

Knowledge is (mainly) stored in the TBox, e.g.:

```
Pericardium \sqsubseteq Tissue \sqcap \existspartOf.Heart

Pericarditis \doteq Inflammation \sqcap \existslocation.Pericardium

Inflammation \sqsubseteq Disease \sqcap \existsactsOn.Tissue

Tissue \sqcap Disease \sqsubseteq \bot
```

TBox = "Terminology Box"; modern view: TBox = ontology

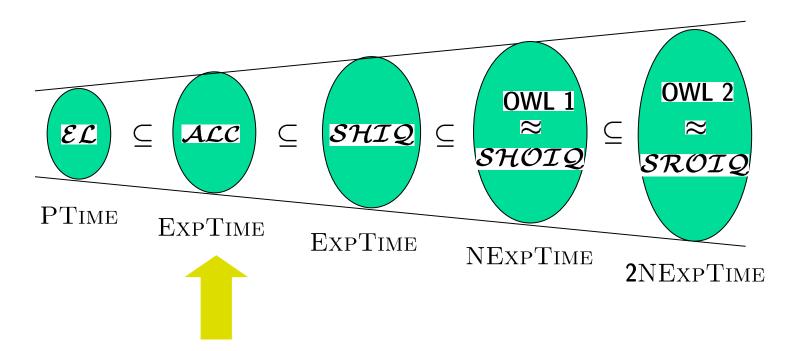
Formally, a TBox is a finite set of

concept inclusions $C \sqsubseteq D$ and concept definitions $C \doteq D$

where C, D are concepts (\approx formulas) in the DL used.

Some DL Basics

Different concept constructors give rise to different DLs / OWL dialects:



The Description Logic \mathcal{ALC}

Fix a countably infinite supply of

- lacktriangle concept names (\sim unary predicates)
- lacktriangleq role names (\sim binary predicates)

Concept language of ALC:

$$C ::= A \mid \top \mid \bot \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid orall r.C$$

 $\exists r.C$: existential restriction

 $\forall r.C$: universal restriction / value restriction

For example:

Disease □ ∃actsOn.Organ □ ∀cause. ¬Genetic

The Description Logic \mathcal{ALC}

DL interpretation \mathcal{I} :

FO structure with only unary+binary predicates = Kripke structure

DL-style notation: interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \boldsymbol{\cdot}^{\mathcal{I}})$ with

- lacktriangledown $\Delta^{\mathcal{I}}$ a non-empty set, the domain
- lacktriangledown the interpretation function which assigns
 - lacksquare a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ to each concept name A
 - lacksquare a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$ to each role name r

We now extend $\cdot^{\mathcal{I}}$ to composite concepts

Semantics

DL concepts \approx FO formulas with exactly 1 free variable \approx modal formulas

 \boldsymbol{A}

A(x)

 p_A

 $\neg C$

 $\neg C(x)$

 $\neg C$

 $C \sqcup D$

 $C(x) \vee D(x)$

 $C \lor D$

 $C \sqcap D$

 $C(x) \wedge D(x)$

 $C \wedge D$

 $\exists r.C$

 $\exists y.(r(x,y) \land C(y))$

 $\langle r \rangle . C$

 $\forall r.C$

 $\forall y. (r(x,y) \rightarrow C(y))$

[r].C

Note: 2 variables / guarded formulas suffices

We use $C^{\mathcal{I}}$ to denote the set $\{d \in \Delta^{\mathcal{I}} \mid \mathcal{I} \models C(d)\}$

Semantics

TBoxes correspond to FO sentences:

Example:

Pericardium □ Tissue □ ∃partOf.Heart

translates to

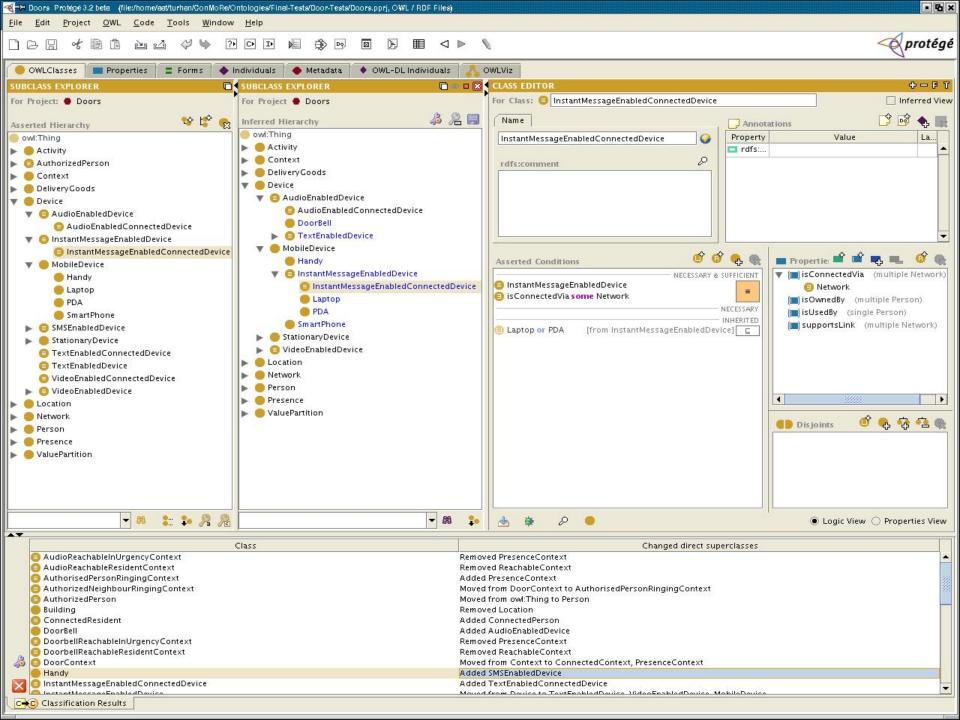
$$\forall x. (\operatorname{Pericardium}(x) \rightarrow (\operatorname{Tissue}(x) \land \exists y. (\operatorname{partOf}(x,y) \land \operatorname{Heart}(y)))$$

Reasoning

Traditional reasoning problems:

- satisfiability: given C and \mathcal{T} , is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? used for detecting modelling mistakes
- subsumption: given C, D and \mathcal{T} , does $\mathcal{T} \models C \sqsubseteq D$? i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$?

used to arrange all concepts in a TBox in a subsumption hierarchy makes structure explicit, facilitates browsing and navigation



Reasoning

Traditional reasoning problems:

- satisfiability: given C and \mathcal{T} , is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? used for detecting modelling mistakes
- subsumption: given C, D and \mathcal{T} , does $\mathcal{T} \models C \sqsubseteq D$? i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$?

used to arrange all concepts in a TBox in a subsumption hierarchy makes structure explicit, facilitates browsing and navigation

Note: lacktriangledowniantimes C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not\models C \sqsubseteq \bot$

lacksquare $\mathcal{T} \models C \sqsubseteq D$ iff $C \sqcap \neg D$ unsatisfiable w.r.t. \mathcal{T}

On the Role of Complexity

Is DL all about computational complexity?

What complexity theory can do for us:

- help to understand the expressive power of the formalism to prove hardness results, one must show that something can be expressed
- provide performance guarantees or show that they do not exist

What it cannot do for us (so far):

tell us whether something will work in practice or not

Expressive Description Logics (i.e.: \mathcal{ALC} and above)

A Bit of History

Stone age of description logics (until mid-1990ies):

"We have to offer efficient reasoning and thus cannot include all Booleans"

"Every application needs at least conjunction and universal restriction"

(and thus reasoning is co-NP-complete)

The SHIQ era (since mid-1990ies):

"ExpTime DLs can be implemented efficiently" (FaCT system by Horrocks)

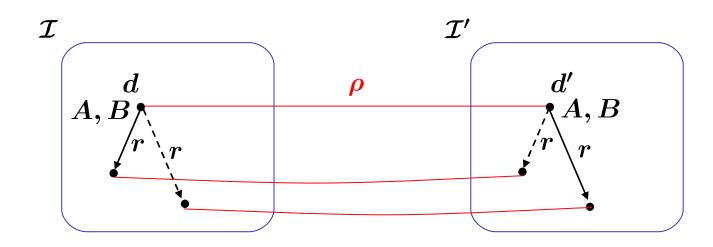
"We do need the Booleans and much, much more (but want to stay decidable)!"

Expressive Power of ALC

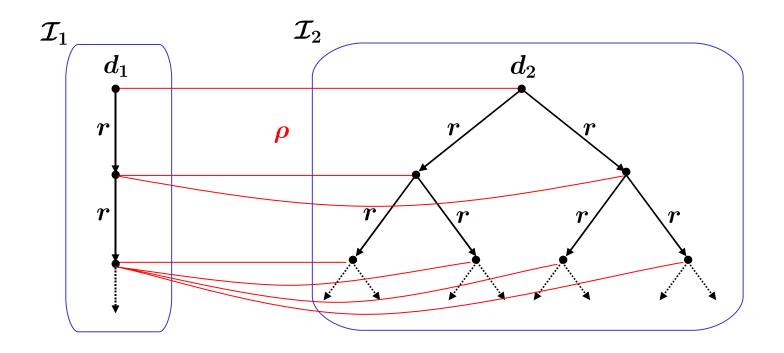
Central notion for understanding expressive power of \mathcal{ALC} :

Relation $ho\subseteq\Delta^{\mathcal{I}_1} imes\Delta^{\mathcal{I}_2}$ is bisimulation between interpretations \mathcal{I}_1 and \mathcal{I}_2 if d ho d' implies that

- lacktriangle d and d' satisfy same concept names
- lacktriangle each successor of d has ho-related counterpart at d'
- lacktriangle each successor of d' has ho-related counterpart at d



Expressive Power of \mathcal{ALC}



 $(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$: there is a bisimulation ho between \mathcal{I}_1 and \mathcal{I}_2 with d_1 ho d_2

Expressive Power of \mathcal{ALC}

Lemma. ALC is invariant under bisimulations, i.e.,

If
$$(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$$
, then $d_1\in C^{\mathcal{I}_1}$ iff $d_2\in C^{\mathcal{I}_2}$

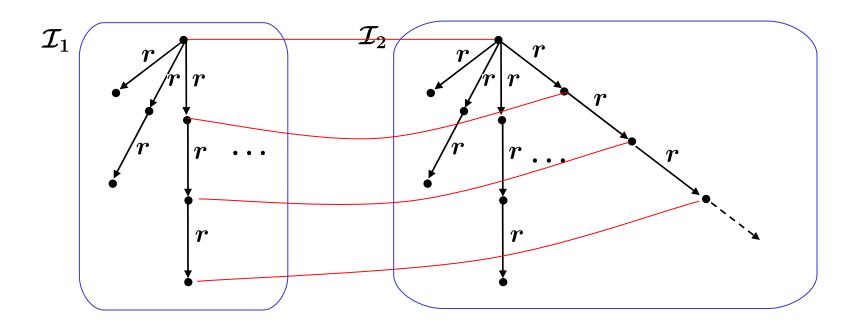
for all \mathcal{ALC} -concepts C.

Together with example from previous slide:

 \mathcal{ALC} lacks expressive power for counting successors!

Expressive Power of \mathcal{ALC}

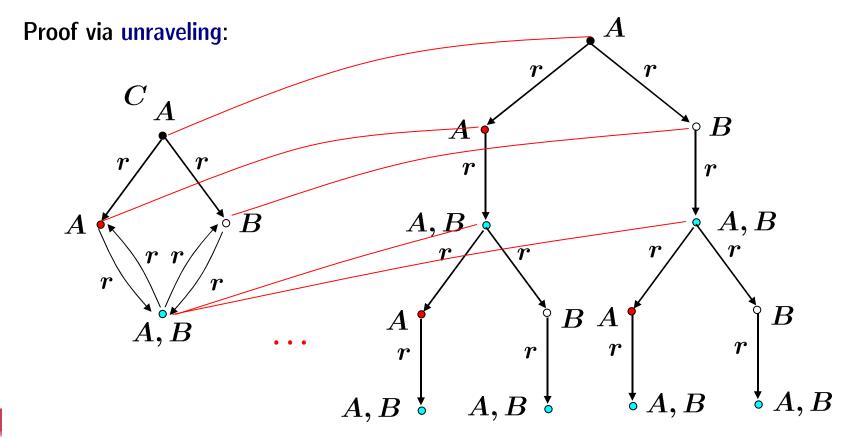
The converse is false in general:



Theorem. An FO-formula φ with one free variable is equivalent to an \mathcal{ALC} -concept iff it is invariant under bisimulation. [vanBenthem76]

Tree Model Property

Theorem. If an \mathcal{ALC} -concept C is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then there is a tree-shaped model of C and \mathcal{T}



Decidability of \mathcal{ALC}

Benefits of tree model property:

- tree models computationally much simpler than graph models recall, e.g., Rabin's theorem
- there are powerful tools for logics on trees (e.g. automata, games)

Theorem. In ALC, satisfiability (and subsumption) is ExpTime-complete.

Many kinds of algorithms, e.g. based on:

- tree automata (ExpTime upper bound, best case exponential)
- tableau calculus (no ExpTime upper bound, used by most reasoners)
- Pratt-style type elimination (ExpTime upper bound, conceptually simple)

Lower Bound

ExpTime-hardness: reduce word problem of alternating Turing machines whose tape is bounded polynomially [FischerLadner79]

Central ideas:

- ATMs generalize non-deterministic TMs:
 linear TM computations generalized to ATM computation trees
- alternating PSpace = ExpTime
- polysize tape can be represented using a single domain element (concept names such as $A_{a,i}$, $A_{h,i}$, A_q)

lacktriangle \mathcal{ALC} tree models can represent ATM computation trees

From an application perspective, the expressive power of \mathcal{ALC} is limited

OWL enriches ALC in many ways, including:

lacktriangle concepts $(\leq 1 \ r)$ expressing local functionality of roles

e.g. Disease $\sqcap \exists$ has Cause. Infection $\sqcap (\leq 1 \text{ has Cause})$

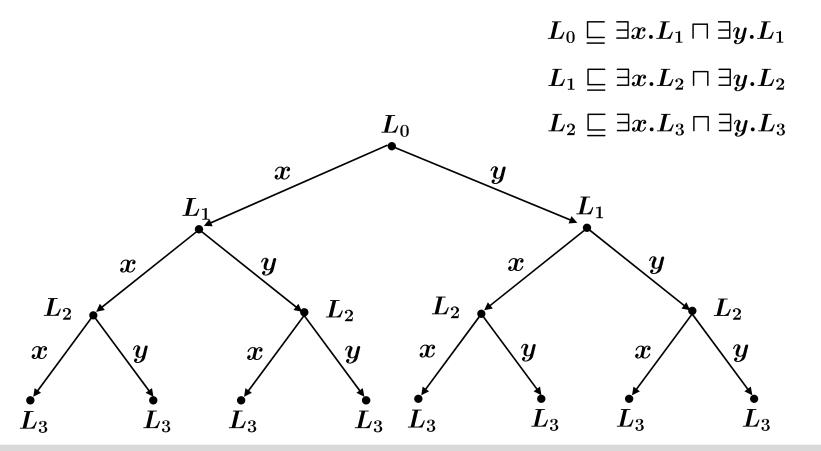
formal semantics: $\forall y,y'.(r(x,y) \land r(x,y')
ightarrow y = y')$

- lacktriangle concepts $(\leq 1 \ r^-)$ for the converse of roles
- nominals, a new sort that identifies a unique domain element
 - e.g. Pope, SoccerWorldChampion, but possibly also Red, Blue

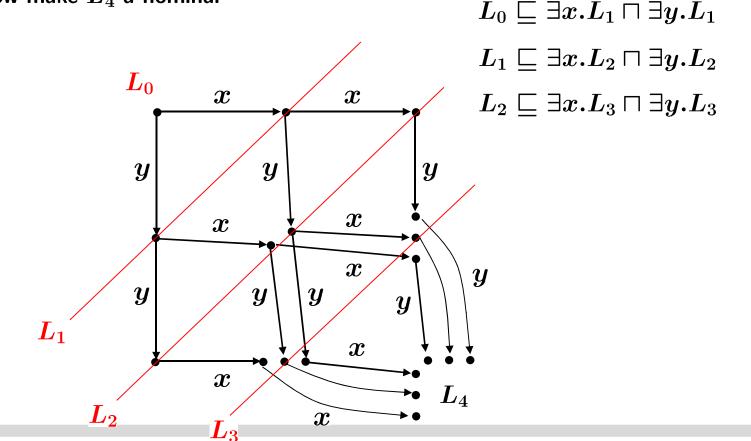
Call the resulting description logic OWL1 Core (DL Name: \mathcal{ALCFIO})

In OWL1 Core, the tree model property is lost rather dramatically:

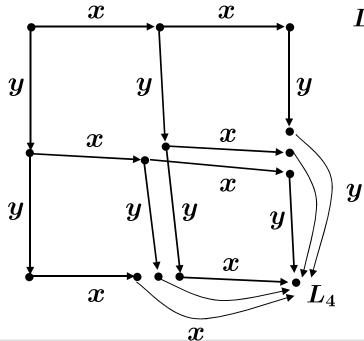
lacktriangle already in \mathcal{ALC} , we can easily generate a tree



- lacktriangle already in \mathcal{ALC} , we can easily generate a tree
- lacksquare now make L_4 a nominal



- lacktriangle already in \mathcal{ALC} , we can easily generate a tree
- lacksquare now make L_4 a nominal
- lacktriangle make the converses of $oldsymbol{x}$ and $oldsymbol{y}$ functional

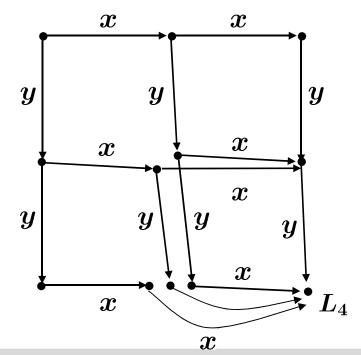


$$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1$$

$$L_1 \sqsubseteq \exists x. L_2 \sqcap \exists y. L_2$$

$$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$

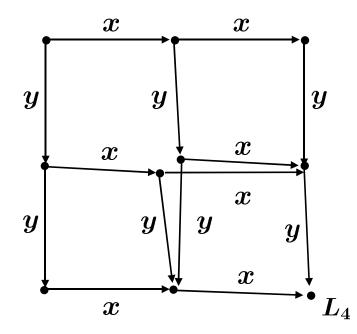
- lacktriangle already in \mathcal{ALC} , we can easily generate a tree
- lacksquare now make L_4 a nominal
- lacktriangle make the converses of $m{x}$ and $m{y}$ functional



$$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1 \ L_1 \sqsubseteq \exists x. L_2 \sqcap \exists y. L_2$$

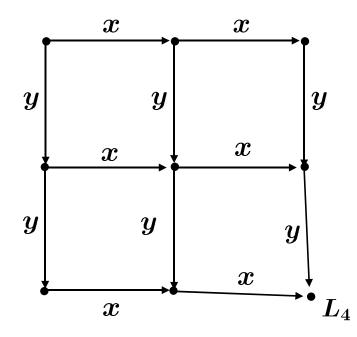
$$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$

- lacktriangle already in \mathcal{ALC} , we can easily generate a tree
- lacksquare now make L_4 a nominal
- lacktriangle make the converses of $m{x}$ and $m{y}$ functional



$$egin{aligned} L_0 &\sqsubseteq \exists x.L_1 \sqcap \exists y.L_1 \ L_1 &\sqsubseteq \exists x.L_2 \sqcap \exists y.L_2 \ L_2 &\sqsubseteq \exists x.L_3 \sqcap \exists y.L_3 \end{aligned}$$

- lacktriangle already in \mathcal{ALC} , we can easily generate a tree
- lacksquare now make L_4 a nominal
- lacktriangle make the converses of $oldsymbol{x}$ and $oldsymbol{y}$ functional



$$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1 \ L_1 \sqcap \exists x. L_2 \sqcap \exists y. L_2$$

$$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$

Consequences:

- the tree model property is lost in a rather dramatic way
- grids can represent computations of non-deterministic Turing machines
- with a small trick, we can generate a grid of exponential size (count levels in binary, not in unary)
- it follows that OWL1Core is NExpTime-hard, in fact NExpTime-complete [Tobies99]

In OWL2, we can even enforce grids of 2-exponential size

Discussion

OWL1 and OWL2 are rather expressive
 close to, and sometimes beyond the 2-variable fragment of FO

OWL1 and OWL2 are computationally very costly (worst case!)

with the transition

$$\mathcal{ALC} \hspace{0.1cm}
ightarrow \hspace{0.1cm} \mathcal{SHIQ} \hspace{0.1cm}
ightarrow \hspace{0.1cm} \mathsf{OWL1} \hspace{0.1cm}
ightarrow \hspace{0.1cm} \mathsf{OWL2}$$

the promise of efficiency on natural inputs got increasingly untrue

there are applications and reasoning tasks where this is unacceptable

Lightweight Description Logics

A Bit of History

Stone age of description logics (until mid-1990ies):

"We have to offer efficient reasoning and thus cannot include all Booleans"

"Every application needs at least conjunction and universal restriction"

(and thus reasoning is co-NP-complete)

The SHIQ era (since mid-1990ies until ??):

"ExpTime DLs can be implemented efficiently" (FaCT system by Horrocks)

"We do need the Booleans and much, much more (but want to stay decidable)!"

A Bit of History

The \mathcal{EL} and DL-Lite era (since ≈ 2005):

"Applications need existential restrictions rather than universal ones"

"Lightweight DLs are sufficient for many applications and can be scalable"

The Description Logic EL

Dominating constructors in many large-scale ontologies:

conjunction and existential restrictions

```
Pericardium ☐ Tissue ☐ ∃partOf.Heart

Pericarditis ≐ Inflammation ☐ ∃location.Pericardium

Inflammation ☐ Disease ☐ ∃actsOn.Tissue

Tissue ☐ Disease ☐ ⊥
```

Large-scale ontologies usually require a highly abstract conceptual modeling

The Description Logic \mathcal{EL}

Concept language of \mathcal{EL} is "half of \mathcal{ALC} ":

$$C ::= A \mid \top \mid \bot \mid C \sqcap D \mid \exists r.C$$

Most prominent \mathcal{EL} -ontology: SNOMED CT

- lacktriangle large scale, professionally developed medical ontology (~ 400.000 concepts)
- used to systematize health care terminology, standard e.g. in US, Canada, etc.

Satisfiability and subsumption still interreducible:

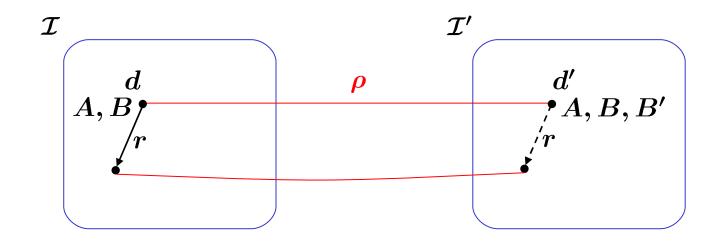
- lacksquare C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not\models C \sqsubseteq \bot$
- lacksquare $\mathcal{T} \models C \sqsubseteq D$ iff $C \sqcap A$ unsatisfiable w.r.t. $\mathcal{T} \cup \{C \sqcap A \sqcap D \sqsubseteq \bot\}$

Expressive Power of \mathcal{EL}

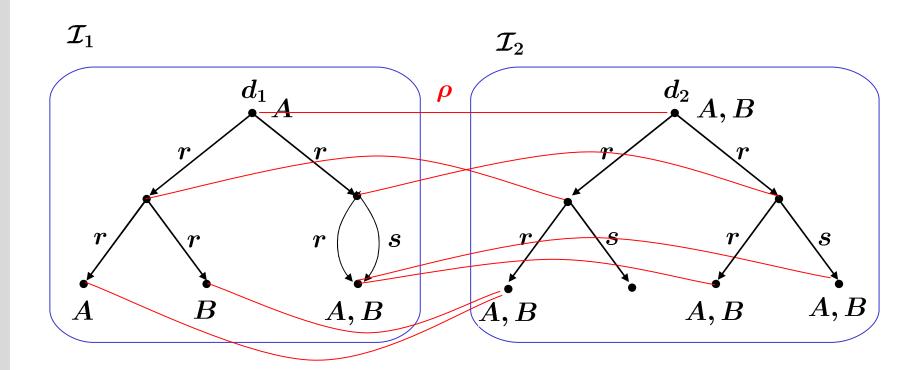
Central notion for understanding expressive power of \mathcal{EL} :

Relation $ho\subseteq\Delta^{\mathcal{I}_1} imes\Delta^{\mathcal{I}_2}$ is simulation from interpretation \mathcal{I}_1 to \mathcal{I}_2 if d ho d' implies that

- lacktriangledown d' satisfies all concept names that d satisfies
- lacktriangle each successor of d has ho-related counterpart at d'
- nothing else



Expressive Power of \mathcal{EL}



 $(\mathcal{I}_1,d_1) \precsim (\mathcal{I}_2,d_2)$: there is a simulation ho from \mathcal{I}_1 to \mathcal{I}_2 with $d_1
ho d_2$

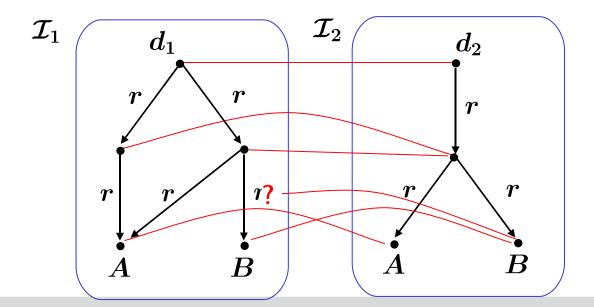
Expressive Power of \mathcal{EL}

Lemma. \mathcal{EL} is preserved under simulations, i.e.,

if $(\mathcal{I}_1,d_1) \precsim (\mathcal{I}_2,d_2)$, then $d_1 \in C^{\mathcal{I}_1}$ implies $d_2 \in C^{\mathcal{I}_2}$ for all \mathcal{EL} -concepts C.

Thus \mathcal{EL} cannot distinguish (\mathcal{I}_1,d_1) from (\mathcal{I}_2,d_2) if they mutually simulate

This is not the same as bisimulation:



Canonical Models

Since \mathcal{EL} is a fragment of \mathcal{ALC} : \mathcal{EL} has tree model property

But \mathcal{EL} satisfies a much stronger property: it has canonical tree models

Theorem. If an \mathcal{EL} -concept C is satisfiable w.r.t. an \mathcal{EL} -TBox \mathcal{T} , then there is a tree-shaped model (\mathcal{M},d) of C and \mathcal{T} such that for all models \mathcal{I} of \mathcal{T} and all $e \in C^{\mathcal{I}}$: $(\mathcal{M},d) \precsim (\mathcal{I},e)$

Intuition: the canonical model can be found in any other model (in terms of a simulation)

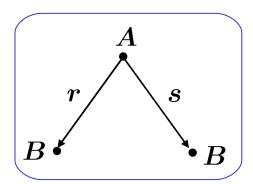
Canonical Models

As an example, take

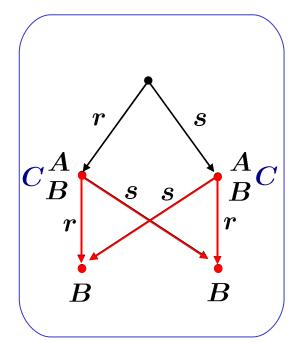
$$C = A \cap \exists r.B$$

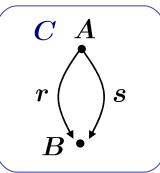
$$\mathcal{T} = \{A \sqsubseteq \exists s.B\}$$

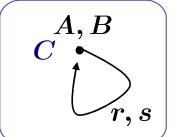
Canonical model:



Models of \mathcal{T} e.g.:



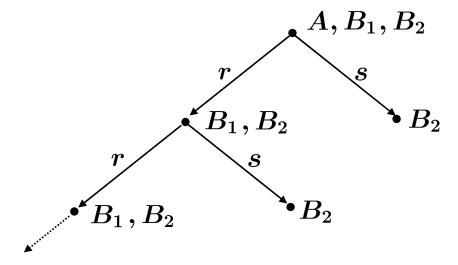




Canonical Models

Canonical models can be constructed in a straightforward way:

$$A \sqsubseteq B_1 \qquad B_1 \sqsubseteq \exists r.B_1 \qquad \exists r.B_1 \sqsubseteq B_2 \ B_1 \sqcap B_2 \sqsubseteq \exists s.B_2$$



- lacksquare This is a (tree) model of A and ${\mathcal T}$
- lacktriangle Everything we have generated must be present in every model of $oldsymbol{A}$ and $oldsymbol{\mathcal{T}}!$

${\cal EL}$ Satisfiability

Due to \bot , the canonical model construction can fail and that happens exactly when C is unsatisfiable w.r.t. \mathcal{T} :

- If we derive \bot , then \bot is a logical consequence of C and $\mathcal T$ thus C is unsatisfiable w.r.t. $\mathcal T$
- If we do not derive \bot , then $\mathcal M$ is a model of C and $\mathcal T$ thus C is satisfiable w.r.t. $\mathcal T$

This is the basis for a satisfiability algorithm in \mathcal{EL} .

${\cal EL}$ Satisfiability

Theorem. In \mathcal{EL} , satisfiability (and subsumption) are in PTime. [BaaderBrandtL_05]

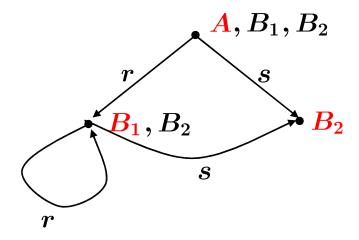
Proof approach:

- lacktriangle We cannot construct the infinite tree-shaped model ${\cal M}$
- lacktriangle Instead use a compact version of the canonical model \mathcal{M}_c

EL Satisfiability

Canonical models can be constructed in a straightforward way:

$$A \sqsubseteq B_1 \qquad \qquad B_1 \sqsubseteq \exists r.B_1 \qquad \qquad \exists r.B_1 \sqsubseteq B_2 \ B_1 \sqcap B_2 \sqsubseteq \exists s.B_2$$



- lacktriangle The unraveling of \mathcal{M}_c is exactly \mathcal{M}
 - \Longrightarrow construction of \mathcal{M}_c fails iff construction of \mathcal{M} fails

- w.
- $lacktriangleq \mathcal{M}_c$ is of polynomial size, can be constructed in polynomial time

Additional Remarks

Some additional virtues of \mathcal{M}_c

- $lacktriangleq \mathcal{M}_c$ is a model of C and \mathcal{T} , too.
- lacktriangleq just like \mathcal{M} , \mathcal{M}_c simulates every model of C and T:

$$(\mathcal{M},d)$$
 (\mathcal{I},e) (\mathcal{M},d) (\mathcal{M}_c,d)

Theorem. An FO-formula φ with one free variable is equivalent to an \mathcal{EL} -concept iff it is preserved under simulation and has a canonical model. [PiroL_Wolter10]

PTime upper bound can be generalized to \mathcal{EL}^{++} , i.e., \mathcal{EL} extended with

- lacktriangle range restrictions on roles, i.e., $\top \sqsubseteq \forall r.C$
- (lacktriangle domain restrictions on roles, i.e., $\top \sqsubseteq \forall r^-.C$)

lacktriangledown role implications, i.e., TBox statements $r_1 \circ \cdots \circ r_n \sqsubseteq r$

o . . .

OWL EL

Profile

Other extensions cause a jump back to ExpTime, e.g.

- lacksquare disjunctions $C \sqcup D$
- lacktriangle universal restrictions $\forall r.C$
- lacksquare number restrictions $(\geq 2 r)$

Interesting: no extension between PTime and ExpTime known (dichotomy?)

Theorem. In $\mathcal{EL} + \sqcup$, satisfiability (and subsumption) are ExpTime-complete. [BaaderBrandtL 05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. \mathcal{ALC} -TBox \mathcal{T}

Step 1: Replace universal restrictions in \mathcal{T} with existential ones:

$$\forall r.C$$

becomes
$$\neg \exists r. \neg C$$

Step 2: Modify \mathcal{T} so that negation is applied only to concept names

$$A \sqsubseteq \exists s.(B' \sqcup \neg \exists r.B)$$
 becomes $A \sqsubseteq \exists s.(B' \sqcup \neg X)$ $X \doteq \exists r.B$

(X a fresh concept name)

Theorem. In $\mathcal{EL} + \sqcup$, satisfiability (and subsumption) are ExpTime-complete. [BaaderBrandtL_05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. \mathcal{ALC} -TBox \mathcal{T}

Step 3: Remove negation entirely from T

- lacktriangle Replace each eg X with \overline{X} , \overline{X} a fresh concept name
- Ensure correct behaviour of \overline{X} :

$$\top \sqsubseteq X \sqcup \overline{X}$$

$$X \sqcap \overline{X} \sqsubseteq \bot$$

Resulting TBox \mathcal{T}' is in $\mathcal{EL} + \sqcup$ and A_0 sat w.r.t. \mathcal{T} iff A_0 sat w.r.t. \mathcal{T}'

Theorem. In $\mathcal{EL}+orall r.C$ and $\mathcal{EL}+(\geq 2\,r)$, satisfiability is ExpTime-complete. [BaaderBrandtL_05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcup$ -TBox \mathcal{T}

We can assume that disjunction occurs only in the form

$$A_1 \sqcup A_2 \sqsubseteq A$$
 and $A \sqsubseteq B_1 \sqcup B_2$ $= A_1 \sqsubseteq A, \ A_2 \sqsubseteq A$ replace by $A \sqcap \exists r. \top \sqsubseteq B_1 \ A \sqcap orall r. X \sqsubseteq B_2$ r, X fresh $A \sqcap \forall r. X \sqsubseteq B_2$

Theorem. In $\mathcal{EL} + \forall r.C$ and $\mathcal{EL} + (\geq 2 \, r)$, satisfiability is ExpTime-complete. [BaaderBrandtL_05]

Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcup$ -TBox \mathcal{T}

We can assume that disjunction occurs only in the form

$$A_1 \sqcup A_2 \sqsubseteq A$$
 and $A \sqsubseteq B_1 \sqcup B_2$ $= A_1 \sqsubseteq A, \ A_2 \sqsubseteq A$ replace by

$$A \sqsubseteq \exists r.X \sqcap \exists r.Y$$
 $A \sqcap \exists r.(X \sqcap Y) \sqsubseteq B_1$ r,X,Y fresh $A \sqcap (\geq 2\,r) \sqsubseteq B_2$

Call an extension of \mathcal{EL} convex if:

$$\mathcal{T} \models C \sqsubseteq D_1 \sqcup D_2$$
 implies $\mathcal{T} \models C \sqsubseteq D_i$ for some $i \in \{1,2\}$

 $\mathcal{EL} + \forall r.C$ is not convex:

$$\emptyset \models \top \sqsubseteq \exists r. \top \sqcup \forall r. X$$
, but $\emptyset \not\models \top \sqsubseteq \exists r. \top$ and $\emptyset \not\models \top \sqsubseteq \forall r. X$

The reductions show: if an extension of \mathcal{EL} is not convex, it is ExpTime-hard.

Interestingly, the converse does not hold!

Easy to prove:

Existence of canonical models \mathcal{M} implies convexity:

Consider \mathcal{EL} extended with inverse existential restrictions:

$$\exists r^-.C$$
 has semantics $\{d \in \Delta^\mathcal{I} \mid \exists e \in C^\mathcal{I} : (e,d) \in r^\mathcal{I}\}$

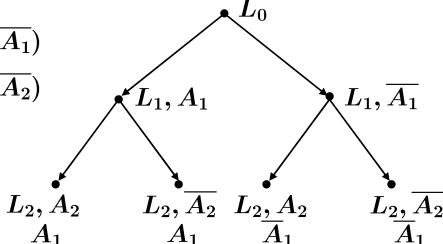
Theorem. $\mathcal{EL} + \exists r^-.C$ is convex, but satisfiability is ExpTime-complete. [BaaderBrandtL_05]

Here only: canonical models can become exponentially large

$$L_0 \sqsubseteq \exists r. (L_1 \sqcap A_1) \sqcap \exists r. (L_1 \sqcap \overline{A_1}) \ L_1 \sqsubseteq \exists r. (L_2 \sqcap A_2) \sqcap \exists r. (L_2 \sqcap \overline{A_2}) \ L_2 \sqcap \exists r^-. A_1 \sqsubseteq A_1$$

$$L_2 \cap \exists T : A_1 \sqsubseteq A$$

$$L_2 \cap \exists r^-.\overline{A}_1 \sqsubseteq \overline{A}_1$$



Discussion

- $lacktriangleq \mathcal{EL}$ is a natural ontology language for a high level of abstraction
- satisfiability and subsumption can be computed in polytime
- this has led to standardization as OWL EL profile of OWL2
- efficient reasoners are availabe, e.g. CEL (Dresden), SnoRocket (Brisbane) based on canonical models, very robust, classify SNOMED CT in <10min
- algorithms have been generalized to Horn- \mathcal{SHIQ} reasoner CB (Oxford)

${\cal EL}$ vs. ${\cal FL}_0$

The historic choice of universal restrictions instead of existential restrictions leads to much worse computational behaviour

Complexity of subsumption in \mathcal{FL}_0 , constructors \top , (\bot), \sqcap , $\forall r.C$:

empty TBox: tractable [BrachmanLevesque84]

acyclic TBox: co-NP-complete [Nebel90]

cyclic TBox: PSpace-complete [KazakovDeNivelle03]

general TBox: ExpTime-complete [BaaderBrandtL_05,Hofmann05]

Clearly,

$$\forall r.(A \sqcap B) \equiv \forall r.A \sqcap \forall r.B$$

Thus, every \mathcal{FL}_0 -concept is equivalent to one of the form

$$egin{aligned} &orall r_{1,1}.orall r_{1,2}.\cdots orall r_{1,n_1}.A_1 \ &\sqcap orall r_{2,1}.orall r_{2,2}.\cdots orall r_{2,n_2}.A_2 \ &\cdots \ &\sqcap orall r_{k,1}.orall r_{k,2}.\cdots orall r_{2,n_k}.A_k \end{aligned}$$

(finite) words over the alphabet of role names

Grouping according to concept name achieves the following normal form

$$orall L_1.A_1 \sqcap orall L_2.A_2 \sqcap \cdots \sqcap orall L_m.A_m$$

finite formal languages over the alphabet of role names

We consider subsumption instead of satisfiability

Subsumption in \mathcal{FL}_0 (without TBoxes):

$$C = orall L_1.A_1 \sqcap orall L_2.A_2 \sqcap \cdots \sqcap orall L_m.A_m$$
 $D = orall M_1.A_1 \sqcap orall M_2.A_2 \sqcap \cdots \sqcap orall M_m.A_m$

Then
$$C \sqsubseteq D$$
 iff $L_i \supseteq M_i$ for $1 \le i \le m$ (*)

Theorem. Subsumption in \mathcal{FL}_0 without TBoxes is in PTime.

Intuitively (*) still holds with acyclic TBoxes,

but sets L_i can be described compactly, get exponentially large

Reduction from 3SAT to \mathcal{FL}_0 -subsumption w.r.t. TBoxes:

Take a 3-formula

$$\varphi = (\ell_{1,1} \vee \ell_{1,2} \vee \ell_{1,3}) \wedge \cdots \wedge (\ell_{n,1} \vee \ell_{n,2} \vee \ell_{n,3})$$

over the variables x_1, \ldots, x_k

Ideas:

- lacktriangle use two role names t and f representing "true" and "false"
- lacktriangleq represent truth assignments as words over $\{t,f\}$ of length k
- lacksquare as the target subsumption $C \sqsubseteq D$, use

 $C = orall L_C.A$, L_C the set of truth assignments that make arphi false

 $D = \forall L_D.A$, L_D the set of all truth assignments

To be done: describe C and D with polynomial-size TBox:

D is easy:

$$L_i \equiv orall t.L_{i+1} \sqcap orall f.L_{i+1} \quad ext{ for } 1 \leq i \leq n$$
 $L_{n+1} \equiv A$ $D \equiv L_0$

C too (basically)

Theorem. Subsumption in \mathcal{FL}_0 w.r.t. TBoxes is co-NP-hard.

Instance Data and Query Answering

Current DL Research

In recent years, exciting new reasoning problems have popped up; e.g.:

conjunctive query answering over instance data w.r.t. a background TBox

- problems related to the modularity of TBoxes:
 - odoes a given subset $\mathcal{T}' \subseteq \mathcal{T}$ say everything about a given signature Σ that \mathcal{T} does?
 - lacktriangle given a signature Σ , extract an as-small-as-possible subset $\mathcal{T}'\subseteq\mathcal{T}$ that says the same about Σ as \mathcal{T}

conservative extensions

problems related to privacy issuese.g. controlled interfaces to TBox / instance data

ABoxes

Ontologies are increasingly used with instance data, e.g.:

Clinical document architecture (CDA) becomes standard medical data format CDA medical codes based on SNOMED CT terminology

Ontology can be exploited for interpreting data / deriving additional answers

ABox: finite set of ground facts, e.g.:

 $\mathsf{Patient}(p) \qquad \mathsf{finding}(p,d) \qquad \mathsf{Pericarditis}(d)$

Information in ABoxes is incomplete (open world semantics)

E.g., a patient record would not include Inflammation(d), though it is true.

ABoxes

TBox allows more complete query answers

ABox

 $\begin{aligned} \mathsf{Patient}(p) & \mathsf{Inpatient}(p) \\ \mathsf{inWard}(p,w) & \neg \mathsf{Intensive}(w) \end{aligned}$

TBox

Then p is an answer to query

 $\exists y. \mathsf{Patient}(\mathbf{x}) \land \mathsf{finding}(\mathbf{x}, y) \land \neg \mathsf{LiveThreatening}(y)$

Query Answering

More formally:

- lacktriangle Model of ABox \mathcal{A} : interpretation satisfying all facts in \mathcal{A}
- Answers to query q for ABox $\mathcal A$ w.r.t. TBox $\mathcal T$:

Certain answers, i.e., answers common to all models $\mathcal I$ of $\mathcal A$ and $\mathcal T$

Closely related to query answering in incomplete databases

(but with a different kind of schema constraints)

Query Languages

Instance queries

take the form C(v), v a variable. technically close to subsumption, almost always of same complexity

Conjunctive queries

take the form $\exists \vec{v}. \varphi(\vec{v}, \vec{v}')$, with φ a conjunction of atoms A(v) or r(v, v') \vec{v}' the answer variables, \vec{v} the quantified variables generalize instance queries, but are more interesting Select-Project-Join fragment of SQL

FO/SQL queries

generalize conjunctive queries, but: FO sentence φ valid iff $\emptyset,\emptyset\models\varphi$

TBox ABox

DL Query Answering and Relational Database Systems

In patient databases and other large-scale applications:

- Efficiency and scalability of query answering is crucial
- Query answering in expressive DLs is computationally costly

	satisfiability	query answering
\mathcal{ALC}	ExpTime	ExpTime
$\mathcal{ALC} + \exists r^C$	ExpTime	2ExpTime
SHIQ	ExpTime	2ExpTime
OWL1 Core	NExpTime	decidable
OWL1	NExpTime	decidability open

DL Query Answering and Relational Database Systems

Most popular approach to achieve scalability:

Implement DL query answering based on relational database systems

Obvious problem: conventional RDBM unaware of TBoxes

- Solution I: query rewriting "put TBox into query"
- Solution II: data completion "put TBox into data"

Solution I: query rewriting — "put TBox into query"

Query Rewriting

The query rewriting approach: [Calvanese, deGiacomo, Lenzerini et al.05]

- ABox stored in DB system as relational instance
- CQ is rewritten to FO/SQL query to incorporate TBox
- Rewritten query executed by relational DB system

Enables use of off-the-shelf DB systems!

Mission statement: given CQ q and T, rewrite q into FO query q' such that

$$\mathcal{A}, \mathcal{T} \models q[a_1, \ldots, a_n]$$
 iff $db_{\mathcal{A}} \models q'[a_1, \ldots, a_n]$ for all $\mathcal{A}, a_1, \ldots, a_n$.

Query Rewriting—Example 1

Query
$$\stackrel{A}{\longleftarrow} \stackrel{r}{\longrightarrow} \stackrel{B}{\longrightarrow}$$

$$\exists y. (A(x) \land r(x,y) \land B(y))$$

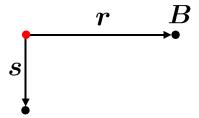
$$\exists s. \top \sqsubseteq A$$

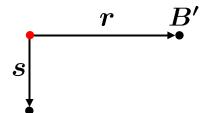
$$B' \sqsubseteq B$$

Rewritten query is disjunction of:

$$A \qquad r \qquad B$$

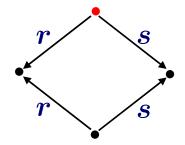
$$A \qquad r \qquad B$$





Query Rewriting—Example 2

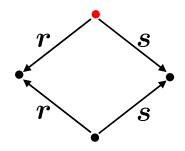
Query

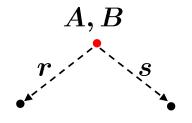


TBox

$$A \sqsubseteq \exists r. \top \quad B \sqsubseteq \exists s. \top$$

Rewritten query is disjunction of:





For which DLs does this work?

Query Rewriting

Data complexity:

- In DBs: measure complexity only in size of data, not of query
- In DLs: measure complexity only in size of data, neither of query nor TBox

Theorem. The query rewriting approach only works for DLs for which CQ entailment is in AC_0 regarding data complexity. [Calvanese et al. 05]

Proof:

- **▶ FO** query answering is in **AC**₀ regarding data complexity
- measured input (data) is left unchanged
- measured / non-measured inputs are not mixed in the rewriting

Query Rewriting

Data complexity of DLs we have met:

$$\mathcal{EL}$$
 PTime-complete \mathcal{ALC} and above NP-complete

Why query rewriting cannot be used for \mathcal{EL} :

Query
$$ullet A \qquad A(x)$$

TBox
$$\exists r.A \sqsubseteq A$$

Rewritten query is disjunction of:

$$\stackrel{\bullet}{\bullet} A \qquad \stackrel{r}{\longleftarrow} \stackrel{A}{\longleftarrow} \qquad \cdots$$

We need $\exists y.r^*(x,y) \land A(y)$, but transitive closure not FO-expressible

DL-Lite

DL-Lite: a lightweight DL with AC₀ data complexity [Calvanese et al.05]

Basic version: TBox statements of the form

$$C \sqsubseteq D$$
 $C \sqsubseteq \neg D$

where C, D are of the form $A, \exists r. \top$, and $\exists r^-. \top$

For example: Professor $\sqsubseteq \exists teachesTo. \top \exists teachesTo^-. \top \sqsubseteq Student$ Professor $\sqsubseteq \neg Student$

DL-Lite:

- inexpressive, but can encode ER diagrams and UML class diagrams
- admits the query rewriting approach
- underlies OWL QL profile of OWL2

Solution II: data completion — "put TBox into data"

Data Completion

Limitations of the query rewriting approach:

- **■** Works only for AC₀-DLs, i.e., only for DL-Lite
- Query rewriting blows up exponentially $O(|\mathcal{T}|^{|q|})$ performance problems with large queries / large TBoxes

The data completion approach avoids both probems

in particular, it works for \mathcal{EL} -TBoxes

Overview

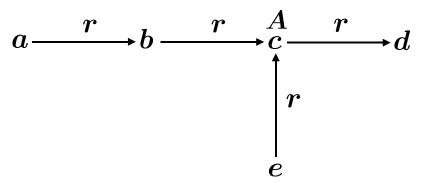
The data completion approach: [L__TomanWolter08]

- Incorporate TBox into the ABox, not into the query
- To deal with existential restrictions and avoid infinite databases:
 eagerly reuse constants, producing spurious cycles (and more)
 (similar to compact canonical model vs. canonical tree model)
- To nevertheless obtain correct answers: use query rewriting

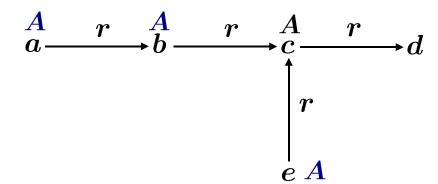
Also enables use of off-the-shelf DB systems!

TBox $\exists r.A \sqsubseteq A$

ABox



Completed ABox:



Query

A(x)

Answer

a,b,c,e

$$A \sqsubseteq \exists s.B$$

$$\exists s.B \sqsubseteq A'$$

$$A \sqsubseteq \exists s.B \quad \exists s.B \sqsubseteq A' \quad \exists r.(A \sqcap A') \sqsubseteq B$$

$$a \xrightarrow{r} \stackrel{A}{b}$$

Completed ABox:

$$a \xrightarrow{r} b$$
 $c B$, Ex

Query

Rewritten query
$$B(v) \wedge \neg \mathsf{Ex}(v)$$

$$\boldsymbol{a}$$

$$A \sqsubseteq \exists s.B$$

$$\exists s.B \sqsubseteq A'$$

$$A \sqsubseteq \exists s.B \quad \exists s.B \sqsubseteq A' \quad \exists r.(A \sqcap A') \sqsubseteq B$$

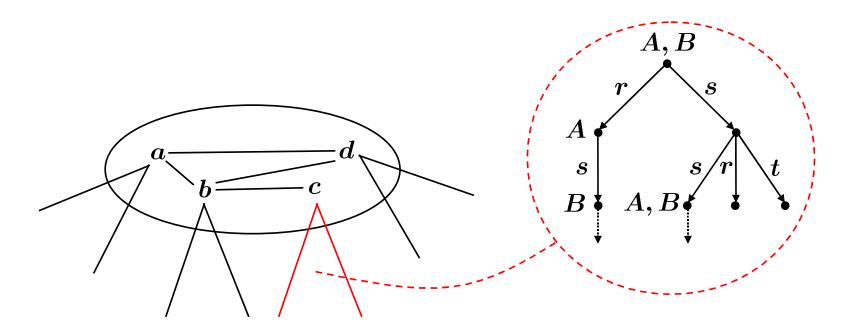
$$a \xrightarrow{r} \stackrel{A}{b}$$

$$a \xrightarrow{r} b$$
 $c B$, Ex

ABox completion means building the canonical model

(for an ABox instead of for a concept)

General shape of canonical model built for an ABox:



Problem: canonical model can get infinite, database can't

$$A \sqsubseteq \exists r.A$$

ABox

$$egin{array}{c} A \ oldsymbol{a} \end{array}$$

Completed ABox:

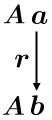
$$a \xrightarrow{r} a' \xrightarrow{r} a'' \xrightarrow{r} a''$$

Database cannot be infinite.

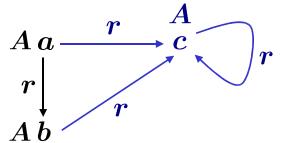
⇒ build compact canonical model!

$$A \sqsubseteq \exists r.A$$

ABox



Completed ABox:



Wrong answer to some queries, e.g.

$$\exists y.r(\mathbf{x},y) \land r(y,y)$$

answer
$$\{a,b\}$$
, should be \emptyset

$$\exists y. r(x,y) \land r(x',y) \land r(x,x')$$
 answer $\{(a,b)\}$, should be \emptyset

Data Completion

Problem:

infinite, tree-shaped canonical model ${\cal M}$ gives correct answers to all queries, compact version ${\cal M}_c$ does not

Solution:

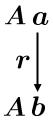
Rewrite CQ q into FO query q' so that answers to q' in $\mathcal{M}_c=$ answers to q in \mathcal{M}

Implementation: add query conjuncts expressing that

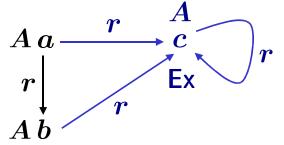
- **■** Variable on a query cycle cannot be mapped to an Ex element
- lacktriangledown If r(x,y),s(x',y) in query and r
 eq s, then y not mapped to Ex
- If r(x,y), r(x',y) in query and y mapped to Ex, then x=x'

$$A \sqsubseteq \exists r.A$$

ABox



Completed ABox:



$$q = \exists y.r(\mathbf{x},y) \wedge r(y,y)$$

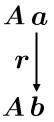
answer $\{a, b\}$

$$q' = \exists y.r(\mathbf{x},y) \land r(y,y) \land \neg \mathsf{Ex}(\mathbf{x}) \land \neg \mathsf{Ex}(y)$$

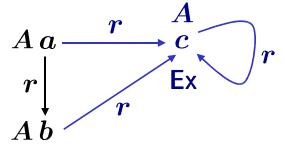
answer ∅

$$A \sqsubseteq \exists r.A$$

ABox



Completed ABox:



 $\wedge \neg \mathsf{Ex}(\boldsymbol{x}) \wedge \neg \mathsf{Ex}(\boldsymbol{x'}) \wedge (\mathsf{Ex}(\boldsymbol{y}) \to \boldsymbol{x} = \boldsymbol{x'})$

$$q = \exists y.r(\mathbf{x}, y) \land r(\mathbf{x'}, y) \land r(\mathbf{x}, \mathbf{x'})$$

answer
$$\{(a,b)\}$$

$$q' = \exists y.r(\mathbf{x}, y) \land r(\mathbf{x'}, y) \land r(\mathbf{x}, \mathbf{x'}))$$

Data Completion

Wrapup:

- Data completion approach works for EL and DL-Lite [KR10], results only in polynomial blowup of the query
- Requires authority over the data, blows up the data (polynomially)
- Extends to role hierarchies, domain and range restrictions(but transitive roles and general role inclusions are challenging)
- Limitation: for DLs whose data complexity is not in PTime there must be a (worst case) exponential blowup of the data

Questions?

PS: Slides are on my homepage

PPS: Somebody interested in a PhD/Postdoc position?

Decidability of \mathcal{ALC}

Tree model property is a good explanation for decidability of \mathcal{ALC} :

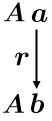
- replacing graph models with trees models tends to make logics decidable recall, e.g., Rabin's theorem
- there are powerful tools for logics on trees (e.g. automata, games)

Theorem. Satisfiability in \mathcal{ALC} is EXPTIME-complete.

A simple proof is based on type elimination [Pratt1979]

$$A \sqsubseteq \exists r.A$$

ABox



Completed ABox:

Database cannot be infinite.

⇒ build compact canonical model!

ABoxes

TBox allows more complete query answers

ABox

$$\begin{aligned} \mathsf{Patient}(p) & \mathsf{finding}(p,d) & \mathsf{Inflammation}(d) \\ & \mathsf{location}(d,h) & \mathsf{Heart}(h) \end{aligned}$$

TBox

Inflammation
☐ Disease

HeartDisease
☐ ∃location.Heart

Then p is an answer to query

$$\exists y. \mathsf{Patient}(\underline{x}) \land \mathsf{finding}(\underline{x}, y) \land \mathsf{HeartDisease}(y)$$

Extensions of \mathcal{EL}

The case without \perp :

- Satisfiability is trivial(Every concept satisfiable w.r.t. every TBox)
- **Subsumption** in $\mathcal{EL} + \sqcup$ is still ExpTime-complete

Reduction from (un)satisfiability in $\mathcal{EL} + \sqcup$ with \bot :

$$A$$
 satisfiable w.r.t. ${\mathcal T}$ iff ${\mathcal T}' \models A \sqsubseteq A_\perp$

where \mathcal{T}' is obtained by

- lacktriang replacing ot in $oldsymbol{\mathcal{T}}$ with $oldsymbol{A}_{ot}$ and
- lacksquare adding $\exists r.A_{\perp} \sqsubseteq \bot$ for all role names r used in $\mathcal T$

A Glimpse at \mathcal{FL}_0

To be done: describe C and D with polynomial-size TBox:

D is easy:

$$L_i \equiv orall t.L_{i+1} \sqcap orall f.L_{i+1} \quad ext{ for } 1 \leq i \leq n$$
 $L_{n+1} \equiv A$ $D \equiv L_0$

C too (basically):

- for each clause ζ of φ , do the construction for D, but drop further $\forall t._{i+1} / \forall f.L_{i+1}$ when all three literals were made false
- lacktriangle we get concept orall L.C with L set of truth assignments that make ζ false
- take conjunction of all these concepts

Query Answering

ABox

Patient(p)

TBox

Patient □ Human

Human ⊆ Male ⊔ Female

Some models:

Patient

p • Human

Male

Patient **p** • Human Female

Patient

Period

Human

Female

Meningitis

Then p is an answer to query

Not to

Human(x)

Male(x)

 $\exists y. \mathsf{finding}(\mathbf{x}, x)$

