Reasoning in Description Logics: # **Expressive Power vs. Computational Complexity** **Carsten Lutz** University of Bremen, Germany #### **Motivation** Description Logic is subfield of KR concerned with terminological knowledge: Describe the central notions of the application domain (its terminology) and their interrelations E.g. in medical applications: Tissue, Inflammation, Pericadium, Pericarditis, etc. DLs play important role as logical foundation of ontology languages: OWL is the W3C-standard for a Web Ontology LanguageOWL 1 in 2004OWL 2 in 10/2009 OWL is essentially a description logic with an XML syntax #### **Motivation** #### Main reason for popularity: attractive compromise between expressive power and computational complexity ### Propositional Logic Efficient reasoning via SAT solvers, but often too inexpressive # First-Order Logic Very expressive reference formalism, but reasoning too costly ≈ Modal Logic Not one DL, but a large toolbox of formalisms: - DLs cover broad range of responses to "complexity vs. expressive power" - OWL 2 contains different profiles (3 inexpressive, 1 expressive, 1 not a logic) #### **Tutorial Overview** #### Before break: - brief introduction to description logics - complexity and expressive power of expressive DLs - complexity and expressive power of lightweight DLs, part I #### After break: - complexity and expressive power of lightweight DLs, part II - instance data and query answering **Introduction to Description Logics** #### Some DL Basics Knowledge is (mainly) stored in the TBox, e.g.: ``` Pericardium \sqsubseteq Tissue \sqcap \existspartOf.Heart Pericarditis \doteq Inflammation \sqcap \existslocation.Pericardium Inflammation \sqsubseteq Disease \sqcap \existsactsOn.Tissue Tissue \sqcap Disease \sqsubseteq \bot ``` TBox = "Terminology Box"; modern view: TBox = ontology Formally, a TBox is a finite set of concept inclusions $C \sqsubseteq D$ and concept definitions $C \doteq D$ where C, D are concepts (\approx formulas) in the DL used. ### **Some DL Basics** Different concept constructors give rise to different DLs / OWL dialects: # The Description Logic \mathcal{ALC} Fix a countably infinite supply of - lacktriangle concept names (\sim unary predicates) - lacktriangleq role names (\sim binary predicates) Concept language of ALC: $$C ::= A \mid \top \mid \bot \mid \neg C \mid C \sqcap D \mid C \sqcup D \mid \exists r.C \mid orall r.C$$ $\exists r.C$: existential restriction $\forall r.C$: universal restriction / value restriction For example: **Disease** □ ∃actsOn.Organ □ ∀cause. ¬Genetic # The Description Logic \mathcal{ALC} ### **DL** interpretation \mathcal{I} : FO structure with only unary+binary predicates = Kripke structure DL-style notation: interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \boldsymbol{\cdot}^{\mathcal{I}})$ with - lacktriangledown $\Delta^{\mathcal{I}}$ a non-empty set, the domain - lacktriangledown the interpretation function which assigns - lacksquare a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ to each concept name A - lacksquare a binary relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$ to each role name r We now extend $\cdot^{\mathcal{I}}$ to composite concepts #### **Semantics** DL concepts \approx FO formulas with exactly 1 free variable \approx modal formulas \boldsymbol{A} A(x) p_A $\neg C$ $\neg C(x)$ $\neg C$ $C \sqcup D$ $C(x) \vee D(x)$ $C \lor D$ $C \sqcap D$ $C(x) \wedge D(x)$ $C \wedge D$ $\exists r.C$ $\exists y.(r(x,y) \land C(y))$ $\langle r \rangle . C$ $\forall r.C$ $\forall y. (r(x,y) \rightarrow C(y))$ [r].C Note: 2 variables / guarded formulas suffices We use $C^{\mathcal{I}}$ to denote the set $\{d \in \Delta^{\mathcal{I}} \mid \mathcal{I} \models C(d)\}$ #### **Semantics** TBoxes correspond to FO sentences: ## **Example:** **Pericardium □ Tissue □ ∃partOf.Heart** translates to $$\forall x. (\operatorname{Pericardium}(x) \rightarrow (\operatorname{Tissue}(x) \land \exists y. (\operatorname{partOf}(x,y) \land \operatorname{Heart}(y)))$$ # Reasoning ### **Traditional reasoning problems:** - satisfiability: given C and \mathcal{T} , is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? used for detecting modelling mistakes - subsumption: given C, D and \mathcal{T} , does $\mathcal{T} \models C \sqsubseteq D$? i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$? used to arrange all concepts in a TBox in a subsumption hierarchy makes structure explicit, facilitates browsing and navigation # Reasoning ### **Traditional reasoning problems:** - satisfiability: given C and \mathcal{T} , is there a model \mathcal{I} of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$? used for detecting modelling mistakes - subsumption: given C, D and \mathcal{T} , does $\mathcal{T} \models C \sqsubseteq D$? i.e., do all models \mathcal{I} of \mathcal{T} satisfy $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$? used to arrange all concepts in a TBox in a subsumption hierarchy makes structure explicit, facilitates browsing and navigation Note: lacktriangledowniantimes C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not\models C \sqsubseteq \bot$ lacksquare $\mathcal{T} \models C \sqsubseteq D$ iff $C \sqcap \neg D$ unsatisfiable w.r.t. \mathcal{T} # On the Role of Complexity Is DL all about computational complexity? What complexity theory can do for us: - help to understand the expressive power of the formalism to prove hardness results, one must show that something can be expressed - provide performance guarantees or show that they do not exist What it cannot do for us (so far): tell us whether something will work in practice or not Expressive Description Logics (i.e.: \mathcal{ALC} and above) # A Bit of History # Stone age of description logics (until mid-1990ies): "We have to offer efficient reasoning and thus cannot include all Booleans" "Every application needs at least conjunction and universal restriction" (and thus reasoning is co-NP-complete) # The SHIQ era (since mid-1990ies): "ExpTime DLs can be implemented efficiently" (FaCT system by Horrocks) "We do need the Booleans and much, much more (but want to stay decidable)!" ### Expressive Power of ALC Central notion for understanding expressive power of \mathcal{ALC} : Relation $ho\subseteq\Delta^{\mathcal{I}_1} imes\Delta^{\mathcal{I}_2}$ is bisimulation between interpretations \mathcal{I}_1 and \mathcal{I}_2 if d ho d' implies that - lacktriangle d and d' satisfy same concept names - lacktriangle each successor of d has ho-related counterpart at d' - lacktriangle each successor of d' has ho-related counterpart at d # Expressive Power of \mathcal{ALC} $(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$: there is a bisimulation ho between \mathcal{I}_1 and \mathcal{I}_2 with d_1 ho d_2 # Expressive Power of \mathcal{ALC} Lemma. ALC is invariant under bisimulations, i.e., If $$(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$$, then $d_1\in C^{\mathcal{I}_1}$ iff $d_2\in C^{\mathcal{I}_2}$ for all \mathcal{ALC} -concepts C. Together with example from previous slide: \mathcal{ALC} lacks expressive power for counting successors! # Expressive Power of \mathcal{ALC} The converse is false in general: Theorem. An FO-formula φ with one free variable is equivalent to an \mathcal{ALC} -concept iff it is invariant under bisimulation. [vanBenthem76] # **Tree Model Property** Theorem. If an \mathcal{ALC} -concept C is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then there is a tree-shaped model of C and \mathcal{T} # Decidability of \mathcal{ALC} ### Benefits of tree model property: - tree models computationally much simpler than graph models recall, e.g., Rabin's theorem - there are powerful tools for logics on trees (e.g. automata, games) Theorem. In ALC, satisfiability (and subsumption) is ExpTime-complete. Many kinds of algorithms, e.g. based on: - tree automata (ExpTime upper bound, best case exponential) - tableau calculus (no ExpTime upper bound, used by most reasoners) - Pratt-style type elimination (ExpTime upper bound, conceptually simple) #### **Lower Bound** ExpTime-hardness: reduce word problem of alternating Turing machines whose tape is bounded polynomially [FischerLadner79] #### **Central ideas:** - ATMs generalize non-deterministic TMs: linear TM computations generalized to ATM computation trees - alternating PSpace = ExpTime - polysize tape can be represented using a single domain element (concept names such as $A_{a,i}$, $A_{h,i}$, A_q) lacktriangle \mathcal{ALC} tree models can represent ATM computation trees From an application perspective, the expressive power of \mathcal{ALC} is limited OWL enriches ALC in many ways, including: lacktriangle concepts $(\leq 1 \ r)$ expressing local functionality of roles e.g. Disease $\sqcap \exists$ has Cause. Infection $\sqcap (\leq 1 \text{ has Cause})$ formal semantics: $\forall y,y'.(r(x,y) \land r(x,y') ightarrow y = y')$ - lacktriangle concepts $(\leq 1 \ r^-)$ for the converse of roles - nominals, a new sort that identifies a unique domain element - e.g. Pope, SoccerWorldChampion, but possibly also Red, Blue Call the resulting description logic OWL1 Core (DL Name: \mathcal{ALCFIO}) In OWL1 Core, the tree model property is lost rather dramatically: lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacksquare now make L_4 a nominal - lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacksquare now make L_4 a nominal - lacktriangle make the converses of $oldsymbol{x}$ and $oldsymbol{y}$ functional $$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1$$ $$L_1 \sqsubseteq \exists x. L_2 \sqcap \exists y. L_2$$ $$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$ - lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacksquare now make L_4 a nominal - lacktriangle make the converses of $m{x}$ and $m{y}$ functional $$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1 \ L_1 \sqsubseteq \exists x. L_2 \sqcap \exists y. L_2$$ $$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$ - lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacksquare now make L_4 a nominal - lacktriangle make the converses of $m{x}$ and $m{y}$ functional $$egin{aligned} L_0 &\sqsubseteq \exists x.L_1 \sqcap \exists y.L_1 \ L_1 &\sqsubseteq \exists x.L_2 \sqcap \exists y.L_2 \ L_2 &\sqsubseteq \exists x.L_3 \sqcap \exists y.L_3 \end{aligned}$$ - lacktriangle already in \mathcal{ALC} , we can easily generate a tree - lacksquare now make L_4 a nominal - lacktriangle make the converses of $oldsymbol{x}$ and $oldsymbol{y}$ functional $$L_0 \sqsubseteq \exists x. L_1 \sqcap \exists y. L_1 \ L_1 \sqcap \exists x. L_2 \sqcap \exists y. L_2$$ $$L_2 \sqsubseteq \exists x.L_3 \sqcap \exists y.L_3$$ #### Consequences: - the tree model property is lost in a rather dramatic way - grids can represent computations of non-deterministic Turing machines - with a small trick, we can generate a grid of exponential size (count levels in binary, not in unary) - it follows that OWL1Core is NExpTime-hard, in fact NExpTime-complete [Tobies99] In OWL2, we can even enforce grids of 2-exponential size #### **Discussion** OWL1 and OWL2 are rather expressive close to, and sometimes beyond the 2-variable fragment of FO OWL1 and OWL2 are computationally very costly (worst case!) with the transition $$\mathcal{ALC} \hspace{0.1cm} ightarrow \hspace{0.1cm} \mathcal{SHIQ} \hspace{0.1cm} ightarrow \hspace{0.1cm} \mathsf{OWL1} \hspace{0.1cm} ightarrow \hspace{0.1cm} \mathsf{OWL2}$$ the promise of efficiency on natural inputs got increasingly untrue there are applications and reasoning tasks where this is unacceptable **Lightweight Description Logics** # A Bit of History Stone age of description logics (until mid-1990ies): "We have to offer efficient reasoning and thus cannot include all Booleans" "Every application needs at least conjunction and universal restriction" (and thus reasoning is co-NP-complete) The SHIQ era (since mid-1990ies until ??): "ExpTime DLs can be implemented efficiently" (FaCT system by Horrocks) "We do need the Booleans and much, much more (but want to stay decidable)!" # A Bit of History The \mathcal{EL} and DL-Lite era (since ≈ 2005): "Applications need existential restrictions rather than universal ones" "Lightweight DLs are sufficient for many applications and can be scalable" ### The Description Logic EL Dominating constructors in many large-scale ontologies: conjunction and existential restrictions ``` Pericardium ☐ Tissue ☐ ∃partOf.Heart Pericarditis ≐ Inflammation ☐ ∃location.Pericardium Inflammation ☐ Disease ☐ ∃actsOn.Tissue Tissue ☐ Disease ☐ ⊥ ``` Large-scale ontologies usually require a highly abstract conceptual modeling ## The Description Logic \mathcal{EL} Concept language of \mathcal{EL} is "half of \mathcal{ALC} ": $$C ::= A \mid \top \mid \bot \mid C \sqcap D \mid \exists r.C$$ Most prominent \mathcal{EL} -ontology: SNOMED CT - lacktriangle large scale, professionally developed medical ontology (~ 400.000 concepts) - used to systematize health care terminology, standard e.g. in US, Canada, etc. Satisfiability and subsumption still interreducible: - lacksquare C satisfiable w.r.t. \mathcal{T} iff $\mathcal{T} \not\models C \sqsubseteq \bot$ - lacksquare $\mathcal{T} \models C \sqsubseteq D$ iff $C \sqcap A$ unsatisfiable w.r.t. $\mathcal{T} \cup \{C \sqcap A \sqcap D \sqsubseteq \bot\}$ ### Expressive Power of \mathcal{EL} Central notion for understanding expressive power of \mathcal{EL} : Relation $ho\subseteq\Delta^{\mathcal{I}_1} imes\Delta^{\mathcal{I}_2}$ is simulation from interpretation \mathcal{I}_1 to \mathcal{I}_2 if d ho d' implies that - lacktriangledown d' satisfies all concept names that d satisfies - lacktriangle each successor of d has ho-related counterpart at d' - nothing else # Expressive Power of \mathcal{EL} $(\mathcal{I}_1,d_1) \precsim (\mathcal{I}_2,d_2)$: there is a simulation ho from \mathcal{I}_1 to \mathcal{I}_2 with $d_1 ho d_2$ ## Expressive Power of \mathcal{EL} Lemma. \mathcal{EL} is preserved under simulations, i.e., if $(\mathcal{I}_1,d_1) \precsim (\mathcal{I}_2,d_2)$, then $d_1 \in C^{\mathcal{I}_1}$ implies $d_2 \in C^{\mathcal{I}_2}$ for all \mathcal{EL} -concepts C. Thus \mathcal{EL} cannot distinguish (\mathcal{I}_1,d_1) from (\mathcal{I}_2,d_2) if they mutually simulate This is not the same as bisimulation: #### **Canonical Models** Since \mathcal{EL} is a fragment of \mathcal{ALC} : \mathcal{EL} has tree model property But \mathcal{EL} satisfies a much stronger property: it has canonical tree models Theorem. If an \mathcal{EL} -concept C is satisfiable w.r.t. an \mathcal{EL} -TBox \mathcal{T} , then there is a tree-shaped model (\mathcal{M},d) of C and \mathcal{T} such that for all models \mathcal{I} of \mathcal{T} and all $e \in C^{\mathcal{I}}$: $(\mathcal{M},d) \precsim (\mathcal{I},e)$ Intuition: the canonical model can be found in any other model (in terms of a simulation) ### **Canonical Models** As an example, take $$C = A \cap \exists r.B$$ $$\mathcal{T} = \{A \sqsubseteq \exists s.B\}$$ # **Canonical model:** # Models of \mathcal{T} e.g.: #### **Canonical Models** Canonical models can be constructed in a straightforward way: $$A \sqsubseteq B_1 \qquad B_1 \sqsubseteq \exists r.B_1 \qquad \exists r.B_1 \sqsubseteq B_2 \ B_1 \sqcap B_2 \sqsubseteq \exists s.B_2$$ - lacksquare This is a (tree) model of A and ${\mathcal T}$ - lacktriangle Everything we have generated must be present in every model of $oldsymbol{A}$ and $oldsymbol{\mathcal{T}}!$ # ${\cal EL}$ Satisfiability Due to \bot , the canonical model construction can fail and that happens exactly when C is unsatisfiable w.r.t. \mathcal{T} : - If we derive \bot , then \bot is a logical consequence of C and $\mathcal T$ thus C is unsatisfiable w.r.t. $\mathcal T$ - If we do not derive \bot , then $\mathcal M$ is a model of C and $\mathcal T$ thus C is satisfiable w.r.t. $\mathcal T$ This is the basis for a satisfiability algorithm in \mathcal{EL} . # ${\cal EL}$ Satisfiability Theorem. In \mathcal{EL} , satisfiability (and subsumption) are in PTime. [BaaderBrandtL_05] ### **Proof approach:** - lacktriangle We cannot construct the infinite tree-shaped model ${\cal M}$ - lacktriangle Instead use a compact version of the canonical model \mathcal{M}_c ## **EL** Satisfiability Canonical models can be constructed in a straightforward way: $$A \sqsubseteq B_1 \qquad \qquad B_1 \sqsubseteq \exists r.B_1 \qquad \qquad \exists r.B_1 \sqsubseteq B_2 \ B_1 \sqcap B_2 \sqsubseteq \exists s.B_2$$ - lacktriangle The unraveling of \mathcal{M}_c is exactly \mathcal{M} - \Longrightarrow construction of \mathcal{M}_c fails iff construction of \mathcal{M} fails - w. - $lacktriangleq \mathcal{M}_c$ is of polynomial size, can be constructed in polynomial time #### **Additional Remarks** Some additional virtues of \mathcal{M}_c - $lacktriangleq \mathcal{M}_c$ is a model of C and \mathcal{T} , too. - lacktriangleq just like \mathcal{M} , \mathcal{M}_c simulates every model of C and T: $$(\mathcal{M},d)$$ (\mathcal{I},e) (\mathcal{M},d) (\mathcal{M}_c,d) Theorem. An FO-formula φ with one free variable is equivalent to an \mathcal{EL} -concept iff it is preserved under simulation and has a canonical model. [PiroL_Wolter10] PTime upper bound can be generalized to \mathcal{EL}^{++} , i.e., \mathcal{EL} extended with - lacktriangle range restrictions on roles, i.e., $\top \sqsubseteq \forall r.C$ - (lacktriangle domain restrictions on roles, i.e., $\top \sqsubseteq \forall r^-.C$) lacktriangledown role implications, i.e., TBox statements $r_1 \circ \cdots \circ r_n \sqsubseteq r$ o . . . **OWL EL** **Profile** Other extensions cause a jump back to ExpTime, e.g. - lacksquare disjunctions $C \sqcup D$ - lacktriangle universal restrictions $\forall r.C$ - lacksquare number restrictions $(\geq 2 r)$ Interesting: no extension between PTime and ExpTime known (dichotomy?) Theorem. In $\mathcal{EL} + \sqcup$, satisfiability (and subsumption) are ExpTime-complete. [BaaderBrandtL 05] Proof: reduction from satisfiability of concept name A_0 w.r.t. \mathcal{ALC} -TBox \mathcal{T} Step 1: Replace universal restrictions in \mathcal{T} with existential ones: $$\forall r.C$$ becomes $$\neg \exists r. \neg C$$ Step 2: Modify \mathcal{T} so that negation is applied only to concept names $$A \sqsubseteq \exists s.(B' \sqcup \neg \exists r.B)$$ becomes $A \sqsubseteq \exists s.(B' \sqcup \neg X)$ $X \doteq \exists r.B$ (X a fresh concept name) Theorem. In $\mathcal{EL} + \sqcup$, satisfiability (and subsumption) are ExpTime-complete. [BaaderBrandtL_05] Proof: reduction from satisfiability of concept name A_0 w.r.t. \mathcal{ALC} -TBox \mathcal{T} **Step 3**: Remove negation entirely from T - lacktriangle Replace each eg X with \overline{X} , \overline{X} a fresh concept name - Ensure correct behaviour of \overline{X} : $$\top \sqsubseteq X \sqcup \overline{X}$$ $$X \sqcap \overline{X} \sqsubseteq \bot$$ Resulting TBox \mathcal{T}' is in $\mathcal{EL} + \sqcup$ and A_0 sat w.r.t. \mathcal{T} iff A_0 sat w.r.t. \mathcal{T}' Theorem. In $\mathcal{EL}+ orall r.C$ and $\mathcal{EL}+(\geq 2\,r)$, satisfiability is ExpTime-complete. [BaaderBrandtL_05] Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcup$ -TBox \mathcal{T} We can assume that disjunction occurs only in the form $$A_1 \sqcup A_2 \sqsubseteq A$$ and $A \sqsubseteq B_1 \sqcup B_2$ $= A_1 \sqsubseteq A, \ A_2 \sqsubseteq A$ replace by $A \sqcap \exists r. \top \sqsubseteq B_1 \ A \sqcap orall r. X \sqsubseteq B_2$ r, X fresh $A \sqcap \forall r. X \sqsubseteq B_2$ Theorem. In $\mathcal{EL} + \forall r.C$ and $\mathcal{EL} + (\geq 2 \, r)$, satisfiability is ExpTime-complete. [BaaderBrandtL_05] Proof: reduction from satisfiability of concept name A_0 w.r.t. $\mathcal{EL} + \sqcup$ -TBox \mathcal{T} We can assume that disjunction occurs only in the form $$A_1 \sqcup A_2 \sqsubseteq A$$ and $A \sqsubseteq B_1 \sqcup B_2$ $= A_1 \sqsubseteq A, \ A_2 \sqsubseteq A$ replace by $$A \sqsubseteq \exists r.X \sqcap \exists r.Y$$ $A \sqcap \exists r.(X \sqcap Y) \sqsubseteq B_1$ r,X,Y fresh $A \sqcap (\geq 2\,r) \sqsubseteq B_2$ Call an extension of \mathcal{EL} convex if: $$\mathcal{T} \models C \sqsubseteq D_1 \sqcup D_2$$ implies $\mathcal{T} \models C \sqsubseteq D_i$ for some $i \in \{1,2\}$ $\mathcal{EL} + \forall r.C$ is not convex: $$\emptyset \models \top \sqsubseteq \exists r. \top \sqcup \forall r. X$$, but $\emptyset \not\models \top \sqsubseteq \exists r. \top$ and $\emptyset \not\models \top \sqsubseteq \forall r. X$ The reductions show: if an extension of \mathcal{EL} is not convex, it is ExpTime-hard. Interestingly, the converse does not hold! Easy to prove: Existence of canonical models \mathcal{M} implies convexity: Consider \mathcal{EL} extended with inverse existential restrictions: $$\exists r^-.C$$ has semantics $\{d \in \Delta^\mathcal{I} \mid \exists e \in C^\mathcal{I} : (e,d) \in r^\mathcal{I}\}$ Theorem. $\mathcal{EL} + \exists r^-.C$ is convex, but satisfiability is ExpTime-complete. [BaaderBrandtL_05] Here only: canonical models can become exponentially large $$L_0 \sqsubseteq \exists r. (L_1 \sqcap A_1) \sqcap \exists r. (L_1 \sqcap \overline{A_1}) \ L_1 \sqsubseteq \exists r. (L_2 \sqcap A_2) \sqcap \exists r. (L_2 \sqcap \overline{A_2}) \ L_2 \sqcap \exists r^-. A_1 \sqsubseteq A_1$$ $$L_2 \cap \exists T : A_1 \sqsubseteq A$$ $$L_2 \cap \exists r^-.\overline{A}_1 \sqsubseteq \overline{A}_1$$ #### **Discussion** - $lacktriangleq \mathcal{EL}$ is a natural ontology language for a high level of abstraction - satisfiability and subsumption can be computed in polytime - this has led to standardization as OWL EL profile of OWL2 - efficient reasoners are availabe, e.g. CEL (Dresden), SnoRocket (Brisbane) based on canonical models, very robust, classify SNOMED CT in <10min - algorithms have been generalized to Horn- \mathcal{SHIQ} reasoner CB (Oxford) ### ${\cal EL}$ vs. ${\cal FL}_0$ The historic choice of universal restrictions instead of existential restrictions leads to much worse computational behaviour Complexity of subsumption in \mathcal{FL}_0 , constructors \top , (\bot), \sqcap , $\forall r.C$: empty TBox: tractable [BrachmanLevesque84] acyclic TBox: co-NP-complete [Nebel90] cyclic TBox: PSpace-complete [KazakovDeNivelle03] general TBox: ExpTime-complete [BaaderBrandtL_05,Hofmann05] Clearly, $$\forall r.(A \sqcap B) \equiv \forall r.A \sqcap \forall r.B$$ Thus, every \mathcal{FL}_0 -concept is equivalent to one of the form $$egin{aligned} & orall r_{1,1}. orall r_{1,2}.\cdots orall r_{1,n_1}.A_1 \ &\sqcap orall r_{2,1}. orall r_{2,2}.\cdots orall r_{2,n_2}.A_2 \ &\cdots \ &\sqcap orall r_{k,1}. orall r_{k,2}.\cdots orall r_{2,n_k}.A_k \end{aligned}$$ (finite) words over the alphabet of role names Grouping according to concept name achieves the following normal form $$orall L_1.A_1 \sqcap orall L_2.A_2 \sqcap \cdots \sqcap orall L_m.A_m$$ finite formal languages over the alphabet of role names We consider subsumption instead of satisfiability Subsumption in \mathcal{FL}_0 (without TBoxes): $$C = orall L_1.A_1 \sqcap orall L_2.A_2 \sqcap \cdots \sqcap orall L_m.A_m$$ $D = orall M_1.A_1 \sqcap orall M_2.A_2 \sqcap \cdots \sqcap orall M_m.A_m$ Then $$C \sqsubseteq D$$ iff $L_i \supseteq M_i$ for $1 \le i \le m$ (*) Theorem. Subsumption in \mathcal{FL}_0 without TBoxes is in PTime. Intuitively (*) still holds with acyclic TBoxes, but sets L_i can be described compactly, get exponentially large Reduction from 3SAT to \mathcal{FL}_0 -subsumption w.r.t. TBoxes: Take a 3-formula $$\varphi = (\ell_{1,1} \vee \ell_{1,2} \vee \ell_{1,3}) \wedge \cdots \wedge (\ell_{n,1} \vee \ell_{n,2} \vee \ell_{n,3})$$ over the variables x_1, \ldots, x_k Ideas: - lacktriangle use two role names t and f representing "true" and "false" - lacktriangleq represent truth assignments as words over $\{t,f\}$ of length k - lacksquare as the target subsumption $C \sqsubseteq D$, use $C = orall L_C.A$, L_C the set of truth assignments that make arphi false $D = \forall L_D.A$, L_D the set of all truth assignments To be done: describe C and D with polynomial-size TBox: D is easy: $$L_i \equiv orall t.L_{i+1} \sqcap orall f.L_{i+1} \quad ext{ for } 1 \leq i \leq n$$ $L_{n+1} \equiv A$ $D \equiv L_0$ C too (basically) Theorem. Subsumption in \mathcal{FL}_0 w.r.t. TBoxes is co-NP-hard. **Instance Data and Query Answering** #### **Current DL Research** In recent years, exciting new reasoning problems have popped up; e.g.: conjunctive query answering over instance data w.r.t. a background TBox - problems related to the modularity of TBoxes: - odoes a given subset $\mathcal{T}' \subseteq \mathcal{T}$ say everything about a given signature Σ that \mathcal{T} does? - lacktriangle given a signature Σ , extract an as-small-as-possible subset $\mathcal{T}'\subseteq\mathcal{T}$ that says the same about Σ as \mathcal{T} conservative extensions problems related to privacy issuese.g. controlled interfaces to TBox / instance data #### **ABoxes** Ontologies are increasingly used with instance data, e.g.: Clinical document architecture (CDA) becomes standard medical data format CDA medical codes based on SNOMED CT terminology Ontology can be exploited for interpreting data / deriving additional answers ABox: finite set of ground facts, e.g.: $\mathsf{Patient}(p) \qquad \mathsf{finding}(p,d) \qquad \mathsf{Pericarditis}(d)$ Information in ABoxes is incomplete (open world semantics) E.g., a patient record would not include Inflammation(d), though it is true. #### **ABoxes** TBox allows more complete query answers **ABox** $\begin{aligned} \mathsf{Patient}(p) & \mathsf{Inpatient}(p) \\ \mathsf{inWard}(p,w) & \neg \mathsf{Intensive}(w) \end{aligned}$ **TBox** Then p is an answer to query $\exists y. \mathsf{Patient}(\mathbf{x}) \land \mathsf{finding}(\mathbf{x}, y) \land \neg \mathsf{LiveThreatening}(y)$ ## **Query Answering** ### More formally: - lacktriangle Model of ABox \mathcal{A} : interpretation satisfying all facts in \mathcal{A} - Answers to query q for ABox $\mathcal A$ w.r.t. TBox $\mathcal T$: Certain answers, i.e., answers common to all models $\mathcal I$ of $\mathcal A$ and $\mathcal T$ Closely related to query answering in incomplete databases (but with a different kind of schema constraints) ## **Query Languages** Instance queries take the form C(v), v a variable. technically close to subsumption, almost always of same complexity Conjunctive queries take the form $\exists \vec{v}. \varphi(\vec{v}, \vec{v}')$, with φ a conjunction of atoms A(v) or r(v, v') \vec{v}' the answer variables, \vec{v} the quantified variables generalize instance queries, but are more interesting Select-Project-Join fragment of SQL FO/SQL queries generalize conjunctive queries, but: FO sentence φ valid iff $\emptyset,\emptyset\models\varphi$ TBox ABox # **DL Query Answering and Relational Database Systems** In patient databases and other large-scale applications: - Efficiency and scalability of query answering is crucial - Query answering in expressive DLs is computationally costly | | satisfiability | query answering | |-------------------------------|----------------|-------------------| | \mathcal{ALC} | ExpTime | ExpTime | | $\mathcal{ALC} + \exists r^C$ | ExpTime | 2ExpTime | | SHIQ | ExpTime | 2ExpTime | | OWL1 Core | NExpTime | decidable | | OWL1 | NExpTime | decidability open | ## **DL Query Answering and Relational Database Systems** Most popular approach to achieve scalability: Implement DL query answering based on relational database systems Obvious problem: conventional RDBM unaware of TBoxes - Solution I: query rewriting "put TBox into query" - Solution II: data completion "put TBox into data" Solution I: query rewriting — "put TBox into query" # **Query Rewriting** The query rewriting approach: [Calvanese, deGiacomo, Lenzerini et al.05] - ABox stored in DB system as relational instance - CQ is rewritten to FO/SQL query to incorporate TBox - Rewritten query executed by relational DB system Enables use of off-the-shelf DB systems! Mission statement: given CQ q and T, rewrite q into FO query q' such that $$\mathcal{A}, \mathcal{T} \models q[a_1, \ldots, a_n]$$ iff $db_{\mathcal{A}} \models q'[a_1, \ldots, a_n]$ for all $\mathcal{A}, a_1, \ldots, a_n$. # Query Rewriting—Example 1 Query $$\stackrel{A}{\longleftarrow} \stackrel{r}{\longrightarrow} \stackrel{B}{\longrightarrow}$$ $$\exists y. (A(x) \land r(x,y) \land B(y))$$ $$\exists s. \top \sqsubseteq A$$ $$B' \sqsubseteq B$$ Rewritten query is disjunction of: $$A \qquad r \qquad B$$ $$A \qquad r \qquad B$$ # **Query Rewriting—Example 2** Query **TBox** $$A \sqsubseteq \exists r. \top \quad B \sqsubseteq \exists s. \top$$ Rewritten query is disjunction of: For which DLs does this work? ### **Query Rewriting** ### Data complexity: - In DBs: measure complexity only in size of data, not of query - In DLs: measure complexity only in size of data, neither of query nor TBox Theorem. The query rewriting approach only works for DLs for which CQ entailment is in AC_0 regarding data complexity. [Calvanese et al. 05] #### **Proof:** - **▶ FO** query answering is in **AC**₀ regarding data complexity - measured input (data) is left unchanged - measured / non-measured inputs are not mixed in the rewriting ## **Query Rewriting** Data complexity of DLs we have met: $$\mathcal{EL}$$ PTime-complete \mathcal{ALC} and above NP-complete Why query rewriting cannot be used for \mathcal{EL} : Query $$ullet A \qquad A(x)$$ TBox $$\exists r.A \sqsubseteq A$$ Rewritten query is disjunction of: $$\stackrel{\bullet}{\bullet} A \qquad \stackrel{r}{\longleftarrow} \stackrel{A}{\longleftarrow} \qquad \cdots$$ We need $\exists y.r^*(x,y) \land A(y)$, but transitive closure not FO-expressible #### **DL-Lite** DL-Lite: a lightweight DL with AC₀ data complexity [Calvanese et al.05] Basic version: TBox statements of the form $$C \sqsubseteq D$$ $C \sqsubseteq \neg D$ where C, D are of the form $A, \exists r. \top$, and $\exists r^-. \top$ For example: Professor $\sqsubseteq \exists teachesTo. \top \exists teachesTo^-. \top \sqsubseteq Student$ Professor $\sqsubseteq \neg Student$ #### **DL-Lite**: - inexpressive, but can encode ER diagrams and UML class diagrams - admits the query rewriting approach - underlies OWL QL profile of OWL2 Solution II: data completion — "put TBox into data" ### **Data Completion** **Limitations of the query rewriting approach:** - **■** Works only for AC₀-DLs, i.e., only for DL-Lite - Query rewriting blows up exponentially $O(|\mathcal{T}|^{|q|})$ performance problems with large queries / large TBoxes The data completion approach avoids both probems in particular, it works for \mathcal{EL} -TBoxes #### **Overview** The data completion approach: [L__TomanWolter08] - Incorporate TBox into the ABox, not into the query - To deal with existential restrictions and avoid infinite databases: eagerly reuse constants, producing spurious cycles (and more) (similar to compact canonical model vs. canonical tree model) - To nevertheless obtain correct answers: use query rewriting Also enables use of off-the-shelf DB systems! TBox $\exists r.A \sqsubseteq A$ **ABox** **Completed ABox:** Query A(x) Answer a,b,c,e $$A \sqsubseteq \exists s.B$$ $$\exists s.B \sqsubseteq A'$$ $$A \sqsubseteq \exists s.B \quad \exists s.B \sqsubseteq A' \quad \exists r.(A \sqcap A') \sqsubseteq B$$ $$a \xrightarrow{r} \stackrel{A}{b}$$ # **Completed ABox:** $$a \xrightarrow{r} b$$ $c B$, Ex Query Rewritten query $$B(v) \wedge \neg \mathsf{Ex}(v)$$ $$\boldsymbol{a}$$ $$A \sqsubseteq \exists s.B$$ $$\exists s.B \sqsubseteq A'$$ $$A \sqsubseteq \exists s.B \quad \exists s.B \sqsubseteq A' \quad \exists r.(A \sqcap A') \sqsubseteq B$$ $$a \xrightarrow{r} \stackrel{A}{b}$$ $$a \xrightarrow{r} b$$ $c B$, Ex ABox completion means building the canonical model (for an ABox instead of for a concept) General shape of canonical model built for an ABox: Problem: canonical model can get infinite, database can't $$A \sqsubseteq \exists r.A$$ ABox $$egin{array}{c} A \ oldsymbol{a} \end{array}$$ **Completed ABox:** $$a \xrightarrow{r} a' \xrightarrow{r} a'' \xrightarrow{r} a''$$ Database cannot be infinite. ⇒ build compact canonical model! $$A \sqsubseteq \exists r.A$$ **ABox** **Completed ABox:** Wrong answer to some queries, e.g. $$\exists y.r(\mathbf{x},y) \land r(y,y)$$ answer $$\{a,b\}$$, should be \emptyset $$\exists y. r(x,y) \land r(x',y) \land r(x,x')$$ answer $\{(a,b)\}$, should be \emptyset ### **Data Completion** #### **Problem:** infinite, tree-shaped canonical model ${\cal M}$ gives correct answers to all queries, compact version ${\cal M}_c$ does not #### **Solution:** Rewrite CQ q into FO query q' so that answers to q' in $\mathcal{M}_c=$ answers to q in \mathcal{M} Implementation: add query conjuncts expressing that - **■** Variable on a query cycle cannot be mapped to an Ex element - lacktriangledown If r(x,y),s(x',y) in query and r eq s, then y not mapped to Ex - If r(x,y), r(x',y) in query and y mapped to Ex, then x=x' $$A \sqsubseteq \exists r.A$$ **ABox** **Completed ABox:** $$q = \exists y.r(\mathbf{x},y) \wedge r(y,y)$$ answer $\{a, b\}$ $$q' = \exists y.r(\mathbf{x},y) \land r(y,y) \land \neg \mathsf{Ex}(\mathbf{x}) \land \neg \mathsf{Ex}(y)$$ answer ∅ $$A \sqsubseteq \exists r.A$$ **ABox** **Completed ABox:** $\wedge \neg \mathsf{Ex}(\boldsymbol{x}) \wedge \neg \mathsf{Ex}(\boldsymbol{x'}) \wedge (\mathsf{Ex}(\boldsymbol{y}) \to \boldsymbol{x} = \boldsymbol{x'})$ $$q = \exists y.r(\mathbf{x}, y) \land r(\mathbf{x'}, y) \land r(\mathbf{x}, \mathbf{x'})$$ answer $$\{(a,b)\}$$ $$q' = \exists y.r(\mathbf{x}, y) \land r(\mathbf{x'}, y) \land r(\mathbf{x}, \mathbf{x'}))$$ ### **Data Completion** ### Wrapup: - Data completion approach works for EL and DL-Lite [KR10], results only in polynomial blowup of the query - Requires authority over the data, blows up the data (polynomially) - Extends to role hierarchies, domain and range restrictions(but transitive roles and general role inclusions are challenging) - Limitation: for DLs whose data complexity is not in PTime there must be a (worst case) exponential blowup of the data **Questions?** PS: Slides are on my homepage PPS: Somebody interested in a PhD/Postdoc position? # Decidability of \mathcal{ALC} Tree model property is a good explanation for decidability of \mathcal{ALC} : - replacing graph models with trees models tends to make logics decidable recall, e.g., Rabin's theorem - there are powerful tools for logics on trees (e.g. automata, games) **Theorem.** Satisfiability in \mathcal{ALC} is EXPTIME-complete. A simple proof is based on type elimination [Pratt1979] $$A \sqsubseteq \exists r.A$$ **ABox** **Completed ABox:** Database cannot be infinite. ⇒ build compact canonical model! #### **ABoxes** TBox allows more complete query answers **ABox** $$\begin{aligned} \mathsf{Patient}(p) & \mathsf{finding}(p,d) & \mathsf{Inflammation}(d) \\ & \mathsf{location}(d,h) & \mathsf{Heart}(h) \end{aligned}$$ **TBox** Inflammation ☐ Disease HeartDisease ☐ ∃location.Heart Then p is an answer to query $$\exists y. \mathsf{Patient}(\underline{x}) \land \mathsf{finding}(\underline{x}, y) \land \mathsf{HeartDisease}(y)$$ #### Extensions of \mathcal{EL} The case without \perp : - Satisfiability is trivial(Every concept satisfiable w.r.t. every TBox) - **Subsumption** in $\mathcal{EL} + \sqcup$ is still ExpTime-complete Reduction from (un)satisfiability in $\mathcal{EL} + \sqcup$ with \bot : $$A$$ satisfiable w.r.t. ${\mathcal T}$ iff ${\mathcal T}' \models A \sqsubseteq A_\perp$ where \mathcal{T}' is obtained by - lacktriang replacing ot in $oldsymbol{\mathcal{T}}$ with $oldsymbol{A}_{ot}$ and - lacksquare adding $\exists r.A_{\perp} \sqsubseteq \bot$ for all role names r used in $\mathcal T$ ### A Glimpse at \mathcal{FL}_0 To be done: describe C and D with polynomial-size TBox: *D* is easy: $$L_i \equiv orall t.L_{i+1} \sqcap orall f.L_{i+1} \quad ext{ for } 1 \leq i \leq n$$ $L_{n+1} \equiv A$ $D \equiv L_0$ # C too (basically): - for each clause ζ of φ , do the construction for D, but drop further $\forall t._{i+1} / \forall f.L_{i+1}$ when all three literals were made false - lacktriangle we get concept orall L.C with L set of truth assignments that make ζ false - take conjunction of all these concepts # **Query Answering** **ABox** Patient(p) **TBox** **Patient □ Human** **Human ⊆ Male ⊔ Female** #### Some models: Patient p • Human Male Patient **p** • Human Female Patient Period Human Female Meningitis Then p is an answer to query Not to Human(x) Male(x) $\exists y. \mathsf{finding}(\mathbf{x}, x)$