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Motivation

&

Description Logic is subfield of KR concerned with terminological knowledge:

Describe the central notions of the application domain (its terminology)

and their interrelations

E.g. in medical applications:

Tissue, Inflammation, Pericadium, Pericarditis, etc.

DLs play important role as logical foundation of ontology languages:

@ OWL is the W3C-standard for a Web Ontology Language
OWL 1 in 2004 OWL 2 in 10/2009

@ OWL is essentially a description logic with an XML syntax




Motivation

&

Main reason for popularity:

attractive compromise between expressive power and computational complexity

Propositional Logic
Efficient reasoning via SAT solvers, but often too inexpressive

First-Order Logi ~ Modal

Very expressive reference formalism, but reasoning too costly Logic

Not one DL, but a large toolbox of formalisms:
@ DLs cover broad range of responses to “complexity vs. expressive power”

@ OWL 2 contains different profiles (3 inexpressive, 1 expressive, 1 not a logic)



Tutorial Overview

Before break:
@ brief introduction to description logics

@ complexity and expressive power of expressive DLs

@ complexity and expressive power of lightweight DLs, part |

After break:

@ complexity and expressive power of lightweight DLs, part Il

@ instance data and query answering




Introduction to Description Logics



Some DL Basics

Knowledge is (mainly) stored in the TBox, e.g.:

Pericardium L Tissue M dpartOf.Heart
Pericarditis = Inflammation M Jlocation.Pericardium
Inflammation C Disease " dactsOn.Tissue

Tissue M Disease L L

TBox = “Terminology Box”; modern view: TBox = ontology

Formally, a TBox is a finite set of

concept inclusions C' L D  and concept definitions C = D

where C, D are concepts (= formulas) in the DL used.



Some DL Basics

Different concept constructors give rise to different DLs / OWL dialects:

PTIME ExPTIME

ExXpIIME NEXPTIME

2NEXPTIME




The Description Logic ALC

Fix a countably infinite supply of

@ concept names (~ unary predicates)

@ role names (~ binary predicates)

Concept language of ALC:
C:=A|T|L|-C|CND|CuUuD|3r.C|VrC

dr.C: existential restriction

Vr.C'": universal restriction / value restriction

For example:

Disease "1 JactsOn.Organ M Vcause.—Genetic




The Description Logic ALC

DL interpretation Z:

FO structure with only unary+binary predicates = Kripke structure

DL-style notation: interpretation Z = (AZ, -Z) with

@ AT a non-empty set, the domain
@ - the interpretation function which assigns
@ aset AT C A7 to each concept name A

@ a binary relation 7 C AZ x AZ to each role name r

We now extend -Z to composite concepts




Semantics

DL concepts = FO formulas with exactly 1 free variable =~ modal formulas

A A(x) PA
~C —~C(z) ~C
CuD C(x) V D(x) CvVv D
C D C(x) N D(x) CAND
dr.C Fy.(r(x,y) A C(y)) (r).C
vr.C Vy.(r(z,y) — C(y)) [r].C

Note: 2 variables / guarded formulas suffices

@ We use C7 to denote the set {d € AT | T = C(d)}



Semantics

TBoxes correspond to FO sentences:

CCD Ve.(C(x) — D(x))
C=D Ve.(C(x) <« D(x))
T /\ P

peT

Example:

Pericardium L Tissue M JpartOf.Heart

translates to

V. ( Pericardium(x) — ( Tissue(xz) A Jy.(partOf(z, y) A Heart(y) ) )
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Reasoning

Traditional reasoning problems:

@ satisfiability: given C and 7T, is there a model Z of 7~ with C% #£ (7

used for detecting modelling mistakes

@ subsumption: given C, D and 7, does 7 = C C D?

i.e., do all models Z of T satisfy CZ C D*?

used to arrange all concepts in a TBox in a subsumption hierarchy

makes structure explicit, facilitates browsing and navigation
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Reasoning

Traditional reasoning problems:

@ satisfiability: given C and 7T, is there a model Z of 7~ with C% £ (7

used for detecting modelling mistakes

@ subsumption: given C, D and 7, does 7 = C C D?

i.e., do all models Z of 7T satisfy C* C D*?

used to arrange all concepts in a TBox in a subsumption hierarchy

makes structure explicit, facilitates browsing and navigation

Note: © ( satisfiable w.rt. 7 iff 7 [ C C L
@ @ 7 = C C D iff C 11 =D unsatisfiable w.r.t. 7~
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On the Role of Complexity

Is DL all about computational complexity?

What complexity theory can do for us:

@ help to understand the expressive power of the formalism

to prove hardness results, one must show that something can be expressed

@ provide performance guarantees or show that they do not exist

What it cannot do for us (so far):

@ tell us whether something will work in practice or not

15



Expressive Description Logics
(i.e.: ALC and above)

16



A Bit of History

Stone age of description logics (until mid-1990ies):

“We have to offer efficient reasoning and thus cannot include all Booleans”

“Every application needs at least conjunction and universal restriction”

(and thus reasoning is co-NP-complete)

The SHZQ era (since mid-1990ies):

“ExpTime DLs can be implemented efficiently” (FaCT system by Horrocks)

“We do need the Booleans and much, much more (but want to stay decidable)!”
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Expressive Power of ALC

Central notion for understanding expressive power of ALC:
Relation p C A%t x AZ2 is bisimulation between interpretations Z; and Z,

if d p d’ implies that

@ d and d’ satisfy same concept names
@ each successor of d has p-related counterpart at d’

@ each successor of d’ has p-related counterpart at d

A T
4 I 4 I

18



Expressive Power of ALC

(Z1,dy) ~ (Z2,d>): there is a bisimulation p between Z; and Z;
with dl P dz

19



Expressive Power of ALC

Lemma. ALC is invariant under bisimulations, i.e.,
If (Il,dl) ~ (Ig, dz), then dl & CIl iff dz - CIZ
for all ALC-concepts C.

Together with example from previous slide:

ALC lacks expressive power for counting successors!

20



Expressive Power of ALC

The converse is false in general:

7,

Theorem. An FO-formula ¢ with one free variable is equivalent to an

ALC-concept iff it is invariant under bisimulation. [vanBenthem76]

21



Tree Model Property

Theorem. If an ALC-concept C'is satisfiable w.r.t. an ALC-TBox 7T,
then there is a tree-shaped model of C and 7

Proof via unraveling: A




Decidability of ALC

&

Benefits of tree model property:

@ tree models computationally much simpler than graph models

recall, e.g., Rabin’s theorem

@ there are powerful tools for logics on trees (e.g. automata, games)

Theorem. In ALC, satisfiability (and subsumption) is ExpTime-complete.

Many kinds of algorithms, e.g. based on:
@ tree automata (ExpTime upper bound, best case exponential)
@ tableau calculus (no ExpTime upper bound, used by most reasoners)

@ Pratt-style type elimination (ExpTime upper bound, conceptually simple)

23



Lower Bound

&

ExpTime-hardness: reduce word problem of alternating Turing machines

whose tape is bounded polynomially [FischerLadner79]

Central ideas:

@ ATMs generalize non-deterministic TMs:

linear TM computations generalized to ATM computation trees
@ alternating PSpace = ExpTime

@ polysize tape can be represented using a single domain element

(concept names such as A, ;, A, Ag)

@ ALC tree models can represent ATM computation trees

24



From ALC to OWL

From an application perspective, the expressive power of ALC is limited
OWL enriches ALC in many ways, including:

@ concepts (< 1 r) expressing local functionality of roles
e.g. Disease M JhasCause.Infection M (< 1 hasCause)
formal semantics: Vy,y'.(r(xz,y) Ar(z,y’) - y=7v)

@ concepts (< 177) for the converse of roles

@ nominals, a new sort that identifies a unique domain element

e.g. Pope, SoccerWorldChampion, but possibly also Red, Blue

Call the resulting description logic OWL1 Core (DL Name: ALCFZO)

25



From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:
@ already in ALC, we can easily generate a tree
LO E E'.’,U.Ll [ Hy.Ll

Ll E 3&7.[;2 [l Hy.Lz
L() L2 E E'.’,B.Lg [ E'y.Lg

26



From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:

@ already in ALC, we can easily generate a tree

@ now make L4 a nominal Ly C 3z.L, M 3y.L,

Ll E 3&7.[;2 [l Hy.LQ
L2 E Hw.Lg [ Hy.Lg

27



From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:

@ already in ALC, we can easily generate a tree

@ now make L, a nominal

LO E E'.’,U.Ll [ Hy.Ll

@ make the converses of x and y functional Ly C 3x.LyM 3y. Ly
. xXr :T £ e L2 E EL’,BL?, [ Elng
Y Y y
L
Yy
Yy

¢
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From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:

@ already in ALC, we can easily generate a tree

@ now make L4 a nominal Ly C 3z.L, M 3y.L,

@ make the converses of x and y functional Ly C 3x.LyM 3y. Ly
. xXr :T £ e L2 E EL’,BL?, [ Elng
Y Y y
— L > #— = %
x
Yy y\\vy Y
x L
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From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:

@ already in ALC, we can easily generate a tree

ke L inal
@ now make L4 a nomina Lo C Jx.L; M 3dy.L,
@ make the converses of x and y functional Ly C 3x.LyM 3y. Ly
. xXr :T £ e L2 E EL’,BL?, [ Elng
Y Y y
— L > L = %
T
Y y\| v Y
4 =L x ~>‘£
€T Ly

& .



From ALC to OWL

In OWL1 Core, the tree model property is lost rather dramatically:

@ already in ALC, we can easily generate a tree

@ now make L, a nominal

@ make the converses of x and y functional

LO E E'.’,U.Ll [ Hy.Ll
Ll E 3&7.[;2 [l Hy.Lz

® L >0 £ >0 L2 E HCU.L?, [ Hy.Lg
Yy Yy Yy
> e :T
y y y
¢ e — i ~>‘£
xr L4
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From ALC to OWL

Consequences:

@ the tree model property is lost in a rather dramatic way

@ grids can represent computations of non-deterministic Turing machines

@ with a small trick, we can generate a grid of exponential size

(count levels in binary, not in unary)

@ it follows that OWL1Core is NExpTime-hard, in fact NExpTime-complete

[Tobies99]
In OWL2, we can even enforce grids of 2-exponential size

= 2NExpTime-completeness [Kazakov08]
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Discussion

OWL1 and OWL2 are rather expressive

close to, and sometimes beyond the 2-variable fragment of FO

OWL1 and OWL2 are computationally very costly (worst case!)

with the transition

ALC — SHIQ — OWLl — O0OWL2

the promise of efficiency on natural inputs got increasingly untrue

there are applications and reasoning tasks where this is unacceptable

33



Lightweight Description Logics

34



A Bit of History

Stone age of description logics (until mid-1990ies):

“We have to offer efficient reasoning and thus cannot include all Booleans”

“Every application needs at least conjunction and universal restriction”

(and thus reasoning is co-NP-complete)

The SHZ Q era (since mid-1990ies until 77):

“ExpTime DLs can be implemented efficiently” (FaCT system by Horrocks)

“We do need the Booleans and much, much more (but want to stay decidable)!”

35



A Bit of History

The £L and DL-Lite era (since ~2005):

“Applications need existential restrictions rather than universal ones”

“Lightweight DLs are sufficient for many applications and can be scalable”

36



The Description Logic EL

&

Dominating constructors in many large-scale ontologies:

conjunction and existential restrictions

Pericardium L Tissue M JpartOf.Heart
Pericarditis = Inflammation M Jlocation.Pericardium
Inflammation _ Disease M dactsOn.Tissue

Tissue M Disease L L

Large-scale ontologies usually require a highly abstract conceptual modeling

37



The Description Logic £L

&

Concept language of £L is “half of ALC":
C:=A|T|L|CnD|3rC

Most prominent £ L-ontology: SNOMED CT

@ large scale, professionally developed medical ontology (~ 400.000 concepts)

@ used to systematize health care terminology, standard e.g. in US, Canada, etc.

Satisfiability and subsumption still interreducible:

@ (C satisfiable w.r.t. 7 iff 7 [ C C L
@ 7 = C C Diff Cn A unsatisfiable wrt. 7 U{CTTAMNDLC 1}

38



Expressive Power of £L

Central notion for understanding expressive power of £L:
Relation p C A%t x AZ?2 is simulation from interpretation Z; to Z>
if d p d’ implies that
@ d’ satisfies all concept names that d satisfies
@ each successor of d has p-related counterpart at d’

@ nothing else




Expressive Power of £L

(Z1,d1) 2 (Z2,d>): there is a simulation p from Z7 to Z>

with dl P d2

40



Expressive Power of £L

Lemma. €L is preserved under simulations, i.e.,
if (Z1,dy) = (Z2,ds), then d; € C*1 implies dy € C*2
for all £ L-concepts C.

Thus £L cannot distinguish (Z;, dy) from (Z2, d5) if they mutually simulate

This is not the same as bisimulation:

L g B

41



Canonical Models

Since £L is a fragment of ALC: £L has tree model property

But £ L satisfies a much stronger property: it has canonical tree models

Theorem. If an € L-concept C' is satisfiable w.r.t. an £L£-TBox 7,

then there is a tree-shaped model (M, d) of C and T
such that for all models Z of 7 and all e € C*: (M,d) = (Z,e)

Intuition: the canonical model can be found in any other model

(in terms of a simulation)

42



Canonical Models

As an example, take

C=AnN4dr.B

Canonical model:

T ={ALC Jds.B}

Models of 7 e.qg.:

;

N

43



Canonical Models

&

Canonical models can be constructed in a straightforward way:

A E Bl Bl E HT.Bl HT.Bl E Bg
Bl 1 Bz E HS.BQ

Av BlvB2

@ This is a (tree) model of A and 7~
@ Everything we have generated must be present in every model of A and 7!

44



& L Satisfiability

Due to _L, the canonical model construction can fail

and that happens exactly when C' is unsatisfiable w.r.t. 7:

@ If we derive L, then _L is a logical consequence of C' and 7~

thus C' is unsatisfiable w.r.t. 7

@ If we do not derive _L, then M is a model of C and 7T
thus C is satisfiable w.r.t. 7

This is the basis for a satisfiability algorithm in £L.

45



& L Satisfiability

Theorem. In €L, satisfiability (and subsumption) are in PTime.
[BaaderBrandtL__05]

Proof approach:

@ We cannot construct the infinite tree-shaped model M

@ |nstead use a compact version of the canonical model M.

46



& L Satisfiability

Canonical models can be constructed in a straightforward way:

A E Bl Bl E HT.Bl HT.Bl E Bg
Bl 1 Bz E HS.BQ

Av BlvB2

@ The unraveling of M. is exactly M
—> construction of M. fails iff construction of M fails

@ @ M. is of polynomial size, can be constructed in polynomial time

47



Additional Remarks

Some additional virtues of M.
@ M. is a model of C and 7, too.
@ just like M, M. simulates every model of C' and 7:

Ej (Z,e)
(M,d) Y2

L (M., d)

Theorem. An FO-formula ¢ with one free variable is equivalent to an
& L-concept iff it is preserved under simulation and

has a canonical model. [PiroL__Wolter10]

48



Extensions of £L

&

PTime upper bound can be generalized to EL£™ T, i.e., £L extended with

@ range restrictions on roles, i.e., T L Vr.C

( @ domain restrictions on roles, i.e., T C Vr—.C')

@ role implications, i.e., TBox statements ry 0 ---07r, L r

g e o o

Other extensions cause a jump back to ExpTime, e.g.

@ disjunctions C' L D
@ universal restrictions Vr.C

@ number restrictions (> 217)

N

OWL EL

Profile

Interesting: no extension between PTime and ExpTime known (dichotomy?)

49



Extensions of £L

Theorem. In £L + L, satisfiability (and subsumption) are ExpTime-complete.

[BaaderBrandtL  05]

Proof: reduction from satisfiability of concept name Ay w.r.t. ALC-TBox T

Step 1: Replace universal restrictions in 7~ with existential ones:

Vr.C becomes —=r.-C

Step 2: Modify 7 so that negation is applied only to concept names

A C ds.(B’U—3r.B) becomes AL Js.(B'U-X)
X =3dr.B

(X a fresh concept name)

50



Extensions of £L

Theorem. In £L + L, satisfiability (and subsumption) are ExpTime-complete.

[BaaderBrandtL  05]

Proof: reduction from satisfiability of concept name Ay w.r.t. ALC-TBox T

Step 3: Remove negation entirely from 7~

@ Replace each =X with X, X a fresh concept name

@ Ensure correct behaviour of X:

TCXuX
XNXC.L

Resulting TBox 7" isin £L + LI and A, sat w.r.t. 7 iff Ay sat w.r.t. 7~/

51



Extensions of £L

Theorem. In £L + Vr.C and EL + (> 2 1), satisfiability is ExpTime-complete.
[BaaderBrandtL__ (5]

Proof: reduction from satisfiability of concept name Ay w.r.t. £L + LI-TBox 7

We can assume that disjunction occurs only in the form

A1I_IA2EA and AEB1L|B2
\

J

A, CA A, C A replace by

AM3r.TC B,

r, X fresh
AMVr.X E Bz

52



Extensions of £L

Theorem. In £L + Vr.C and EL + (> 2 1), satisfiability is ExpTime-complete.
[BaaderBrandtL__ (5]

Proof: reduction from satisfiability of concept name Ay w.r.t. £L + LI-TBox 7

We can assume that disjunction occurs only in the form

A1I_IA2EA and AEB1L|B2
\

J

A, CA A, C A replace by

AL dr. X M1drY
ANdr(XNMY)LC B r, X,Y fresh

w AN (>2r) C By

53



Extensions of £L

Call an extension of €L convex if:

T E=CLC DU D, implies T = C C D, for some i € {1,2}

EL + Vr.C is not convex:

PETCIrTUVEX,but@ b TE Ir.Tand 0 b T C Vr. X

The reductions show: if an extension of £L is not convex, it is ExpTime-hard.

Interestingly, the converse does not hold!

Easy to prove:

&

Existence of canonical models M implies convexity:

54



Extensions of £L

Consider £ L extended with inverse existential restrictions:

3r~.C has semantics {d € AT | e € C? : (e,d) € vt}

Theorem. £L + dr—.C is convex, but satisfiability is ExpTime-complete.
[BaaderBrandtL__ 05]

Here only: canonical models can become exponentially large

LO E EI’I".(Ll [ Al) [ EI’I".(Ll [l A—l)
L1 E E"I".(Lz [ Ag) [ EIr.(L2 M A_z)
L2 [ E"I"_.Al E Al

L2 [ El’r‘_.Zl E Zl ¢ L o o
L, Ay Ly, Ay Ly, As Lo, A,
@ Merging leaves destroys canonicity! A Aq Ay A,

55



Discussion

E L is a natural ontology language for a high level of abstraction

satisfiability and subsumption can be computed in polytime

this has led to standardization as OWL EL profile of OWL?2

efficient reasoners are availabe, e.g. CEL (Dresden), SnoRocket (Brisbane)

based on canonical models, very robust, classify SNOMED CT in <10min

algorithms have been generalized to Horn-S' HZ QO
reasoner CB (Oxford)

56



EL vs. FL

The historic choice of universal restrictions instead of existential restrictions

leads to much worse computational behaviour

Complexity of subsumption in F L, constructors T, (L), M, Vr.C:

o empty TBox: tractable [BrachmanLevesque84]
@ acyclic TBox:  co-NP-complete [Nebel90]

@ cyclic TBox: PSpace-complete [KazakovDeNivelle03]

@ general TBox: ExpTime-complete [BaaderBrandtL_05,Hofmann05]
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A Glimpse at F L,

Clearly,
Vr. (AT B) =Vr.AMVr.B

Thus, every F Lj-concept is equivalent to one of the form
\V/’I"l,l.\VI’I"l,z. s e V'rl,nl-Al
[ Vrz,l.vrz,z. s V’I”g,n2.A2

I_l vrk,lovrk,2o ¢ vrz’nkoAk
— _/

Vv
(finite) words over the alphabet of role names

Grouping according to concept name achieves the following normal form

\V/Ll.Al [ VLz.Ag [1eee] \V/LmAm

~ N 7

finite formal languages over the alphabet of role names

58



A Glimpse at F L,

We consider subsumption instead of satisfiability

Subsumption in F L, (without TBoxes):

C —_ VLl.Al [ VLQ.AQ [1eee[T1 VLm.Am
D =VM;.A;MVM3.AxM---MVM,,. A,

ThenC C Diff L; O M; forl <2< m ()

Theorem. Subsumption in F L, without TBoxes is in PTime.

Intuitively () still holds with acyclic TBoxes,

but sets L; can be described compactly, get exponentially large
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A Glimpse at F L,

Reduction from 3SAT to JF L,-subsumption w.r.t. TBoxes:
Take a 3-formula
Y — (61,1 V £1,2 V El’g) VANKICICIVAN (En,l V en,z V En,g)

over the variables x1, ..., xy

Ideas:
@ use two role names ¢ and f representing “true” and “false”

@ represent truth assignments as words over {t, f} of length k

@ as the target subsumption C' L D, use
C = VL¢.A, Li the set of truth assignments that make ¢ false

D =VLp.A, Lp the set of all truth assignments

& .



A Glimpse at F L,

To be done: describe C' and D with polynomial-size TBox:

D is easy:
L;=Vt.Lix,MVfLiy; forl1<i1<mn
L,.1=A
D = L,

C' too (basically)

Theorem. Subsumption in F L, w.r.t. TBoxes is co-NP-hard.
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Instance Data and Query Answering

62



Current DL Research

&

In recent years, exciting new reasoning problems have popped up; e.g.:

@ conjunctive query answering over instance data

w.r.t. a background TBox

@ problems related to the modularity of TBoxes:

@ does a given subset 7/ C 7 say everything about

a given signature X that 7 does?

@ given a signature 3, extract an as-small-as-possible

subset 7/ C 7 that says the same about X as 7 )

@ problems related to privacy issues

e.g. controlled interfaces to TBox / instance data

conservative

extensions
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ABoxes

&

Ontologies are increasingly used with instance data, e.g.:

Clinical document architecture (CDA) becomes standard medical data format

CDA medical codes based on SNOMED CT terminology

Ontology can be exploited for interpreting data / deriving additional answers

ABox: finite set of ground facts, e.g.:

Patient(p) finding(p, d) Pericarditis(d)

Information in ABoxes is incomplete (open world semantics)

E.g., a patient record would not include Inflammation(d), though it is true.

64



ABoxes

&

TBox allows more complete query answers

ABox
Patient(p) Inpatient(p)

inWard(p, w) —Intensive(w)

TBox Inpatient = Jfinding.Disease

dinWard. —Intensive L Vfinding.—LiveThreatening

Then p is an answer to query

Jy.Patient(x) A finding(x, y) A —LiveThreatening(y)
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Query Answering

More formally:

@ Model of ABox .A: interpretation satisfying all facts in A

@ Answers to query q for ABox A w.r.t. TBox 7:

Certain answers, i.e., answers common to all models Z of A and 7

Closely related to query answering in incomplete databases

(but with a different kind of schema constraints)
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Query Languages

@ Instance queries
take the form C(v), v a variable.

technically close to subsumption, almost always of same complexity

@ Conjunctive queries

take the form 3. (7, ¥”), with ¢ a conjunction of atoms A(v) or r (v, v’)

v’ the answer variables, ¥ the quantified variables

generalize instance queries, but are more interesting

Select-Project-Join fragment of SQL

@ FO/SQL queries

generalize conjunctive queries, but: FO sentence ¢ valid iff 0,0 = ¢

/
TBox ABox
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DL Query Answering and Relational Database Systems

In patient databases and other large-scale applications:

@ Efficiency and scalability of query answering is crucial

@ Query answering in expressive DLs is computationally costly

satisfiability query answering
ALC ExpTime ExpTime
ALC + Ar—.C ExpTime 2ExpTime
SHIQ ExpTime 2ExpTime
OWL1 Core NExpTime decidable
OWL1 NExpTime decidability open
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DL Query Answering and Relational Database Systems

Most popular approach to achieve scalability:

Implement DL query answering based on relational database systems

Obvious problem: conventional RDBM unaware of TBoxes

@ Solution |: query rewriting — “put TBox into query”

@ Solution II: data completion — “put TBox into data”
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Solution I: query rewriting — “put TBox into query”
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Query Rewriting

The query rewriting approach: [Calvanese, deGiacomo, Lenzerini et al.05]

@ ABox stored in DB system as relational instance
@ CQ is rewritten to FO/SQL query to incorporate TBox

@ Rewritten query executed by relational DB system

Enables use of off-the-shelf DB systems!

Mission statement: given CQ g and 7, rewrite g into FO query ¢’ such that

A, T = qla,...,a,]iffdbg = q'[ai,...,a,] foral A, aq,...,a,.
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Query Rewriting—Example 1

Query 4 r >e dy.(A(x) Ar(z,y) A B(y))

TBox ds. T C A B'C B

Rewritten query is disjunction of:

A r B A r B’
r .B r B !
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Query Rewriting—Example 2

Query

2N,
ENZ4

Rewritten query is disjunction of:

2N
A

TBox

AC3r.T BLC3s.T

For which DLs does this work?
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Query Rewriting

Data complexity:

@ In DBs: measure complexity only in size of data, not of query

@ In DLs: measure complexity only in size of data, neither of query nor TBox

Theorem. The query rewriting approach only works for DLs for which

CQ entailment is in ACy regarding data complexity. [Calvanese et al. 05]
Proof:
@ FO query answering is in ACy regarding data complexity
@ measured input (data) is left unchanged

@ measured / non-measured inputs are not mixed in the rewriting

&
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Query Rewriting

Data complexity of EL PTime-complete
DLs we have met: " ALC and above | NP-complete™

Why query rewriting cannot be used for £L:
Query °c A A(x)
TBox dr. AC A

Rewritten query is disjunction of:

r A r r A

e A ° >e ° >e >e

We need Jy.r*(x,y) A A(y), but transitive closure not FO-expressible




DL-Lite

&

DL-Lite: a lightweight DL with AC, data complexity [Calvanese et al.05]

Basic version: TBox statements of the form
CLD CLC-D

where C, D are of the form A, dr. T, and dr—. T

For example: Professor C JteachesTo. T  JteachesTo . T L Student

Professor L_ —Student
DL-Lite:
@ inexpressive, but can encode ER diagrams and UML class diagrams

@ admits the query rewriting approach

@ underlies OWL QL profile of OWL2
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Solution Il: data completion — “put TBox into data”
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Data Completion

Limitations of the query rewriting approach:

@ Works only for ACy-DLs, i.e., only for DL-Lite

@ Query rewriting blows up exponentially O (| 7|9

performance problems with large queries / large TBoxes

The data completion approach avoids both probems

in particular, it works for £ L-TBoxes
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Overview

The data completion approach: [L_ TomanWolter08]

@ Incorporate TBox into the ABox, not into the query

@ To deal with existential restrictions and avoid infinite databases:
eagerly reuse constants, producing spurious cycles (and more)

(similar to compact canonical model vs. canonical tree model)

@ To nevertheless obtain correct answers: use query rewriting

Also enables use of off-the-shelf DB systems!
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Data Completion—Example 1

TBox dr. AL A
ABox a " b r =2? r >d
r
e
Completed ABox: g r :I;l r :é r >
r
e A

Query A(x) Answer a,b,c,e
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Data Completion—Example 2

TBox

ABox

Completed ABox:

Query

Rewritten query

AC3s.B 3s.BC A Ir(ANA)CB

a— T b
B 'r A, A
a »b
S
¢ B, Ex
B(v) Answer a,c

B(v) A =Ex(v) Answer a
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Data Completion—Example 2

TBox AL ds.B ds.BC A" 3Fr.(ANMA)C B
A
ABox a—"' b
B - A, A
Completed ABox: a »b
S
¢ B, Ex

ABox completion means building the canonical model

(for an ABox instead of for a concept)



Data Completion—Example 2

General shape of canonical model built for an ABox:

Problem: canonical model can get infinite, database can’t
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Data Completion—Example 3

TBox AL dr.A
A
a

ABox

Completed ABox:

Database cannot be infinite.

=> build compact canonical model!
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Data Completion—Example 3

TBox AL dr.A
A
ABox T
g
Ab
r A
Completed ABox: Aa > C

Wrong answer to some queries, e.g.
Jy.r(z,y) N r(y,y) answer {a, b}, should be 0
w Jy.r(z,y) Ar(z’,y) Ar(z,x") answer {(a,b)}, should be @



Data Completion

&

Problem:
infinite, tree-shaped canonical model M gives correct answers to all queries,

compact version M. does not

Solution:

Rewrite CQ ¢ into FO query ¢’ so that

answers to ¢’ in M. = answers to q in M

Implementation: add query conjuncts expressing that

@ Variable on a query cycle cannot be mapped to an Ex element
@ If r(x,y),s(x',y) in query and r # s, then y not mapped to Ex

@ If r(x,y),r(x’,y) in query and y mapped to Ex, then x = &’
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Data Completion—Example 3

TBox

ABox

Completed ABox:

AL dr.A

q=3y.r(z,y) ANr(y,y)

q = Jy.r(x,y) Ar(y,y) N -Ex(x) A —Ex(y)

&

answer {a, b}

answer ()
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Data Completion—Example 3

&

TBox

ABox

Completed ABox:

AL dr.A

q = Jy.r(z,y) Ar(z'sy) A r(xz,z)

q = Jy.r(z,y) Ar(z’,y) Ar(z,z’))

A —Ex(x) N —Ex(z') A (Ex(y) — « = o)

answer {(a, b)}

answer ()
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Data Completion

Wrapup:

@ Data completion approach works for EL and DL-Lite [KR10],

results only in polynomial blowup of the query

@ Requires authority over the data, blows up the data (polynomially)

@ Extends to role hierarchies, domain and range restrictions

(but transitive roles and general role inclusions are challenging)

@ Limitation: for DLs whose data complexity is not in PTime

there must be a (worst case) exponential blowup of the data
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2?7 ?

Questions?

PS: Slides are on my homepage

PPS: Somebody interested in a PhD/Postdoc position?
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Decidability of ALC

Tree model property is a good explanation for decidability of ALC:

@ replacing graph models with trees models tends to make logics decidable

recall, e.g., Rabin’s theorem

@ there are powerful tools for logics on trees (e.g. automata, games)

Theorem. Satisfiability in ALC is ExpT1iME-complete.

A simple proof is based on type elimination [Pratt1979]
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Data Completion—Example 3

TBox AL dr.A
A
ABox T
d
Ab
r A - A
Completed ABox: Aa >a’ va-----
'rl LA A
Ab byt

Database cannot be infinite.

=> build compact canonical model!
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ABoxes

&

TBox allows more complete query answers

ABox
Patient(p) finding(p, d) Inflammation(d)

location(d, h) Heart(h)

TBox Inflammation C Disease

HeartDisease = Disease M Jlocation.Heart

Then p is an answer to query

Jy.Patient(x) A finding(x, y) A HeartDisease(y)
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Extensions of £L

The case without _L:

@ Satisfiability is trivial

(Every concept satisfiable w.r.t. every TBox)

@ Subsumption in £L + U is still ExpTime-complete
Reduction from (un)satisfiability in ££ + LI with L:

A satisfiable wrt. 7 iff 7/ = A C A}

where 7 is obtained by
@ replacing L in 7 with A, and

@ adding dr.A | T _ for all role names 7 used in 7
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A Glimpse at F L,

&

To be done: describe C' and D with polynomial-size TBox:

D is easy:
Li — Vt.LH_l [ \V/f.LfH_l for 1 S ') S n
Ln_|_1 = A
= LO

C' too (basically):
@ for each clause ¢ of ¢, do the construction for D, but
drop further Vt.;; / Vf.L; 1 when all three literals were made false
@ we get concept VL.C with L set of truth assignments that make ( false

@ take conjunction of all these concepts
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Query Answering

&

ABox

Patient(p)

TBox Patient = Human

Human . Male LI Female

Some models:

Patient Patient
pe Human pe Human
Male Female
Then p is an answer to query Not to
Human(x) Male(x)

Patient

pe Human
finding Female
e Meningitis

Fy.finding(x, x)
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